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Abstract: The proliferation of sensors to capture parametric measures or event data over a myriad of
networking topologies is growing exponentially to improve our daily lives. Large amounts of data
must be shared on constrained network infrastructure, increasing delays and loss of valuable real-
time information. Our research presents a solution for the health, security, safety, and fire domains
to obtain temporally synchronous, credible and high-resolution data from sensors to maintain
the temporal hierarchy of reported events. We developed a multisensor fusion framework with
energy conservation via domain-specific “wake up” triggers that turn on low-power model-driven
microcontrollers using machine learning (TinyML) models. We investigated optimisation techniques
using anomaly detection modes to deliver real-time insights in demanding life-saving situations.
Using energy-efficient methods to analyse sensor data at the point of creation, we facilitated a pathway
to provide sensor customisation at the “edge”, where and when it is most needed. We present the
application and generalised results in a real-life health care scenario and explain its application and
benefits in other named researched domains.

Keywords: TinyML; machine learning; edge analytics; energy harvesting; health care; security; safety;
fire safety

1. Introduction

The prediction for sensor usage indicates that [1] several billion devices will be in-
stalled by 2025, leading to an exponential growth in sensor data [2]. Individual systems in
the wild compete to transfer sensor data to centralised repositories, such as cloud infras-
tructure, for analysis. Communication networks such as LPWAN, 5G, NB/10T or even the
WiFi 2.4G or 5Gig (Free To Air) options will find it challenging to maintain the synchronous
nature of time-sensitive data with sufficient temporal accuracy that life-saving domains
require. The volume of disparate data trying to share network resources progressively
reduces the bandwidth available to each user. Analysts also have to manage massive
amounts of error-prone sensor data reaching them, making processing and analysis a
resource-hungry task that must be conducted efficiently and effectively [3].

Real-time domain sensors are always active [4], monitoring parameters continuously
to expose problems [5]. The high detection throughput needs advanced techniques to
conserve energy and optimise real-time operational reliability over long, sustained periods.
Evaluating the contribution of each sensor type is necessary to determine the right mix
of data required in each operating domain. A tabular listing of domain features, Table 1,
presents the commonality of needs in the health, safety, security and fire safety domains.

Sensors 2022, 22, 8143. https://doi.org/10.3390/s22218143 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218143
https://doi.org/10.3390/s22218143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8600-5907
https://doi.org/10.3390/s22218143
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218143?type=check_update&version=2


Sensors 2022, 22, 8143 2 of 23

Table 1. The features and performance of a sensor fusion operational environment.

SNo Operational Requirements Desired Performance (Output)

1.
Embedded device for sensor fusion,

real-time multiple sensor data analysis
and results in storage

TinyML edge analytics ML model
optimised for sensor data fusion and

edge analytics. Only temporally
synchronous application data will be

stored so “prediction” and “detection”
are achieved reliably by analysis.

2. Power supply optimised for extended
operational periods

“Wake” triggers conserve power.
Renewable energy source, reliability
monitoring and energy harvesting at

the edge.

3. Operating firmware reliability Error checked for OTA (over the air)
model updates.

4. Reliable results transfer (upload)
Error checked, the optimised payload

for transmission of analysed and
computed results.

1.1. Key Issues to Be Considered

Reports suggest that only snapshots of the generated real-time data are sent success-
fully due to network constraints and reduced sampling rates. This truncated data, Figure 1,
affects the accuracy of research and analysis in real-time operational domains [5]. The raw
source data are not sent over networks to reduce privacy risk, communication bottlenecks,
costs, processing time, the expense of handling, storing and maintaining infrastructure and
data manipulation required by large, stored data sets before analysis.
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Figure 1. “When time is of the essence” [6] waveform sampling study of truncated data.

1.2. Research Considerations

We identified, measured, corrected and compensated for issues that maintain data
integrity and operational consistency [7]. Attention to the selection of sensors, the authen-
ticity of real-time data [8], and the fusion of sensor data close to where the data are created
is a crucial process adopted. For a pre-defined “wake up” period, constrained low-power
computing devices are needed to analyse all the data in real-time to deliver the results
to a localised repository. This technique ensures that all essential data are captured and
analysed in real time. Machine learning models were created by training them to meet
domain operational needs. The post-fusion analysis models developed in the cloud were
distilled down to versions using TinyML (a compressed version of the larger version) to
fit onto constrained microcontroller platforms, as presented in later sections. Results are
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sent as an optimised “payload” to a “first responder” [9] or a central control facility [10],
effectively reducing the requirement for temporally synchronous computing resources [11]
at the management end.

Conserving power is essential in field-deployed devices, so domain-specific anomaly
detection “wake up” triggers turn on power-hungry analytic modes to optimise the power
consumption of the microcontroller devices.

In health care, data from sensors have an essential role in maintaining operational
care compliance and improving the response to those that need urgent care [12,13]. These
deliverables are stipulