
Citation: Muhammad, A.; Ali,

M.A.H.; Turaev, S.; Abdulghafor, R.;

Shanono, I.H.; Alzaid, Z.;

Alruban, A.; Alabdan, R.; Dutta, A.K.;

Almotairi, S. A Generalized Laser

Simulator Algorithm for Mobile

Robot Path Planning with Obstacle

Avoidance. Sensors 2022, 22, 8177.

https://doi.org/10.3390/s22218177

Academic Editor: Gregor Klancar

Received: 28 June 2022

Accepted: 5 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Generalized Laser Simulator Algorithm for Mobile Robot
Path Planning with Obstacle Avoidance
Aisha Muhammad 1 , Mohammed A. H. Ali 2,* , Sherzod Turaev 3 , Rawad Abdulghafor 4 ,
Ibrahim Haruna Shanono 5 , Zaid Alzaid 6, Abdulrahman Alruban 7, Rana Alabdan 8 , Ashit Kumar Dutta 9 and
Sultan Almotairi 6,10,*

1 Department of Mechatronics Engineering, Faculty of Technology, Bayero University, Kano 700241, Nigeria
2 Department of Mechanical Engineering, Faculty of Engineering, University of Malaya,

Kuala Lumpur 50603, Malaysia
3 Department of Computer Science and Software Engineering, College of Information Technology,

United Arab Emirates University, Al-Ain P.O. Box 15556, United Arab Emirates
4 Department of Computer Science, Faculty of Information and Communication Technology,

International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
5 Department of Electrical Engineering, Faculty of Technology, Bayero University, Kano 700241, Nigeria
6 Department of Computer Science, Faculty of Computer and Information Systems, Islamic University of Medinah,

Medinah 42351, Saudi Arabia
7 Department of Information Technology, College of Computer and Information Sciences, Majmaah University,

Al Majmaah 11952, Saudi Arabia
8 Department of Information Systems, Faculty of Computer and Information Sciences College,

Majmaah University, Al Majmaah 11952, Saudi Arabia
9 Department of Computer Science and Information Systems, College of Applied Sciences Al Maarefa University,

Riyadh 13713, Saudi Arabia
10 Department of Natural and Applied Sciences, Faculty of Community College, Majmaah University,

Majmaah 11952, Saudi Arabia
* Correspondence: hashem@um.edu.my (M.A.H.A.); almotairi@mu.edu.sa (S.A.)

Abstract: This paper aims to develop a new mobile robot path planning algorithm, called generalized
laser simulator (GLS), for navigating autonomously mobile robots in the presence of static and
dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path while finding
the target and avoiding obstacles while moving in complex regions. An optimal path between the
start and target point is found by forming a wave of points in all directions towards the target
position considering target minimum and border maximum distance principles. The algorithm
will select the minimum path from the candidate points to target while avoiding obstacles. The
obstacle borders are regarded as the environment’s borders for static obstacle avoidance. However,
once dynamic obstacles appear in front of the GLS waves, the system detects them as new dynamic
obstacle borders. Several experiments were carried out to validate the effectiveness and practicality
of the GLS algorithm, including path-planning experiments in the presence of obstacles in a complex
dynamic environment. The findings indicate that the robot could successfully find the correct path
while avoiding obstacles. The proposed method is compared to other popular methods in terms of
speed and path length in both real and simulated environments. According to the results, the GLS
algorithm outperformed the original laser simulator (LS) method in path and success rate. With
application of the all-direction border scan, it outperforms the A-star (A*) and PRM algorithms and
provides safer and shorter paths. Furthermore, the path planning approach was validated for local
planning in simulation and real-world tests, in which the proposed method produced the best path
compared to the original LS algorithm.

Keywords: path planning; wheeled mobile robot; generalized laser simulator; local path panning;
global path planning; obstacle

Sensors 2022, 22, 8177. https://doi.org/10.3390/s22218177 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2854-095X
https://orcid.org/0000-0002-5179-7027
https://orcid.org/0000-0001-6661-8469
https://orcid.org/0000-0002-0266-1027
https://orcid.org/0000-0002-6553-3153
https://orcid.org/0000-0003-2410-486X
https://orcid.org/0000-0003-2050-5236
https://doi.org/10.3390/s22218177
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218177?type=check_update&version=2

Sensors 2022, 22, 8177 2 of 27

1. Introduction

One of the most significant processes in the autonomous navigation is path plan-
ning [1]. Path planning involves the determination of a possible path for a mobile robot
to move from a start to a target location in a particular environment while considering
optimization parameters like path distance, time and path smoothness [2–4]. As a result,
the mobile Robot is expected to reach its destination within the shortest time.

Robots have been proven to be useful in various industries, including in areas which
are inaccessible to humans. In recent years, autonomous navigation and path planning
have attracted attention for a wide range of applications in which robots must operate in
complex and hazardous environments [5]. A large amount of work is being performed to
develop an intelligent algorithm that can be applied to navigating a mobile robot without a
need for manual assistance.

Path planning is divided into two types, namely global and local path planning. In
global planning, the autonomous robot requires information about the environment, the
starting and end locations, and the positions of obstacles (all of which deal with an entirely
known environment). In contrast, such information is not known (somewhat known and
unknown environment) in local path planning [6].

There are two categories of obstacle settings, namely static and dynamic obstacles. In
the former, the complete path must be determined prior of the start of robot movement;
however, in the latter, replanning in real time is often required in dynamic or partially
unknown environments, which takes a long time for path determination. The path-planning
problem can be described briefly in the following steps: firstly, a feasible path for the robot
must be determined based on defined start and goal positions in both known and unknown
environmental settings. Secondly, the mobile robot should be able to avoid collisions with
dynamic and static obstacles. Additionally, the mobile robot should complete the obstacle
avoidance and pathfinding tasks using the shortest path and the least amount of time.

The advancement of automation and in-depth research in autonomous navigation
technology has facilitated an increase in the use of autonomous robots in a wide range of
industrial applications, including nuclear power plants using Grid-based rapidly random
exploring trees GB-RRT* [7], space exploration using Ordered Upwind Method based
Direction-dependent optimal path planning (OUM-BD) [8], rescue missions, mines, and
war zones [9,10]. Planning algorithms are also helpful for frequent operations in static
environments wherein optimality is needed (for example, industrial applications) [11–14].

To achieve the path-planning goal, many factors should be taken into consideration,
such as the obstacle and map borders. Furthermore, factors such as static/dynamic obsta-
cles and complete/partial unknown environments increase the difficulty of handling the
path-planning problem. In an unknown setting, the mobile robot must execute simultane-
ous localization and mapping while exploring the environment, known as the simultaneous
localization and mapping (SLAM) problem [5]. Although robot path planning in a known
environment with static obstacles is considered an easy task, path planning in a dynamic
environment is a challenging and fascinating area of robotics research.

This paper covers an implementation of the novel generalized laser simulator to ad-
dress static and dynamic obstacles. It is organized as follows: Section two highlights the
contribution, background, and a brief discussion on the related works reported on path
planning. The formulation of the generalized laser simulator approach and obstacle avoid-
ance process is introduced in Section 3. Section 4 shows the simulation and experimental
results for local and global planning by the GLS algorithm. Finally, a conclusion is drawn
and presented in Section 5.

2. Background and Related Works

Mobile robot path planning is a subcategory of trajectory planning. The aim is to deter-
mine an optimal path from a defined start to a goal point without considering kinematics
and control inputs [15,16].

Sensors 2022, 22, 8177 3 of 27

A feasible path for the robot in a predictable environment can be generated using
global path planning approaches. Global planning methods are searching for an optimal
path in known environments which is particularly successful static environments. Some of
the most popular methods include Voronoi diagrams [17,18], visibility graphs and adaptive
roadmaps [19], and virtual force fields (VFF) [20].

In contrast, local planning is built based on a dynamic approach that relies entirely
on local perception instead of knowing the entire environment. Since the workspace is
uncertain, local planning guides the mobile robots to detect nearby obstacles and take
appropriate action. To avoid unexpected problems that may occur with dynamic obstacles,
reactive planning must be precise and work in real time. Such situations often lead to
failures in global path planning. When an unexpected obstacle appears in the robot’s
path, it is necessary to re-plan to avoid colliding with the obstacle [21]. Planning in an
unpredictable setting is a complicated issue due to the generated map must always be
adjusted at every iteration of the path planning algorithm. To offer a complete solution
to such a problem, many autonomous systems combine the features of global and local
navigation systems [22].

The uncertainty and complications of the path-planning problem in a local environ-
ment with obstacles have drawn the interest of many researchers [23] and have been a
subject of great interest in recent years. As a result, such path planning algorithms have
been thoroughly explored, with several approaches and the solutions presented to solve
this problem being as follows:

The artificial potential field (APF) method, invented by Khatib [24], is a traditional
path-planning method based on potential energy (gravity, magnetic field, or gravitational).
A robot in the coordinate space could travel using this method while being driven by
attractive and repulsive fields produced by obstacles and targets. This method is used in
the robotics field due to its analytical clarity, real-time performance, and ease of use in
determining the shortest path from start to goal positions.

Barraquand et al. have introduced a search-based path-planning method based on the
potential field with a direct path search [25]. Despite the many benefits that APF provides
due to its simple structure, it has certain drawbacks, such as that the robot can become
trapped in local minima based on the obstacle location and the potential field they produce.
To address this issue, several studies have proposed various ways to avoid local minima in
APF [26].

Virtual field histogram (VFH) [27,28] and enhanced VFH+ [29] are prominent ap-
proaches that describe the sensor uncertainty due to spatial data from sensors, similar to
APF. VFH and APF will perform efficiently with dynamic and static obstacles in constrained
settings. Numerous path planning methods that consider obstacles in unpredictable set-
tings have been discussed in [22,30,31]. Ayawli et al. [32] provided a path-planning method
in an uncertain environment based on the Voronoi diagram and computation geometry
technique (VD-CGT), employing VD and mathematical modeling, with a narrow rectan-
gular area around the robot used to assess collisions. Ravankar et al. have described
collision detection based on virtual obstacles using VD-CGT [33]; however, in [34,35], they
show how to use dispersed obstacle knowledge transfer for collision avoidance and path
planning in complex environments with multiple robots.

Sampling techniques are remarkable because they use deterministic function sampling
to plan using the C-connection space. These functions create a map of the robot’s possible C-
space movements [36]. Due to its effectiveness, the sampling-based planning (SBP) methods
have received close attention in recent years. The common sampling-based planners are
probabilistic road maps (PRM) [37] and rapidly random exploring trees (RRT) [38]. The
PRM’s fundamental idea revolves around the distribution of nodes over C-space before
connecting them with horizontal lines that form a roadmap graph. By confining the search
to a network and interconnecting the free working space, the PRM can effectively determine
the shortest paths.

Sensors 2022, 22, 8177 4 of 27

The RRT and PRM algorithms address local minima and high computation periods for
pathfinding due to their outstanding practical performance and solid theoretical character-
istics [39,40]. A potential function based-RRT* (P-RRT*) integrates APF in RRT* to enhance
the convergence of the path into optimal solution [39]. Such algorithms compute many
dispersed sample points throughout the free space and link them to establish a tree from
which a path is found using a search method using Improved A* [41]. The rapidly exploring
random trees (RRT) technique has been frequently used in the literature, but the selection
of a specific tree to be expanded is the most critical issue that impacts the overall efficiency
of path planning in RRT. Wang et al. [42] have presented revolutionary multi-RRTs based
on learning for mobile robot path planning (LM-RRT) in narrow passages.

Bidirectional-RRT [43] uses a bidirectional tree search for faster path planning. Sim-
ilarly, work in [44] proposed a lazy PRM method, an enhanced PRM that minimizes the
frequency of collision tests that occur during pathfinding and, therefore, minimizes the
planner’s run time. On the other hand, the work presented in [45] demonstrated how to im-
prove the roadmap’s connectivity by linking previously developed connected components.
Probabilistic road maps-star (PRM*) is an improved variant of the initial PRM method,
which was proposed by [46]. With such a method, the number of sample nodes determines
the connection distance. As the number of samples grows, the connection radius gets
smaller, making it easier to move from one place to another. For moving from one node on
the generated roadmap to the next, SBP approaches employ a local planner. The planning
issue is resolved by finding the shortest route between the start of the roadmap on one
side and the roadmap to the goal on the other side. Search-based techniques, such as
the Dijkstra and A* algorithms, have been used to discover the shortest paths on a built
network. The A* method starts by examining the undiscovered node and has the lowest
projected cost [47]. These search plans are fast and can work with maps of various sizes.
By analyzing the mechanics of the robotic system, when the design has been generated on
the graph, the path smoothing methods can generate a smoother path from start to goal
positions [48] such as Infused Tangential Curves (ICT) method [49].

Several authors have studied the advantages of the genetic algorithm (GA) for ad-
dressing the planning problems for autonomous robots in complex environments. Some of
these algorithms depend on a novel fitness function for controlling the distance, safety, and
energy of the robot [50], a knowledge-based GA [51], and adaptive GA [52]. Another way
to find a collision-free path is to calculate artificial potential values using GA. This method
was initially used in [24] for solving the obstacle-free mobile robot path-planning problem.
The robot is considered as an object that is navigating in various surroundings, and the
technique is cantered upon the attraction and repulsion forces produced by the goal and
obstacles [52].

The authors in work [53] presented a hybrid metaheuristic based on the genetic
algorithm–particle swarm optimization (GA–PSO) method for mobile robot path planning
in grid maps to determine a feasible path from predefined starting and ending points. In
contrast to traditional GA and PSO algorithms, the suggested technique avoids compu-
tational complexity and premature convergence. First, the integer factorization problem
(IFP) is generated using a hybrid GA–PSO, and then a cubic B-spline method is adopted to
provide a near-optimal obstacle-free path. Bi et al. have presented a robot-path-planning
approach using fuzzy logic and evolutionary algorithms to lower the complexity of robot
path planning during obstacle avoidance in a dynamic environment [54].

The use of deep reinforcement learning (DRL) for robot navigation in environments
with unknown rough topography, such as in urban search and rescue (USAR), is investi-
gated by Zhang et al. [55]. In this work, they created an Actor-critic-model-3 (A3C)-based
network that employs depth images, elevation maps, and 3D orientation as inputs to iden-
tify the best robot navigation movements. The network was trained in a series of simulated
3D environments that have been varied in traversal motion. The experiment’s results reveal
that when the rough terrain is unknown, the DRL approach may successfully navigate a
robot in an environment to a specified target location.

Sensors 2022, 22, 8177 5 of 27

A detailed study on the computational intelligence (CI) algorithms with the time
domains and the environment models that are used for 2D/3D-unmanned aerial vehicle
(UAV) path planning was presented by Zhang et al. [56]. The authors analyzed the model-
ing, optimization criteria, and path planning algorithms for UAV robots and concluded that
the common methods to address the path planning of mobile robots are genetic algorithm
(GA), particle swarm optimization algorithm (PSO), artificial potential field (APF), and ant
colony optimization algorithm (ACO).

Patle et al. [57] have thoroughly examined several mobile robot navigation techniques
that are now commonly used in robotics applications. The investigations of classical and
reactive approaches were presented in detail. The review compares tabular data and
charts for the individual navigational strategies that can be used with specific robotics
applications. Seckin [58] has presented a method for robot navigation using the real-life
bookmarks arranged in its memory. With this method, the robot utilizes the memorized
traveled path with several key points to plan its path from starting to target positions. It
uses the laser detection and ranging sensor (LIDAR) for mapping the environment into
2D maps. The robot is then driven on its path using the previously prepared map in its
memory. Another method for memorizing the robot’s path through generating a network
of reuse paths in planetary exploration has been proposed by Stenning et al. [59]. It expands
the visual teach and repeat method that allows the robot to visit and revisit any network
nodes. To select the right path, the rapidly exploring random tree (RRT) method is used to
effectively plan the robot’s path in such networks. Khan et al. have proposed RNN-based
metaheuristic algorithms for obstacle avoidance, robot path planning, and control [60,61].
Table 1 shows a comparison between reviewed methods in mobile robot path planning in
terms of algorithms, testing types (simulation or physical), sensors used, obstacle avoidance,
and indoor/outdoor applications, as follows:

Table 1. Illustrates a comparison between reviewed works.

Author Year Algorithm Static
Obstacle

Dynamic
Obstacle Mapping

Online
Path

Planning
Indoor/Outdoor Type of Test

Zhang 2018 DRL Yes Yes 3D No - Simulation
Chao 2018 GB-RRT Yes No 2D No - Simulation
Shum 2015 OUM-BD Yes No 2D No - Simulation
Zhang 2012 Multi-objective PSO Yes No 2D No - Simulation
Bakdi2017 GA/AFL Yes No 2D Yes Indoor Simulation/Experiment
Han 2017 SPS/PI FLP Yes No 2D No - Simulation

Muhammad 2021 GLS Yes Yes 2D Yes Indoor/Outdoor Simulation/Experiment
Khatib 1985 APF No Yes 2D Yes Indoor Simulation/Experiment

Barraquand 1992 PF Yes Yes 2D No - Simulation
Cetin 2012 APF Yes No 2D No - Simulations

Borenstein 1991 VFHV Yes No 2D No Indoor Simulation/Experiment
Ulrich 2000 VFH* Yes No 2D Yes Indoor Simulation/Experiment
Ulrich 1998 VFH+ Yes No 2D Yes Indoor Simulation/Experiment

Ravankar 2020 VFH+ Yes Yes 2D Yes - Simulation
Tuncer 2012 GA Yes Yes 2D No - Simulation
Ayawli 2019 VD/CGT Yes Yes 2D No - Simulation

Ravankar 2019 VD/CGT Yes Yes 2D Yes Indoor/Outdoor Simulation/Experiment
Ravankar 2017 VD/CGT Yes Yes 2D Yes Indoor/Outdoor Simulation/

Experiment
Ravankar 2017 VD/CGT Yes Yes 2D Yes Indoor/Outdoor Simulation/Experiment
Qureshi 2016 P-RRT* Yes No 2D No - Simulation

Fu 2018 Improved A* Yes No 2D Yes Indoor Simulation/Experiment
Wang 2018 LM-RRT Yes No 2D Yes Indoor Simulation/Experiment
Xinyu 2019 Bidirectional-RRT Yes No 2D Yes Indoor Simulation/Experiments
Bohlin 2000 Lazy PRM Yes No 2D Yes Indoor Simulation/Experiment

Karaman 2011 PRM* & RRT* Yes No 2D Yes - Simulation
Ravankar 2019 ITC Yes No 2D/3D Yes Indoor Simulation/Experiment

Lamini 2018 GA Yes No 2D No - Simulation
Hu 2004 GA Yes Yes 2D No - Simulation

Karami 2015 GA Yes No 2D No - Simulation
Huang 2011 GA-PSO Yes No 2D No - Simulation

Bi 2008 GA-FL Yes Yes 2D Yes - Simulation
Ali 2019 LS/Sensor fusion Yes No 2D Yes Indoor/Outdoor Simulation/Experiment
Ali 2020 LS/FL Yes No 2D Yes Indoor/Outdoor Simulation/Experiment
Ali 2018 LS/Vision system Yes No 2D Yes Indoor/Outdoor Simulation/Experiment

Sensors 2022, 22, 8177 6 of 27

The contribution of this paper is to present an approach for mobile robot path planning
in complicated environments with the presence of obstacles. In circumstances where
standard methods fail to offer a solution, such as for small passages, obstacle avoidance,
and local minima problems, the generalized laser simulator (GLS) can overcome such
associated path-planning problems. Furthermore, the algorithm presented an optimized
version that will generate pathways with lesser nodes and a greater success rate while
being computationally efficient. It is an enhancement of the laser simulator method, which
has been successfully adopted in many works [62–65] and an extension of [1] for avoiding
obstacles during path planning.

3. Generalized Laser Simulator (GLS) Algorithm

The mobile robot path-planning process involves moving a mobile robot from a start
position and navigating it through possible successive points until it reaches the target
position in a known or unknown environment. The robot must avoid colliding with objects
and must optimize the path from the start to the goal.

The path planner’s environment (or configuration space) is divided into two sections,
namely, free space and space with obstacles. The robot’s predefined start and target points
are positioned in the free space. The robot’s path-planning objective is to find a fixed set of
possible points to navigate the robot from the start to the target. When there are several
paths between the start and goal positions, mobile robot path-planning algorithms are
employed to find the optimum path according to some specific decision variables, such
as the path distance, path smoothness, or obstacle avoidance. This paper presents a new
path-planning algorithm for determining the best path between a predefined start and a
target location in the environment.

A path’s quality is determined by several factors, namely (i) path distance, (ii) path
smoothness, and (iii) path reliability. Therefore, this paper presents the path-planning
problem in 2D maps with circular-shaped obstacles and no connection to the surrounding
space. The robots are also considered points, with their sizes used to calculate the confidence
radius around the obstacles.

The proposed mobile robot path-planning method GLS will determine an optimal path
for the mobile robot from a start to a goal position with some random obstacles dispersed
in a working space. As a result, the robot will safely move from the start to the target nodes
while avoiding static or dynamic obstacles. The primary advantage of this algorithm is its
capability to locate the best and smooth path to the destination while avoiding obstacles.

In this work, the path-planning problem is broken down into three parts: avoiding
obstacles, searching for a goal, and finding an optimal path for the mobile robot in both
known and unknown environments. The ability to apply this algorithm to local and global
navigation in the presence of obstacles in known and unknown environments is one of its
primary features.

3.1. Modelling of Workspace

The workspace configuration for solving robot path-planning problems using the
presented algorithm is described in detail. Workspace-configuration-based map generation
is an essential part of the path planning process. It is required to acquire map information
about the workspace environment before planning a robot path and determine a feasible
path for the mobile robot to move from the start until the end of its movement.

A two-dimensional f (x, y) function is used on each map. Each pixel has a single value,
representing the intensity of the light at that particular position in the image. The function’s
value represents the grayscale intensity at each (x, y) location. The lowest grey level is 0,
and the highest grey level is 255.

3.1.1. Modelling of Workspace for Global Path Planning

To test the GLS path planning algorithm, a 2D map is used to determine the feasible
path for the mobile robot. In this map, polygons will represent the robot’s surrounding

Sensors 2022, 22, 8177 7 of 27

environments on a 2D axis. A series of points in GLS will be generated as waves in all
directions between the start and goal positions to achieve a feasible path within a short
search time.

After developing the mobile robot workspace environment, four static circular-shaped
obstacles are placed in the workspace at different locations. Equation (1) gives the locations
of the obstacle’s center.

xobs = bxic and yobs = byic (1)

where xi and yi are the obstacle’s center positions. To find suitable space for the obstacles,
the free and occupied spaces (C) were calculated. Equation (2) is used to determine the
obstacle space border.

(x− xobs)
2 + (y− yobs)

2 = r2 (2)

where r is the obstacle’s radius. Equation (3) can be used to find the total space occupied by
the obstacles.

f (g) = ∑N
i=0 πri

2 (3)

where N is the obstacles’ number.
A Euclidean representation is used to depict the workspace. The obstacles’ borders

are considered the same as the environment’s borders.
In the case of dynamic obstacle avoidance, the generated obstacle is set to travel

randomly (top/bottom or left/right). The distance between the obstacle and the nearest
borders or boundaries determines the direction of obstacle movement. Equation (4) de-
termines the obstacle’s index distance from up, down, left, and right boundary positions.
Finally, the mobile robot chooses the direction of movement using Equation (5). It always
decides to travel to the border farthest from where it started.

obtacle index distance ido =

(xobs, yobs + 1 : end) right border
(1 : xobs, yobs) upward border
(xobs, 1 : yobs) left border
(xobs + 1 : end, yobs) downward border

(4)

Direction o f movement =

1 upward
2 downward
3 le f t
4 right

(5)

Equation (6) is used to determine the movement of the obstacles.

Obstacle movement =

(xobs − radius, yobs) if direction is1
(xobs + radius, yobs) if direction is2
(xobs, yobs − radius) if direction is3
(xobs, yobs + radius) if direction is4

(6)

The dynamic obstacle (black circle) will appear randomly in the working environment.
Distance between the obstacle and each of the four (top, bottom, left, right) border is
calculated, and the maximum displacement between them is chosen as the set realistic goal.

3.1.2. Modelling of Workspace for Local Path Planning

This section describes how to implement GLS algorithm in both outdoor and indoor
settings. The mobile robot is designed to navigate the environment in real time, detecting
and identifying boundaries until it arrives at its predetermined target point.

A wheeled mobile robot (WMR) will be used to evaluate the generalized laser sim-
ulator to find the path from start to endpoint based on the acquired data from a camera.
The camera will be used with a suitable image processing algorithm to create a 2D map of
the area.

Sensors 2022, 22, 8177 8 of 27

The algorithm has been implemented in a platform with a ready control system in
which the path planning will calculate the heading angle of the robot, which will later be
performed using the control system, based on GLS. The processor used in this research
is interface-free controller (IFC), which uses parallel data manipulation, which helps to
accelerate the robot’s performance. The GLS algorithm is used to find the robot path while
developing a local map based on live-streaming video. The approach is practically identical
to that developed in Section 3.1.1, except that the robot communicates with a live video
rather than a single image.

The video is acquired through a camera with high resolution and analyzed in MATLAB
software with image processing tools that can capture and process some frames of the
video in real time.

The image-processing algorithm has been developed for extracting image frames
from the streaming video, applying several operations to create the local map image and
performing other computations for road border detection and image processing. There are
three main steps in the image processing algorithm:

• Image preprocessing for preparing the images is shown in Figure 1.
• Image processing and generating a local map for the robot’s working environment.

This constitutes processes that allow for the extraction of road borders from images
and the removal and filtering of noise.

• Post-processing algorithms for local path planning.

Sensors 2022, 22, 8177 9 of 29

The video is acquired through a camera with high resolution and analyzed in
MATLAB software with image processing tools that can capture and process some frames
of the video in real time.

The image-processing algorithm has been developed for extracting image frames
from the streaming video, applying several operations to create the local map image and
performing other computations for road border detection and image processing. There
are three main steps in the image processing algorithm:
• Image preprocessing for preparing the images is shown in Figure 1.
• Image processing and generating a local map for the robot’s working environment.

This constitutes processes that allow for the extraction of road borders from images
and the removal and filtering of noise.

• Post-processing algorithms for local path planning
The image post-processing includes the use of GLS to find the optimum path of the

robot, as illustrated in Figure 1.

Outdoor

Indoor

Office

40500 sq. m.

3. Image post-processing

2. Image processing

1. Image pre-processing

Frame acqusition

Brightness level
adjustment

Video preview

Importation into MATLAB
 Image cropping

and grayscale conversion
Clear image
acquisition

Video input
construction

• 2D Guassian filteration

• Multidimensional images

• Edge detection

• Canny, Prewitt & Sobel filter

• Morphological operators

• 2D order-statistic filtering

• Reomving of small objects from binary
image

• Filling of image regions and holes
operations

Figure 1. Image processing steps.

The proposed algorithm has been encoded in MATLAB and converted to Visual C
Sharp (VC#) through the com server automation server, which has the driver for dealing
with IFC cards. The data and signals are exchanged between the cards and Visual C#.
Then, the pulse width modulation (PWM) signals enable the movement of the motors
coupled with wheels through the motor driver. The GLS path planning will find the next
position of the robot through generating waves that will intersect with the borders and
obstacle border; then, it chooses to move through the middle. To move from the current
position to the planned next position, the controller will calculate the heading angle and
move the robot towards the next planned position.

3.2. Formulation of GLS

Figure 1. Image processing steps.

The image post-processing includes the use of GLS to find the optimum path of the
robot, as illustrated in Figure 1.

The proposed algorithm has been encoded in MATLAB and converted to Visual C
Sharp (VC#) through the com server automation server, which has the driver for dealing
with IFC cards. The data and signals are exchanged between the cards and Visual C#. Then,
the pulse width modulation (PWM) signals enable the movement of the motors coupled

Sensors 2022, 22, 8177 9 of 27

with wheels through the motor driver. The GLS path planning will find the next position
of the robot through generating waves that will intersect with the borders and obstacle
border; then, it chooses to move through the middle. To move from the current position
to the planned next position, the controller will calculate the heading angle and move the
robot towards the next planned position.

3.2. Formulation of GLS

The path planner’s primary aim is to determine the most efficient way for a mobile
robot to navigate while avoiding obstacles during autonomous navigation from a start
position to a target position in an environment.

This section explains how to determine a feasible collision-free path using the proposed
generalized laser simulator algorithm. This algorithm is an enhancement of the laser
simulator method, which has been successfully adopted in many works [60–63] and an
extension of [1] for avoiding obstacles during path planning.

In [1], the GLS algorithm has been utilized to determine the path within the restricted
environment. It finds the borders of environments and determines the next position of
robot through generation of a series of points like waves from the beginning until the goals
positions. The waves will be continuously generated until detection of the boundary of
environments as shown in Figure 2.

Sensors 2022, 22, 8177 10 of 29

The path planner’s primary aim is to determine the most efficient way for a mobile
robot to navigate while avoiding obstacles during autonomous navigation from a start
position to a target position in an environment.

This section explains how to determine a feasible collision-free path using the pro-
posed generalized laser simulator algorithm. This algorithm is an enhancement of the la-
ser simulator method, which has been successfully adopted in many works [60–63] and
an extension of [1] for avoiding obstacles during path planning.

In [1], the GLS algorithm has been utilized to determine the path within the restricted
environment. It finds the borders of environments and determines the next position of
robot through generation of a series of points like waves from the beginning until the
goals positions. The waves will be continuously generated until detection of the boundary
of environments as shown in Figure 2.

P1

P4

P3

P5

P6

P7

P8

P2 A

A

Figure 2. GLS method process.

Using the concept of the shortest path to the goal and the longest distance between
the mobile robot and the nearest border, the GLS algorithm can determine a feasible path
from the start to the target point. The shortest distance process analyses the candidate
points and determines which has the least distance to the target. Equations (7) to (10) are
used to calculate the probability of the preferred point. The theory of negative probability
was adopted to determine the most feasible site to travel to. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝐷 = (𝑥 − 𝑥) + (𝑦 − 𝑦) (7)

 𝑑 = 𝑚𝑖𝑛 𝐷 = 𝑚𝑖𝑛(𝐷 , 𝐷 , … … . , 𝐷) (8)𝑃 = ∑ 𝑃 min = ∑ (9)𝑃 = 1 − 𝑃 (10)

The second parameter focused on the distance of an index from a border. From the
initial point, the total distance between the target place and the nearest boundary in the
right, left, top, and bottom directions is calculated, as seen in Figure 3b. The theory of

Figure 2. GLS method process.

Using the concept of the shortest path to the goal and the longest distance between the
mobile robot and the nearest border, the GLS algorithm can determine a feasible path from
the start to the target point. The shortest distance process analyses the candidate points
and determines which has the least distance to the target. Equations (7) to (10) are used
to calculate the probability of the preferred point. The theory of negative probability was
adopted to determine the most feasible site to travel to.

Distance, Di =

√
(xgoal − xpi)

2 +
(

ygoal − ypi

)2
(7)

dmin = min8
i=1Di = min(D1, D2, , D8) (8)

Pprob =
D

∑8
i=1 Di

Pprobmin =
dmin

∑8
i=1 Di

(9)

Sensors 2022, 22, 8177 10 of 27

Pprob1 = 1− Pprob (10)

The second parameter focused on the distance of an index from a border. From the
initial point, the total distance between the target place and the nearest boundary in the
right, left, top, and bottom directions is calculated, as seen in Figure 3b. The theory of
negative probability is also used in this process, which can be seen in Equations (8)–(10), in
which the lowest probability is chosen.

Sensors 2022, 22, 8177 12 of 29

Start

Identify the current

position

Generate wave using

equations 1 to 4

Identiy the position of

cells in the generated

wave

Is cell position

greater than

image size?

No

Fetch coordinates of

points of interest

Is index value

<255

Yes

Border

detected

Increment value of f

and n

Is f <2 and n<=20

Yes

End

No border detected

Yes
Set position as

maximum image size

NO

NO

Figure 3. Flow chart of GLS working procedure.

3.3. Obstacle Avoidance

A mobile robot will approach the target point from any starting position in a colli-

sion-free environment. In case of the occurrence of an obstacle, the mobile robot should

detect it from a significant distance and seek to avoid it. As a result, the mobile robot can

avoid the obstacle by adjusting its present trajectory to a different one within the free

Is f < 2 and n <= 20

< 255

Figure 3. Flow chart of GLS working procedure.

Sensors 2022, 22, 8177 11 of 27

The distance between the eighth point and the border in all directions is calculated
using Equation (11):

xdi = xpi + rcos(γ),ydi = ypi + rsin(γ) and Dbi =
√

xdi
2 + ydi

2 (11)

where r is the radius of the circle intersected with the border. γ is equal to 45◦.
The probability of the maximum distance is calculated using Equations (12) and (13):

db max = max8
i=1Dbi = max(Db1, Db2, . . . , Db8) (12)

Pprob2 =
Db

∑8
i=1 Dbi

and Pprob2 max =
db max

∑8
i=1 Dbi

(13)

Equations (12) and (13) calculate the best candidate path point for the mobile robot
based on the probability summation. The best-suited candidate point for the path is
calculated using Equations (14) and (15):

T = ∑2
i=1 Pprob(i) (14)

Q = max8
i=1Ti = max(T1, T2, . . . , T8) (15)

An additional optimization technique is used to find the shortest path. The optimized
GLS would lower the number of the GLS path points between start and goal positions,
resulting in an optimum path.

Figure 3 shows the steps of generating GLS algorithm from start to goal position.

3.3. Obstacle Avoidance

A mobile robot will approach the target point from any starting position in a collision-
free environment. In case of the occurrence of an obstacle, the mobile robot should detect
it from a significant distance and seek to avoid it. As a result, the mobile robot can
avoid the obstacle by adjusting its present trajectory to a different one within the free
workspace available in the environment. Obstacle avoidance can be handled for a static or
dynamic obstacle.

The GLS algorithm considers the boundaries of the static obstacles, such as the borders
of the environment. However, for dynamic obstacles, the direction of moving obstacles
will be determined through sending waves that are continuously intersecting with moving
obstacle borders. By comparing the position of the robot and the obstacle borders in the
next generation of the waves, we can find whether this border is related to static or moving
obstacles as it moves near or far from the next generated waves of moving obstacles, as
shown in Figure 4.

Total moved distance = robot/wave original movement ± obstacle movement

If the total moved distance is equal to robot/wave original movement, then it is a static
obstacle; however when the total moved distance is smaller or larger than the robot/wave
original movement, it is a moving obstacle.

Sensors 2022, 22, 8177 12 of 27

Sensors 2022, 22, 8177 13 of 29

workspace available in the environment. Obstacle avoidance can be handled for a static
or dynamic obstacle.

The GLS algorithm considers the boundaries of the static obstacles, such as the bor-
ders of the environment. However, for dynamic obstacles, the direction of moving obsta-
cles will be determined through sending waves that are continuously intersecting with
moving obstacle borders. By comparing the position of the robot and the obstacle borders
in the next generation of the waves, we can find whether this border is related to static or
moving obstacles as it moves near or far from the next generated waves of moving obsta-
cles, as shown in Figure 4.

Total moved distance = robot/wave original movement ± obstacle movement
If the total moved distance is equal to robot/wave original movement, then it is a

static obstacle; however when the total moved distance is smaller or larger than the ro-
bot/wave original movement, it is a moving obstacle.

Figure 4. Static and moving obstacle detection using GLS.

3.3.1. Static Obstacles Avoidance
Let us consider the situation given in Figure 5 to illustrate static obstacle avoidance.

As shown in Figure 3, at point A, the mobile robot generates waves to detect borders at
iteration t, where it chooses the point P7 as the next preferred point to move to. As the
mobile robot moves to an updated position (see point B) and approaches the obstacle bor-
ders at iteration t + I, a similar situation is experienced. At point C, the borders of the
obstacle intersect with the vertices of P7. Hence, the robot explores the workspace (either
P8 or P6) for the following position while avoiding collisions, and then, the mobile robot
would either move up or down (see point D). The obstacle’s boundary is regarded as a
border in static obstacle avoidance.

Figure 4. Static and moving obstacle detection using GLS.

3.3.1. Static Obstacles Avoidance

Let us consider the situation given in Figure 5 to illustrate static obstacle avoidance.
As shown in Figure 3, at point A, the mobile robot generates waves to detect borders at
iteration t, where it chooses the point P7 as the next preferred point to move to. As the
mobile robot moves to an updated position (see point B) and approaches the obstacle
borders at iteration t + I, a similar situation is experienced. At point C, the borders of the
obstacle intersect with the vertices of P7. Hence, the robot explores the workspace (either
P8 or P6) for the following position while avoiding collisions, and then, the mobile robot
would either move up or down (see point D). The obstacle’s boundary is regarded as a
border in static obstacle avoidance.

Sensors 2022, 22, 8177 14 of 29

P7

P1

P2

P3

P4

P5

P6

P8

P7

P1

P2

P3

P4

P5

P6

P8

P7

P1

P2

P3

P4

P5

P6

P8

ABCD

Obstacle boundaries

Obstacle

Moving Robot

Obstacle radius R

Xa
Xb

Xc

Figure 5. Static obstacle collision avoidance.

3.3.2. Dynamic Obstacle Avoidance
When the robot approaches a moving obstacle, it instantly determines its movement

direction. Then it automatically switches to the next position and escapes the obstacle de-
pending on the robot’s current motion.

The kinematics of the robots and obstacle(s) were not considered in the proposed
method. The detection of obstacles happens during the execution of GLS in dynamic ob-
stacles; however, the feasible path is generated in the GLS optimization process.

The goal of the optimization process is to determine the most efficient path that the
robot will navigate without obstacle collision. The optimization process begins with iden-
tifying the present and selected points’ positions. Then, using an ascending approach, all
x values of the selected positions are organized into a vector X. Similarly, y values are
structured as a vector Y, having ascending values in the y direction.

The minimal distance between other points and the goal point is calculated by con-
sidering the distance between the goal and starting points. If the goal is higher than the
starting point, it is taken in incremental order. Alternatively, if the goal is lower than the
starting point, it is taken in the opposite order. As a result, the coordinate values in the x–
y plane of the selected points from the start position have been ordered in this manner—
in either increasing or decreasing order needed to reach the goal position. Based on vary-
ing circumstances, the optimal location range for the robot to move was determined to be
fifteen pixels.

The current and newly selected positions were then evaluated to see whether they
matched or not to such a point. If they did not match, the possibility of moving to the next
preferred point without walking across a border or obstacle was investigated.

Because the obstacles are believed to be circular, the robot deviates from its path by
switching its motion to rotational movement using Equation (16), as seen in Figure 6. 𝑥 = 𝑥 + 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑐𝑜𝑠 ∅ (16)𝑦 = 𝑦 + 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑠𝑖𝑛 ∅ (17)

where ∅ represents the half-circle arc angle (0 < ∅ <).

Figure 5. Static obstacle collision avoidance.

Sensors 2022, 22, 8177 13 of 27

3.3.2. Dynamic Obstacle Avoidance

When the robot approaches a moving obstacle, it instantly determines its movement
direction. Then it automatically switches to the next position and escapes the obstacle
depending on the robot’s current motion.

The kinematics of the robots and obstacle(s) were not considered in the proposed
method. The detection of obstacles happens during the execution of GLS in dynamic
obstacles; however, the feasible path is generated in the GLS optimization process.

The goal of the optimization process is to determine the most efficient path that
the robot will navigate without obstacle collision. The optimization process begins with
identifying the present and selected points’ positions. Then, using an ascending approach,
all x values of the selected positions are organized into a vector X. Similarly, y values are
structured as a vector Y, having ascending values in the y direction.

The minimal distance between other points and the goal point is calculated by con-
sidering the distance between the goal and starting points. If the goal is higher than the
starting point, it is taken in incremental order. Alternatively, if the goal is lower than the
starting point, it is taken in the opposite order. As a result, the coordinate values in the x–y
plane of the selected points from the start position have been ordered in this manner—in
either increasing or decreasing order needed to reach the goal position. Based on varying
circumstances, the optimal location range for the robot to move was determined to be
fifteen pixels.

The current and newly selected positions were then evaluated to see whether they
matched or not to such a point. If they did not match, the possibility of moving to the next
preferred point without walking across a border or obstacle was investigated.

Because the obstacles are believed to be circular, the robot deviates from its path by
switching its motion to rotational movement using Equation (16), as seen in Figure 6.

xnext = xcurrent + radius× cos∅ (16)

ynext = ycurrent + radius× sin∅ (17)

where ∅ represents the half-circle arc angle (0 < ∅ < π
2).

Sensors 2022, 22, 8177 15 of 29

Goal Point

Start Point

Obstacle avoidance

Ideal Path

Obstacle radius R

Obstacle boundaries

Direction of obstacle

Figure 6. Dynamic obstacle collision avoidance.

3.4. Experimental Settings
In this work, the proposed method was tested in several settings and scenarios to

demonstrate its feasibility for finding the correct path of the robot within the surrounding
environment. The source maps have a 500-by-500-pixel resolution, and all codes were
written in MATLAB (MathWorks Company, Kuala Lumpur, Malaysia) R2014b on a 64-
bit Win 64 pc with an Intel (R) Core (TM) i5 2450 M processor.

3.4.1. Investigation of GLS in Global Path Planning
The proposed method’s quality was assessed in some workspace settings with obsta-

cles configuration. Ten different randomized environments were developed and simu-
lated. Each environment was tested 50 times in the proposed algorithm. Each run’s path
search time and distance were recorded, and the average mean with standard deviation
values was calculated. The start and target locations were placed at different locations in
each map’s free space. The algorithm produced safe, short-distance paths that took a rea-
sonable amount of time.

3.4.2. Investigation of GLS in Local Path Planning
To draw a local map with x and y dimensions in local path planning, one must trans-

fer all image pixels into an actual dimension using the camera transformation, as ex-
plained in detail in [59]. However, this process will take a long time and slow the pro-
cessing time of the whole system. Thus, only the robot’s position will be transferred from
the image plane to the real world dimension. Figure 7 shows the whole process of deter-
mining the robot’s position.

Figure 7. Processes of determining the position of the robot.

3.5. Performance Metrics
To evaluate and measure the performance of the proposed algorithm, the following

parameters are used:

Figure 6. Dynamic obstacle collision avoidance.

3.4. Experimental Settings

In this work, the proposed method was tested in several settings and scenarios to
demonstrate its feasibility for finding the correct path of the robot within the surrounding
environment. The source maps have a 500-by-500-pixel resolution, and all codes were
written in MATLAB (MathWorks Company, Kuala Lumpur, Malaysia) R2014b on a 64-bit
Win 64 pc with an Intel (R) Core (TM) i5 2450 M processor.

Sensors 2022, 22, 8177 14 of 27

3.4.1. Investigation of GLS in Global Path Planning

The proposed method’s quality was assessed in some workspace settings with obsta-
cles configuration. Ten different randomized environments were developed and simulated.
Each environment was tested 50 times in the proposed algorithm. Each run’s path search
time and distance were recorded, and the average mean with standard deviation values
was calculated. The start and target locations were placed at different locations in each
map’s free space. The algorithm produced safe, short-distance paths that took a reasonable
amount of time.

3.4.2. Investigation of GLS in Local Path Planning

To draw a local map with x and y dimensions in local path planning, one must transfer
all image pixels into an actual dimension using the camera transformation, as explained
in detail in [59]. However, this process will take a long time and slow the processing time
of the whole system. Thus, only the robot’s position will be transferred from the image
plane to the real world dimension. Figure 7 shows the whole process of determining the
robot’s position.

Sensors 2022, 22, 8177 15 of 29

Goal Point

Start Point

Obstacle avoidance

Ideal Path

Obstacle radius R

Obstacle boundaries

Direction of obstacle

Figure 6. Dynamic obstacle collision avoidance.

3.4. Experimental Settings
In this work, the proposed method was tested in several settings and scenarios to

demonstrate its feasibility for finding the correct path of the robot within the surrounding
environment. The source maps have a 500-by-500-pixel resolution, and all codes were
written in MATLAB (MathWorks Company, Kuala Lumpur, Malaysia) R2014b on a 64-
bit Win 64 pc with an Intel (R) Core (TM) i5 2450 M processor.

3.4.1. Investigation of GLS in Global Path Planning
The proposed method’s quality was assessed in some workspace settings with obsta-

cles configuration. Ten different randomized environments were developed and simu-
lated. Each environment was tested 50 times in the proposed algorithm. Each run’s path
search time and distance were recorded, and the average mean with standard deviation
values was calculated. The start and target locations were placed at different locations in
each map’s free space. The algorithm produced safe, short-distance paths that took a rea-
sonable amount of time.

3.4.2. Investigation of GLS in Local Path Planning
To draw a local map with x and y dimensions in local path planning, one must trans-

fer all image pixels into an actual dimension using the camera transformation, as ex-
plained in detail in [59]. However, this process will take a long time and slow the pro-
cessing time of the whole system. Thus, only the robot’s position will be transferred from
the image plane to the real world dimension. Figure 7 shows the whole process of deter-
mining the robot’s position.

Figure 7. Processes of determining the position of the robot.

3.5. Performance Metrics
To evaluate and measure the performance of the proposed algorithm, the following

parameters are used:

Figure 7. Processes of determining the position of the robot.

3.5. Performance Metrics

To evaluate and measure the performance of the proposed algorithm, the following
parameters are used:

3.5.1. Total Search Time (ST)

Each algorithm’s total search time is measured in seconds. This parameter is important
since the best algorithm must generate paths in a fast and effective manner. The search
time is measured using a timer coded in MATLAB. A timer event is triggered whenever
the counter clock strikes the timer period. The initialization resets the counter and sets the
timer period. If the period is set to zero, the timer will not run; instead, the timer will be
increased with every clock increment.

The standard deviation (SD) is a statistical metric for assessing precision and repeata-
bility. Its value represents how far the individual variables’ values deviate from the mean
value. The search times of each algorithm’s relative SD are calculated using Equation (17):

SD =

√
∑n

i=1(ST1 − STn)
2

STn
(18)

where STi Is an algorithm’s ith search time during the simulation in a specific experiment.

3.5.2. Path Cost (PC)

The path cost (PC) is the distance that the robot travels from a start point to a specified
endpoint. It is the distance of the total paths covered during the search measured in the
unit of cells. This information is crucial since the mean path cost is directly proportional to
the path’s length.

Sensors 2022, 22, 8177 15 of 27

Similar to the search time, the standard deviation of each path’s cost is calculated
using Equation (18).

SD =

√
∑n

i=1(PCi − PCn)
2

PCn
D = ∑Path size−1

i=1 Distance(Pathi, Pathi+1) (19)

where PCi is an algorithm’s ith path cost in the unit cell, and D is the total path.

3.5.3. Path Smoothness

Path smoothness can be accomplished by assessing the path pattern outlooks gen-
erated by path planning methods, indicating whether the robot trajectory has a zigzag
or not.

4. GLS Implementation in Local and Global Path Planning

Several experiments have been conducted to test the proposed algorithm in local and
global environments as follows.

4.1. Investigation of GLS in Global Path Planning

The proposed approach is tested with obstacles to identify a feasible path from the
defined start location to target locations. In addition, the performance of the proposed
method with and without the presence of obstacles is compared.

The results of the path determination in both static and dynamic obstacles are
as follows:

4.1.1. Static Obstacle

The working environment is divided into small pixels. Each black pixel can depict
either the border of the environment or an obstacle-filled space. Four spherical obstacles
were placed across the workspace. The simulated results of 10 workspace settings with
four static obstacles placed randomly at positions x(g i), y(g i) are shown in Figure 8. The
starting and target point coordinates are (xs, ys) and (xg, yg). The proposed approach has
been tested to select the best path from the start to a target point.

The previously generated paths in Figure 8 are not optimal in terms of time cost, path
smoothness and path cost. To decease the overall path cost, the algorithm in stage 1 has
been further enhanced and the resulted path of robot is shown in Figure 9. The path and
costs for all runs of experiments have been presented in Figure 10. Such optimization has
led to short and safe paths with low time cost. In the occurrence of obstacles, the search
time for pathfinding is lower than when there are no obstacles. This is due to the algorithm
having to detect environment/obstacle borders or reach its maximum wave generation of
20, as discussed above. The calculated results for search time measured for 50 trials in each
of the ten different environments are shown Figure 10.

It can be noted that the total time and distance in environments with obstacles are
lower than in environments without obstacles, as shown in Figure 10. This is due to the
fact that the obstacle’s boundary is regarded as a border similar to other environment
borders. In the absence of obstacles, the GLS algorithm must explore more paths during the
border detection phase until it detects borders or reaches its maximum wave-generating
capacity, which results in additional steps and distance being generated, costing increasing
amounts of time. On the other hand, the presence of obstacles shortens the time and
distance required to find borders.

Figure 10’s graphs demonstrate that the presented method can effectively guide the
Robot toward the target in a complicated environment while avoiding collision with
static obstacles.

Sensors 2022, 22, 8177 16 of 27Sensors 2022, 22, 8177 17 of 29

Figure 8. Results of obstacle avoidance GLS—first stage (wave generation).

The previously generated paths in Figure 8 are not optimal in terms of time cost, path
smoothness and path cost. To decease the overall path cost, the algorithm in stage 1 has
been further enhanced and the resulted path of robot is shown in Figure 9. The path and
costs for all runs of experiments have been presented in Figure 10. Such optimization has
led to short and safe paths with low time cost. In the occurrence of obstacles, the search
time for pathfinding is lower than when there are no obstacles. This is due to the algorithm

Figure 8. Results of obstacle avoidance GLS—first stage (wave generation).

Sensors 2022, 22, 8177 17 of 27

Sensors 2022, 22, 8177 18 of 29

having to detect environment/obstacle borders or reach its maximum wave generation of
20, as discussed above. The calculated results for search time measured for 50 trials in each
of the ten different environments are shown Figure 10.

Figure 9. Final path for obstacle avoidance after GLS—second stage (optimization). Figure 9. Final path for obstacle avoidance after GLS—second stage (optimization).

Sensors 2022, 22, 8177 18 of 27Sensors 2022, 22, 8177 19 of 29

Figure 10. Total search comparison for static obstacle avoidance: (a) time, (b) distance.

It can be noted that the total time and distance in environments with obstacles are

lower than in environments without obstacles, as shown in Figure 10. This is due to the

fact that the obstacle’s boundary is regarded as a border similar to other environment

borders. In the absence of obstacles, the GLS algorithm must explore more paths during

the border detection phase until it detects borders or reaches its maximum wave-generat-

ing capacity, which results in additional steps and distance being generated, costing in-

creasing amounts of time. On the other hand, the presence of obstacles shortens the time

and distance required to find borders.

Figure 10’s graphs demonstrate that the presented method can effectively guide the

Robot toward the target in a complicated environment while avoiding collision with static

obstacles.

The performance analysis comparison between the GLS algorithms and three other

algorithms (A*, RRT, and PRM) for three different environments with four randomly dis-

tributed static obstacles was presented in Figure 11. It was decided to compare A*, RRT,

PRM, LS, and GLS as their natures depend on exploring the environments through gen-

erating trees (RRT), lines (PRM, LS, GLS), and distance calculation (A*) to find the correct

position of the robot. Therefore, they have similar procedures of finding paths from the

start to the goal position. Thus, one can effectively compare them.

(a) (b)

45,000.00

40,000.00

35,000.00

30,000.00

25,000.00

20,000.00

15,000.00

10,000.00

5,000.00

 0.00

Figure 10. Total search comparison for static obstacle avoidance: (a) time, (b) distance.

The performance analysis comparison between the GLS algorithms and three other
algorithms (A*, RRT, and PRM) for three different environments with four randomly
distributed static obstacles was presented in Figure 11. It was decided to compare A*,
RRT, PRM, LS, and GLS as their natures depend on exploring the environments through
generating trees (RRT), lines (PRM, LS, GLS), and distance calculation (A*) to find the
correct position of the robot. Therefore, they have similar procedures of finding paths from
the start to the goal position. Thus, one can effectively compare them.

In addition, A*, RRT, and PRM are among the most popular and most frequently used
algorithms that have proven to be reliable for solving path-planning problems. For LS, the
GLS algorithm is an extended version of the LS algorithm, so the performance comparison
is necessary to see its effectiveness in comparison with the original LS algorithm.

Tables 2 and 3 give the tabulated values of total distance and searching time of PRM,
RRT, A*, and GLS algorithms, which are recorded for 15 trials of three environments—A, B,
and C—as in Figure 11. The mean value for the path cost and searching time of the fifteen
trials are graphically compared in Figure 12.

Figure 12a shows the graphical comparison of the path length between PRM, RRT, GLS,
and A* methods for three environments (A, B, and C) with the same start and goal positions.
It is clearly seen that the path length of the GLS algorithm is shorter compared to the PRM,
RRT, and A* algorithms. Figure 12b displays the graphical comparisons of processing time
in seconds of PRM, RRT, GLS, and A* methods for the same three environments’ start and
goal positions; A*’s running time is much higher compared to the other three methods,
while the proposed GLS algorithm shows the shortest running time.

Sensors 2022, 22, 8177 19 of 27
Sensors 2022, 22, 8177 21 of 30

(a) (b) (c) (d)

Figure 11. Comparison between (a) A*, (b) PRM, (c) RRT, and (d) GLS.

In addition, A*, RRT, and PRM are among the most popular and most frequently
used algorithms that have proven to be reliable for solving path-planning problems. For
LS, the GLS algorithm is an extended version of the LS algorithm, so the performance
comparison is necessary to see its effectiveness in comparison with the original LS algo-
rithm.

Tables 2 and 3 give the tabulated values of total distance and searching time of PRM,
RRT, A*, and GLS algorithms, which are recorded for 15 trials of three environments—A,
B, and C—as in Figure 11. The mean value for the path cost and searching time of the
fifteen trials are graphically compared in Figure 12.

Table 2. Shows distance comparison between GLS and other algorithms, measured in unit cells.

Maps A B C
Algorithm

PRM RRT A* GLS PRM RRT A* GLS PRM RRT A* GLS
Trials

Figure 11. Comparison between (a) A*, (b) PRM, (c) RRT, and (d) GLS.

For dynamic obstacles, the performance of GLS is better than the original LS. Regarding
time average as in Figure 13a, GLS is performing faster than LS by 5.5 times. Regarding
distance average, as in Figure 13b, GLS presents a shorter path than LS by 1.5 times.
Therefore, it can be concluded that the GLS has outstanding performance in both path and
time costs for pathfinding with obstacle avoidance compared to the other algorithms in
dynamic obstacles. In addition, the path of GLS is much smoother than the RRT algorithm,
as shown in Figure 11. As shown in Figure 11, RRT and PRM have intersected with all
environment borders, which means that their capability to move through small passages
is too low. However, A* and GLS have intersected with only one environment, as in
Figure 11a,d (Environment C). Local minima are measured by path length, which is shorter
in A* and GLS and high in RRT and PRM.

Sensors 2022, 22, 8177 20 of 27

Sensors 2022, 22, 8177 21 of 29

6 854.25 839.82 697.77 698 783.12 698.78 611.14 452 574.80 531.30 477.9 398
7 694.29 830.40 697.77 587 754.60 600.35 611.14 632 741.34 529.27 477.97 387
8 777.30 748.67 697.77 588 758.82 777.92 611.14 547 617.53 521.96 477.97 388
9 843.70 737.65 697.77 465 724.56 612.40 611.14 548 460.26 495.11 477.97 365

10 767.20 800.23 697.77 697 694.35 662.49 611.14 519 692.04 790.11 477.97 397
11 767.23 774.09 697.77 411 613.80 638.74 611.14 553 799.70 706.27 477.97 214
12 738.25 787.16 697.77 610 719.50 623.65 611.14 530 745.91 537.29 477.97 310
13 794.71 877.68 697.77 627 783.36 661.09 611.14 626 644.82 513.38 477.97 427
14 721.37 870.13 697.77 529 686.14 794.71 611.14 592 505.29 565.83 477.97 329
15 772.06 714.39 697.77 707 743.69 693.78 611.14 524 548.92 637.76 477.97 437

Table 3. Shows searching time comparison between GLS and other algorithms, measured in seconds
(s).

Maps A B C
Algorithm

PRM RRT A* GLS PRM RRT A* GLS PRM RRT A* GLS Trials
1 2.22 4.48 137.37 1.33 4.39 4.84 69.84 1.06 4.48 3.50 54.84 2.98
2 3.77 7.77 137.51 2.58 4.14 3.16 68.81 1.21 3.06 4.58 55.24 2.11
3 3.65 5.52 140.06 2.30 3.91 3.79 69.56 3.50 4.68 5.45 56.11 3.75
4 2.62 4.50 135.70 2.43 3.60 3.25 68.61 2.56 3.36 3.20 54.46 2.90
5 3.01 10.35 144.00 2.49 3.88 3.11 67.83 2.73 3.17 7.98 53.97 3.14
6 3.61 11.28 136.28 2.70 4.15 2.69 70.72 2.99 3.83 6.13 55.21 2.83
7 2.72 4.98 138.71 1.73 3.55 2.74 69.16 2.70 3.33 3.20 52.90 2.25
8 4.46 10.38 134.80 2.41 4.08 4.05 68.36 3.48 4.50 2.94 54.21 2.59
9 3.97 7.64 134.68 2.61 2.84 3.77 69.60 1.35 3.36 9.48 54.27 3.10

10 3.01 6.49 139.57 1.24 3.40 2.97 69.89 2.40 4.76 3.66 53.54 3.44
11 2.94 5.11 134.93 1.72 3.18 4.17 67.70 1.65 3.37 2.45 54.67 2.13
12 2.71 8.01 137.43 2.43 3.92 3.90 69.68 2.16 2.92 4.48 54.13 2.16
13 2.99 5.77 136.05 1.14 3.25 5.23 72.66 2.40 4.06 2.57 53.02 2.17
14 2.77 3.61 136.90 1.14 3.63 5.06 69.48 2.14 3.22 10.85 57.02 3.09
15 3.44 4.51 138.14 1.69 3.99 3.15 70.90 1.59 4.14 4.34 54.65 3.08

(a) (b)

Figure 12. Mean values of the fifteen trials in Tables 2 and 3 for GLS, PRM, RRT, and A* algorithms
in environments A, B, and C: (a) path length, (b) searching time.
Figure 12. Mean values of the fifteen trials in Tables 2 and 3 for GLS, PRM, RRT, and A* algorithms
in environments A, B, and C: (a) path length, (b) searching time.

Table 2. Shows distance comparison between GLS and other algorithms, measured in unit cells.

Maps A B C
Algorithm PRM RRT A* GLS PRM RRT A* GLS PRM RRT A* GLSTrials

1 807.71 797.21 697.77 663 694.53 709.94 611.14 579 593.91 580.85 477.97 463
2 782.16 881.74 697.77 651 697.57 713.55 611.14 583 676.37 537.18 477.97 411
3 800.85 802.04 697.77 692 671.06 789.11 611.14 501 590.54 506.87 477.9 392
4 702.00 719.00 697.77 678 669.37 675.72 611.14 536 610.73 563.23 477.9 397
5 789.55 889.44 697.77 667 746.00 787.44 611.14 589 492.79 460.74 477.97 467
6 854.25 839.82 697.77 698 783.12 698.78 611.14 452 574.80 531.30 477.9 398
7 694.29 830.40 697.77 587 754.60 600.35 611.14 632 741.34 529.27 477.97 387
8 777.30 748.67 697.77 588 758.82 777.92 611.14 547 617.53 521.96 477.97 388
9 843.70 737.65 697.77 465 724.56 612.40 611.14 548 460.26 495.11 477.97 365

10 767.20 800.23 697.77 697 694.35 662.49 611.14 519 692.04 790.11 477.97 397
11 767.23 774.09 697.77 411 613.80 638.74 611.14 553 799.70 706.27 477.97 214
12 738.25 787.16 697.77 610 719.50 623.65 611.14 530 745.91 537.29 477.97 310
13 794.71 877.68 697.77 627 783.36 661.09 611.14 626 644.82 513.38 477.97 427
14 721.37 870.13 697.77 529 686.14 794.71 611.14 592 505.29 565.83 477.97 329
15 772.06 714.39 697.77 707 743.69 693.78 611.14 524 548.92 637.76 477.97 437

Table 3. Shows searching time comparison between GLS and other algorithms, measured in seconds (s).

Maps A B C
Algorithm PRM RRT A* GLS PRM RRT A* GLS PRM RRT A* GLSTrials

1 2.22 4.48 137.37 1.33 4.39 4.84 69.84 1.06 4.48 3.50 54.84 2.98
2 3.77 7.77 137.51 2.58 4.14 3.16 68.81 1.21 3.06 4.58 55.24 2.11
3 3.65 5.52 140.06 2.30 3.91 3.79 69.56 3.50 4.68 5.45 56.11 3.75
4 2.62 4.50 135.70 2.43 3.60 3.25 68.61 2.56 3.36 3.20 54.46 2.90
5 3.01 10.35 144.00 2.49 3.88 3.11 67.83 2.73 3.17 7.98 53.97 3.14
6 3.61 11.28 136.28 2.70 4.15 2.69 70.72 2.99 3.83 6.13 55.21 2.83
7 2.72 4.98 138.71 1.73 3.55 2.74 69.16 2.70 3.33 3.20 52.90 2.25
8 4.46 10.38 134.80 2.41 4.08 4.05 68.36 3.48 4.50 2.94 54.21 2.59
9 3.97 7.64 134.68 2.61 2.84 3.77 69.60 1.35 3.36 9.48 54.27 3.10

10 3.01 6.49 139.57 1.24 3.40 2.97 69.89 2.40 4.76 3.66 53.54 3.44
11 2.94 5.11 134.93 1.72 3.18 4.17 67.70 1.65 3.37 2.45 54.67 2.13
12 2.71 8.01 137.43 2.43 3.92 3.90 69.68 2.16 2.92 4.48 54.13 2.16
13 2.99 5.77 136.05 1.14 3.25 5.23 72.66 2.40 4.06 2.57 53.02 2.17
14 2.77 3.61 136.90 1.14 3.63 5.06 69.48 2.14 3.22 10.85 57.02 3.09
15 3.44 4.51 138.14 1.69 3.99 3.15 70.90 1.59 4.14 4.34 54.65 3.08

Sensors 2022, 22, 8177 21 of 27

Sensors 2022, 22, 8177 22 of 29

Figure 12a shows the graphical comparison of the path length between PRM, RRT,
GLS, and A∗ methods for three environments (A, B, and C) with the same start and goal
positions. It is clearly seen that the path length of the GLS algorithm is shorter compared
to the PRM, RRT, and A* algorithms. Figure 12b displays the graphical comparisons of
processing time in seconds of PRM, RRT, GLS, and A∗ methods for the same three envi-
ronments’ start and goal positions; A*’s running time is much higher compared to the
other three methods, while the proposed GLS algorithm shows the shortest running time.

For dynamic obstacles, the performance of GLS is better than the original LS. Regard-
ing time average as in Figure 13a, GLS is performing faster than LS by 5.5 times. Regarding
distance average, as in Figure 13b, GLS presents a shorter path than LS by 1.5 times. There-
fore, it can be concluded that the GLS has outstanding performance in both path and time
costs for pathfinding with obstacle avoidance compared to the other algorithms in dy-
namic obstacles. In addition, the path of GLS is much smoother than the RRT algorithm,
as shown in Figure 11. As shown in Figure 11, RRT and PRM have intersected with all
environment borders, which means that their capability to move through small passages
is too low. However, A* and GLS have intersected with only one environment, as in Figure
11C(a) and C(d). Local minima are measured by path length, which is shorter in A* and
GLS and high in RRT and PRM.

4.1.2. Dynamic Obstacles
The subsequent motion must be adjusted accordingly when the robot approaches a

dynamic obstacle to avoid the obstacles intelligently. The experimental result of dynamic
obstacle avoidance in two different environments is shown in Figure 13.

Figure 13. Dynamic obstacle avoidance: (a) Environment A, (b) Environment B.

(a)

(b)

Figure 13. Dynamic obstacle avoidance: (a) Environment A, (b) Environment B.

4.1.2. Dynamic Obstacles

The subsequent motion must be adjusted accordingly when the robot approaches a
dynamic obstacle to avoid the obstacles intelligently. The experimental result of dynamic
obstacle avoidance in two different environments is shown in Figure 13.

4.2. Investigation of GLS in Local Path planning

The generalized laser simulator algorithm has been tested in both indoor and outdoor
settings as follows:

4.2.1. Indoor Results

The images sequences of the camera’s video is utilized to accomplish the indoor
navigation of mobile robots. The sampling time for processing is the slowest sensor
(camera and odometry). The slowest device is odometry, which has 800 pulse/rotation
and 100 rpm from a DC motor. The time for giving one pulse is 2.083 ms, and that for
complete rotation is 1.66 s. The processing time for the data is within 1 ms. Therefore, the
total processing time for receiving one signal is 3.08 ms.

The pre-processing and processing techniques are applied to the image frames. The
GLS algorithm examines each image frame’s pixel value in the environment borders. The
findings of indoor navigation in Figure 14 demonstrate that the image processing algorithm
is able to clearly build a map of the environment with obstacles from a series of image
frames. Figure 14 represents the post-processing path results of the proposed GLS with
obstacle positions to the center, left, and right of the robot’s path. Figure 14a shows the
original image of the wheel mobile robot, while Figure 14b,c show the final paths generated
using the LS and GLS algorithms, respectively.

Sensors 2022, 22, 8177 22 of 27

Sensors 2022, 22, 8177 23 of 29

4.2. Investigation of GLS in Local Path planning
The generalized laser simulator algorithm has been tested in both indoor and out-

door settings as follows:

4.2.1. Indoor Results
The images sequences of the camera’s video is utilized to accomplish the indoor nav-

igation of mobile robots. The sampling time for processing is the slowest sensor (camera
and odometry). The slowest device is odometry, which has 800 pulse/rotation and 100
rpm from a DC motor. The time for giving one pulse is 2.083 ms, and that for complete
rotation is 1.66 s. The processing time for the data is within 1 ms. Therefore, the total pro-
cessing time for receiving one signal is 3.08 ms.

The pre-processing and processing techniques are applied to the image frames. The
GLS algorithm examines each image frame’s pixel value in the environment borders. The
findings of indoor navigation in Figure 14 demonstrate that the image processing algo-
rithm is able to clearly build a map of the environment with obstacles from a series of
image frames. Figure 14 represents the post-processing path results of the proposed GLS
with obstacle positions to the center, left, and right of the robot’s path. Figure 14a shows
the original image of the wheel mobile robot, while Figure 14b,c show the final paths gen-
erated using the LS and GLS algorithms, respectively.

Sensors 2022, 22, 8177 24 of 29

Figure 14. Indoor navigation with obstacle on the left side of the road. (a) Original image; (b) apply-
ing LS algorithm; (c) applying GLS algorithm.

Figure 14 provides a graphical representation of the path findings, but it is difficult
to determine which method is the best. Figure 15 shows a graphical comparison of path
cost and running time between LS and GLS. In comparison with the original LS method,
the proposed algorithm outperforms the LS algorithm in terms of path and time costs and
path smoothness.

Figure 15. Comparison between GLS and LS in indoor environment: (a) search time, (b) distance.

4.2.2. Outdoor Results
A mobile robot was operated in a complex outside roads with partial maps where it

was required to deal with unexpected obstacles spotted along the way. In these situations,
the GLS-based path-planning algorithm must be able to handle path planning in such a
partial environment and employ efficient representations. The GLS algorithm has been
implemented on a real road at the University Malaysia Pahang Pekan campus, as shown
in Figure 16a. The image processing algorithm enables the robot to find the borders of the
roads and obstacles, with capability to eliminate the other parts of the road, as shown in
Figure 16b. From Figure 16c, it can also be seen that the algorithm can effectively traverse
the outdoor environment.

Figure 14. Indoor navigation with obstacle on the left side of the road. (a) Original image; (b) applying
LS algorithm; (c) applying GLS algorithm.

Figure 14 provides a graphical representation of the path findings, but it is difficult
to determine which method is the best. Figure 15 shows a graphical comparison of path
cost and running time between LS and GLS. In comparison with the original LS method,
the proposed algorithm outperforms the LS algorithm in terms of path and time costs and
path smoothness.

Sensors 2022, 22, 8177 23 of 27

Sensors 2022, 22, 8177 24 of 29

Figure 14. Indoor navigation with obstacle on the left side of the road. (a) Original image; (b) apply-
ing LS algorithm; (c) applying GLS algorithm.

Figure 14 provides a graphical representation of the path findings, but it is difficult
to determine which method is the best. Figure 15 shows a graphical comparison of path
cost and running time between LS and GLS. In comparison with the original LS method,
the proposed algorithm outperforms the LS algorithm in terms of path and time costs and
path smoothness.

Figure 15. Comparison between GLS and LS in indoor environment: (a) search time, (b) distance.

4.2.2. Outdoor Results
A mobile robot was operated in a complex outside roads with partial maps where it

was required to deal with unexpected obstacles spotted along the way. In these situations,
the GLS-based path-planning algorithm must be able to handle path planning in such a
partial environment and employ efficient representations. The GLS algorithm has been
implemented on a real road at the University Malaysia Pahang Pekan campus, as shown
in Figure 16a. The image processing algorithm enables the robot to find the borders of the
roads and obstacles, with capability to eliminate the other parts of the road, as shown in
Figure 16b. From Figure 16c, it can also be seen that the algorithm can effectively traverse
the outdoor environment.

Figure 15. Comparison between GLS and LS in indoor environment: (a) search time, (b) distance.

4.2.2. Outdoor Results

A mobile robot was operated in a complex outside roads with partial maps where it
was required to deal with unexpected obstacles spotted along the way. In these situations,
the GLS-based path-planning algorithm must be able to handle path planning in such a
partial environment and employ efficient representations. The GLS algorithm has been
implemented on a real road at the University Malaysia Pahang Pekan campus, as shown in
Figure 16a. The image processing algorithm enables the robot to find the borders of the
roads and obstacles, with capability to eliminate the other parts of the road, as shown in
Figure 16b. From Figure 16c, it can also be seen that the algorithm can effectively traverse
the outdoor environment.

Sensors 2022, 22, 8177 25 of 29

Figure 16. GLS with obstacles in the road. (a) Original image; (b) image from pre-processing; (c)
applying GLS algorithm (dash line).

The GLS algorithm can find a path even in a situation in which a border is not de-
tected. As shown in Figure 16, some borders of the road in the bottom of figure are missed.
However, GLS is able to find the path. This is due to the fact that in a situation in which
the GLS algorithm cannot detect any border, it will stop at the 20th generated circle and
determined the next point to move. The absence of borders will only increase the path and
time costs, which can be observed in Figure 16 and Table 4.

A comparison between GLS and other algorithms (A*, PRM, RRT, and LS) in both
global and local path planning in terms of path cost, search time, and path smoothness is
illustrated in Table 4. It can be clearly seen that GLS has the best performance in compar-
ison with all other algorithms, as has been previously explained.

Table 4. Shows comparison between GLS and other algorithms.

Environments Simulation/
Experiments Algorithm Path Cost

(mm)
Search Time

(ms)

Path Smoothness
(Low: When All Path Has
Zigzag, Medium: When

Zigzag Existed Partially In
Path, High: Small or Non-

zigzag Path)

Environment A Fig-
ure 11 Simulation

A* 478.34 27.89 Medium
PRM 472.34 9.93 High
RRT 506.05 3.50 Low
GLS 493.75 3.59 High

Environment B Fig-
ure 11 Simulation

A* 540.15 84.47 Medium
PRM 531.84 5.99 High
RRT 639.25 8.08 Low
GLS 579.25 4.17 High

Environment C Fig-
ure 11

Simulation

A* 516.14 24.88 Medium
PRM 522.22 7.49 High
RRT 30.05 3.64 Low
GLS 662.58 2.33 High

Environment A Fig-
ure 15

Real-time Experi-
ments

LS 244.52 6.37 Low
GLS 143.29 1.51 High

Environment B
Figure 15

Real-time Experi-
ments

LS 300.29 2.89 Low
GLS 118.88 0.26 High
LS 336.83 5.94 Low

Figure 16. GLS with obstacles in the road. (a) Original image; (b) image from pre-processing;
(c) applying GLS algorithm (dash line).

The GLS algorithm can find a path even in a situation in which a border is not detected.
As shown in Figure 16, some borders of the road in the bottom of figure are missed.
However, GLS is able to find the path. This is due to the fact that in a situation in which
the GLS algorithm cannot detect any border, it will stop at the 20th generated circle and
determined the next point to move. The absence of borders will only increase the path and
time costs, which can be observed in Figure 16 and Table 4.

Sensors 2022, 22, 8177 24 of 27

Table 4. Shows comparison between GLS and other algorithms.

Environments Simulation/
Experiments Algorithm Path Cost

(mm)
Search Time

(ms)

Path Smoothness
(Low: When All Path Has
Zigzag, Medium: When

Zigzag Existed Partially In
Path, High: Small or

Non-zigzag Path)

Environment A
Figure 11 Simulation

A* 478.34 27.89 Medium
PRM 472.34 9.93 High
RRT 506.05 3.50 Low
GLS 493.75 3.59 High

Environment B
Figure 11 Simulation

A* 540.15 84.47 Medium
PRM 531.84 5.99 High
RRT 639.25 8.08 Low
GLS 579.25 4.17 High

Environment C
Figure 11 Simulation

A* 516.14 24.88 Medium
PRM 522.22 7.49 High
RRT 30.05 3.64 Low
GLS 662.58 2.33 High

Environment A
Figure 15

Real-time
Experiments

LS 244.52 6.37 Low
GLS 143.29 1.51 High

Environment B
Figure 15

Real-time
Experiments

LS 300.29 2.89 Low
GLS 118.88 0.26 High

Environment C
Figure 15

Real-time
Experiments

LS 336.83 5.94 Low
GLS 205.12 0.34 High

A comparison between GLS and other algorithms (A*, PRM, RRT, and LS) in both
global and local path planning in terms of path cost, search time, and path smoothness is
illustrated in Table 4. It can be clearly seen that GLS has the best performance in comparison
with all other algorithms, as has been previously explained.

5. Conclusions

Path planning is a critical problem in robotics, especially for mobile robots that are
working in challenging environments. Artificial Potential field, Sampling-based planner’s
methods, and probabilistic roadmap algorithms have been frequently adopted for many
robot applications. However, such methods struggle from a narrow passage problem,
resulting in an unconnected graph due to the random selection of nodes. The problem is
solved by expanding the number of nodes but at the expense of increasing the processing
costs, which impacts real-time performance.

This paper presented the generalized laser simulator algorithm for path planning with
obstacle avoidance in global and local environments. The implementation of the proposed
algorithm in indoor and outdoor environments has been discussed and presented. A camera
with suitable image processing algorithms has been used to extract the environment’s
features and develop a local mapping for the environment. The GLS algorithm is utilized
to plan the path within the developed local maps. The path is modeled, and a collision-free
path is generated within its environment.

The proposed algorithm has been implemented in global and local path planning
with static and dynamic obstacles in different scenarios. The results have verified that
the proposed method can effectively avoid global and local path planning obstacles while
searching for the shortest path.

In contrast with the PRM, RRT, laser simulator, and A* algorithms, GLS presents the
best path and time costs with a piecewise linear, smooth path.

As future work, the metaheuristic algorithms can be used to speed up the path-
planning process of the GLS algorithm through training the path well. For training the
paths, one can manually choose as many random points as desired. Later, we try to
find paths for each possible point combination and store their details. When running the

Sensors 2022, 22, 8177 25 of 27

proposed algorithm, if any trained data exists, it will use such trained data and process the
path accordingly. If no trained data exist, then it will process normally with GLS. However,
in a situation in which the selected data point is near the trained data points, the result is
expected to be fast and very accurate.

Author Contributions: Conceptualization, A.M. and M.A.H.A.; methodology, A.M. and M.A.H.A.;
software, A.M. and M.A.H.A.; validation, A.M. and M.A.H.A.; formal analysis, A.M. and M.A.H.A.;
investigation, A.M., M.A.H.A. and R.A. (Rawad Abdulghafor); resources, A.M. and M.A.H.A.;
data curation, A.M., M.A.H.A. and I.H.S.; writing—original draft preparation, M.A.H.A.; writing—
review and editing, A.M., M.A.H.A., S.T., R.A. (Rawad Abdulghafor), I.H.S., S.A., Z.A., A.A., R.A.
(Rana Alabdan), A.K.D. and S.A.; visualization, A.M. and M.A.H.A.; supervision, M.A.H.A.; project
administration, M.A.H.A.; funding acquisition, S.A. and M.A.H.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the Researchers Supporting Program (TUMA-Project-2021-27)
Almaarefa University, Riyadh, Saudi Arabia. The research has been also funded by Deanship of
Scientific Research at Majmaah University under project number NO (R-2022-318) and University
Malaya under research project No. (PV045-2022).

Acknowledgments: The authors deeply acknowledge the Researchers Supporting Program (TUMA-
Project-2021-27) Almaarefa University, Riyadh, Saudi Arabia for supporting this work. The authors
also extend their thanks to the Deanship of Scientific Research at Majmaah University for finding this
research under project number NO (R-2022-318). The authors would like also to thank University
Malaya for supporting this research under grant No. (PV045-2022).

Conflicts of Interest: The authors declare they have no conflicts of interest to report regarding the
present study.

References
1. Muhammad, A.; Ali, M.A.H.; Turaev, S.; Shanono, I.H.; Hujainah, F.; Zubir, M.N.M.; Faiz, M.K.; Faizal, E.R.M.; Abdulghafor, R.

Novel Algorithm for Mobile Robot Path Planning in Constrained Environment. Comput. Mater. Contin. 2021, 71, 2697–2719.
[CrossRef]

2. Leena, N.; Saju, K. A survey on path planning techniques for autonomous. IOSR J. Mech. Civ. Eng. 2014, 11, 76–79.
3. Han, J.; Seo, Y. Mobile robot path planning with surrounding point set and path improvement. Appl. Soft Comput. 2017, 57, 35–47.

[CrossRef]
4. Victerpaul, P.; Saravanan, D.; Janakiraman, S.; Pradeep, J. Path planning of autonomous mobile robots: A survey and comparison.

J. Adv. Res. Dyn. Control Syst. 2017, 9, 1535–1565.
5. Ankit, R.A.; Ravankar, A.; Emaru, T.; Kobayashi, Y. HPPRM: Hybrid Potential Based Probabilistic Roadmap Algorithm for

Improved Dynamic Path Planning of Mobile Robots. IEEE Access 2020, 8, 221743–221766.
6. Muhammad, A.; Ali, M.A.; Shanono, I.H. Path Planning Methods for Mobile Robots: A systematic and Bibliometric Review.

Elektr. J. Electr. Eng. 2020, 19, 14–34.
7. Chao, N.; Liu, Y.-K.; Xia, H.; Ayodeji, A.; Bai, L. Grid-based RRT* for minimum dose walking path-planning in complex

radioactive environments. Ann. Nucl. Energy 2018, 115, 73–82. [CrossRef]
8. Shuma, A.; Morrisa, K.; Khajepourb, A. Direction-dependent optimal path planning for autonomous vehicles. Robot. Auton. Syst.

2015, 70, 202–214. [CrossRef]
9. Zhang, Y.; Gong, D.W.; Zhang, J.H. Robot path planning in uncertain environment using multi-objective particle swarm

optimization. Neurocomputing 2013, 103, 172–185. [CrossRef]
10. Choset, H.; Lynch, K.M.; Hutchinson, S.; Kantor, G.A.; Burgard, W. Principles of Robot Motion: Theory, Algorithms, and Implementation;

MIT Press: Cambridge, MA, USA, 2005.
11. Bakdi, A.; Hentout, A.; Boutami, H.; Maoudj, A.; Hachour, O.; Bouzouia, B. Optimal path planning and execution for mobile

robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Syst. 2017, 89, 95–109. [CrossRef]
12. Perez, T.L.; Wesley, M.A. An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 1979, 22,

560–570. [CrossRef]
13. Jinglun, Y.; Yuancheng, S.; Yifan, L. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement

Learning. Front. Neurorobotics 2020, 14, 1–12.
14. Aisha, M.; Mohammed, A.H.A.; Ibrahim, H.S. A review: On Intelligent Mobile Robot Path Planning Techniques. In Proceedings

of the 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 3–4
April 2021; pp. 53–58.

15. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles 2021, 2021,
448–468. [CrossRef]

http://doi.org/10.32604/cmc.2022.020873
http://doi.org/10.1016/j.asoc.2017.03.035
http://doi.org/10.1016/j.anucene.2018.01.007
http://doi.org/10.1016/j.robot.2015.02.003
http://doi.org/10.1016/j.neucom.2012.09.019
http://doi.org/10.1016/j.robot.2016.12.008
http://doi.org/10.1145/359156.359164
http://doi.org/10.3390/vehicles3030027

Sensors 2022, 22, 8177 26 of 27

16. Minguez, J.; Lamiraux, F.; Laumond, J. Motion Planning and Obstacle Avoidance. In Springer Handbook of Robotics, 2nd ed.;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 827–852.

17. Takahashi, O.; Schilling, R. Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans. Robot. Autom. 1989, 5,
143–150. [CrossRef]

18. Al-Dahhan, M.H.; Schmidt, K.W. Voronoi Boundary Visibility for Efficient Path Planning. IEEE Access 2020, 8, 134764–134781.
[CrossRef]

19. Maekawa, T.; Noda, T.; Tamura, S.; Ozaki, T.; Machida, K.-I. Curvature continuous path generation for autonomous vehicle using
B-spline curves. Comput. Des. 2010, 42, 350–359. [CrossRef]

20. Borenstein, J.; Koren, Y. Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 1989, 19, 1179–1187.
[CrossRef]

21. Orozco-Rosas, U.; Picos, K.; Montiel, O. Hybrid Path Planning Algorithm Based on Membrane Pseudo-Bacterial Potential Field
for Autonomous Mobile Robots. IEEE Access 2019, 7, 156787–156803. [CrossRef]

22. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. SHP: Smooth Hypocycloidal Paths with Collision-Free and Decoupled
Multi-Robot Path Planning. Int. J. Adv. Robot. Syst. 2016, 13, 133. [CrossRef]

23. Kala, R.; Shukla, A.; Tiwari, R. Robotic path planning in static environment using hierarchical multi-neuron heuristic search and
probability based fitness. Neurocomputing 2011, 74, 2314–2335. [CrossRef]

24. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1985, 5, 90–98. [CrossRef]
25. Barraquand, J.; Langlois, B.; Latombe, J.-C. Numerical Potential Field Techniques for Robot Path Planning. IEEE Trans. Syst. Man

Cybern. 1992, 22, 224–241. [CrossRef]
26. Cetin, O.; Zagli, I.; Yilmaz, G. Establishing Obstacle and Collision Free Communication Relay for UAVs with Artificial Potential

Fields. J. Intell. Robot. Syst. 2012, 69, 361–372. [CrossRef]
27. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7,

278–288. [CrossRef]
28. Ulrich, I.; Borenstein, J. VFH*: Local obstacle avoidance with look-ahead verification. In Proceedings of the Proceedings 2000

ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 2505–2511.

29. Ulrich, I.; Borenstein, J. VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots. In Proceedings of the 1998 IEEE International
Conference on Robotics and Automation, Leuven, Belgium, 20 May 1998; pp. 1572–1577.

30. Ravankar, A.; Ravankar, A.A.; Watanabe, M.; Hoshino, Y.; Rawankar, A. Multi-robot path planning for smart access of distributed
charging points in map. Artif. Life Robot. 2020, 26, 52–60. [CrossRef]

31. Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm. Comput. Electr. Eng. 2012, 38,
1564–1572. [CrossRef]

32. Ayawli, B.B.K.; Mei, X.; Shen, M.; Appiah, A.Y.; Kyeremeh, F. Mobile Robot Path Planning in Dynamic Environment Using
Voronoi Diagram and Computation Geometry Technique. IEEE Access 2017, 7, 86026–86040. [CrossRef]

33. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Kobayashi, Y. Virtual Obstacles for Safe Mobile Robot Navigation. In Proceedings of
the 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), Toyama, Japan, 7–11 July 2019; pp. 552–555.

34. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot
Navigation in Indoor Environments. Sensors 2017, 17, 1878. [CrossRef]

35. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle
Knowledge Sharing. Sensors 2017, 17, 1581. [CrossRef]

36. Elbanhawi, M.; Simic, M. Sampling-Based Robot Motion Planning: A Review. IEEE Access 2014, 2, 56–77. [CrossRef]
37. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. on Robot. Aut. 1996, 12, 566–580. [CrossRef]
38. LaValle, S.M.; Kuffner, J.J. Randomized Kinodynamic Planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
39. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 2016, 40, 1079–1093.

[CrossRef]
40. Janson, L.; Ichter, B.; Pavone, M. Deterministic sampling-based motion planning: Optimality, complexity, and performance. Int. J.

Robot. Res. 2018, 37, 46–61. [CrossRef]
41. Fu, B.; Chen, L.; Zhou, Y.; Zheng, D.; Wei, Z.; Dai, J.; Pan, H. An improved A* algorithm for the industrial robot path planning

with high success rate and short length. Robot. Auton. Syst. 2018, 106, 26–37. [CrossRef]
42. Wang, W.; Zuo, L.; Xu, X. A Learning-based Multi-RRT Approach for Robot Path Planning in Narrow Passages. J. Intell. Robot.

Syst. 2017, 90, 81–100. [CrossRef]
43. Xinyu, W.; Xiaojuan, L.; Yong, G.; Jiadong, S.; Rui, W. Bidirectional Potential Guided RRT* for Motion Planning. IEEE Access 2019,

7, 95046–95057. [CrossRef]
44. Bohlin, R.; Kavraki, L. Path planning using lazy PRM. In Proceedings of the Proceedings 2000 ICRA. Millennium Conference.

IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA,
USA, 24–28 April 2000; pp. 521–528.

45. Morales, M.; Rodriguez, S.; Amato, N.M. Improving the connectivity of PRM roadmaps. In Proceedings of the 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; pp. 4427–4432.

http://doi.org/10.1109/70.88035
http://doi.org/10.1109/ACCESS.2020.3010819
http://doi.org/10.1016/j.cad.2009.12.007
http://doi.org/10.1109/21.44033
http://doi.org/10.1109/ACCESS.2019.2949835
http://doi.org/10.5772/63458
http://doi.org/10.1016/j.neucom.2011.03.006
http://doi.org/10.1177/027836498600500106
http://doi.org/10.1109/21.148426
http://doi.org/10.1007/s10846-012-9761-y
http://doi.org/10.1109/70.88137
http://doi.org/10.1007/s10015-020-00612-8
http://doi.org/10.1016/j.compeleceng.2012.06.016
http://doi.org/10.1109/ACCESS.2019.2925623
http://doi.org/10.3390/s17081878
http://doi.org/10.3390/s17071581
http://doi.org/10.1109/ACCESS.2014.2302442
http://doi.org/10.1109/70.508439
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1007/s10514-015-9518-0
http://doi.org/10.1177/0278364917714338
http://doi.org/10.1016/j.robot.2018.04.007
http://doi.org/10.1007/s10846-017-0641-3
http://doi.org/10.1109/ACCESS.2019.2928846

Sensors 2022, 22, 8177 27 of 27

46. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
47. Lynch, K.M.; Park, F.C. Modern Robotics; Cambridge University Press: Cambridge, UK, 2017.
48. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path smoothing techniques in robot navigation: State-of-the-

art, current and future challenges. Sensors 2018, 18, 3170. [CrossRef]
49. Ravankar, A.; Ravankar, A.A.; Rawankar, A.; Hoshino, Y.; Kobayashi, Y. ITC: Infused Tangential Curves for Smooth 2D and 3D

Navigation of Mobile Robots. Sensors 2019, 19, 4384. [CrossRef]
50. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia

Comput. Sci. 2018, 127, 180–189. [CrossRef]
51. Hu, Y.; Yang, S. A knowledge based genetic algorithm for path planning of a mobile robot. In Proceedings of the IEEE International

Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 4350–4355.
52. Karami, A.H.; Hasanzadeh, M. An adaptive genetic algorithm for robot motion planning in 2D complex environments. Comput.

Electr. Eng. 2015, 43, 317–329. [CrossRef]
53. Huang, H.C.; Tsai, C.C. Global path planning for autonomous robot navigation using hybrid metaheuristic GA-PSO algorithm.

In Proceedings of the SICE Annual Conference 2011, Tokyo, Japan, 13–18 September 2011; pp. 1338–1343.
54. Bi, Z.; Yimin, Y.; Wei, Y. Hierarchical path planning approach for mobile robot navigation under the dynamic environment. In

Proceedings of the 2008 6th IEEE International Conference on Industrial Informatics, Daejeon, Korea, 13–16 July 2008; pp. 372–376.
[CrossRef]

55. Zhang, K.; Niroui, F.; Ficocelli, M.; Nejat, G. Robot Navigation of Environments with Unknown Rough Terrain Using deep
Reinforcement Learning. In Proceedings of the 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Philadelphia, PA, USA, 6–8 August 2018; pp. 1–7. [CrossRef]

56. Zhang, H.-Y.; Lin, W.-M.; Chen, A.-X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
57. Patle, B.; L, G.B.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def.

Technol. 2019, 15, 582–606. [CrossRef]
58. Seçkin, A. A Natural Navigation Method for Following Path Memories from 2D Maps. Arab. J. Sci. Eng. 2020, 45, 10417–10432.

[CrossRef]
59. Stenning, B.E.; McManus, C.; Barfoot, T.D. Planning using a Network of Reusable Paths: A Physical Embodiment of a Rapidly

Exploring Random Tree. J. Field Robot. 2013, 30, 916–950. [CrossRef]
60. Khan, A.H.; Li, S.; Luo, X. Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based

Metaheuristic Approach. IEEE Trans. Ind. Inform. 2020, 16, 4670–4680. [CrossRef]
61. Khan, A.H.; Li, S.; Cao, X. Tracking control of redundant manipulator under active remote center-of-motion constraints: An

RNN-based metaheuristic approach. Sci. China Inf. Sci. 2021, 64, 1–18. [CrossRef]
62. Ali, M.A.H.; Mailah, M. Path Planning and Control of Mobile Robot in Road Environments Using Sensor Fusion and Active Force

Control. IEEE Trans. Veh. Technol. 2019, 68, 2176–2195. [CrossRef]
63. Ali, M.A.H.; Mailah, M.; Jabbar, W.A.; Moiduddin, K.; Ameen, W.; Alkhalefah, H. Autonomous Road Roundabout Detection and

Navigation System for Smart Vehicles and Cities Using Laser Simulator–Fuzzy Logic Algorithms and Sensor Fusion. Sensors
2020, 20, 3694. [CrossRef]

64. Ali, M.A.; Mailah, M. Laser simulator: A novel search graph-based path planning approach. Int. J. Adv. Robot. Syst. 2018, 15, 1–16.
[CrossRef]

65. Ali, M.A.H.; Mailah, M.; Moiduddin, K.; Ameen, W.; Alkhalefah, H. Development of an Autonomous Robotics Platform for Road
Marks Painting Using Laser Simulator and Sensor Fusion Technique. Robotica 2020, 39, 535–556. [CrossRef]

http://doi.org/10.1177/0278364911406761
http://doi.org/10.3390/s18093170
http://doi.org/10.3390/s19204384
http://doi.org/10.1016/j.procs.2018.01.113
http://doi.org/10.1016/j.compeleceng.2014.12.014
http://doi.org/10.1109/indin.2008.4618127
http://doi.org/10.1109/ssrr.2018.8468643
http://doi.org/10.3390/sym10100450
http://doi.org/10.1016/j.dt.2019.04.011
http://doi.org/10.1007/s13369-020-04784-0
http://doi.org/10.1002/rob.21474
http://doi.org/10.1109/TII.2019.2941916
http://doi.org/10.1007/s11432-019-2735-6
http://doi.org/10.1109/TVT.2019.2893878
http://doi.org/10.3390/s20133694
http://doi.org/10.1177/1729881418804726
http://doi.org/10.1017/S0263574720000831

	Introduction
	Background and Related Works
	Generalized Laser Simulator (GLS) Algorithm
	Modelling of Workspace
	Modelling of Workspace for Global Path Planning
	Modelling of Workspace for Local Path Planning

	Formulation of GLS
	Obstacle Avoidance
	Static Obstacles Avoidance
	Dynamic Obstacle Avoidance

	Experimental Settings
	Investigation of GLS in Global Path Planning
	Investigation of GLS in Local Path Planning

	Performance Metrics
	Total Search Time (ST)
	Path Cost (PC)
	Path Smoothness

	GLS Implementation in Local and Global Path Planning
	Investigation of GLS in Global Path Planning
	Static Obstacle
	Dynamic Obstacles

	Investigation of GLS in Local Path planning
	Indoor Results
	Outdoor Results

	Conclusions
	References

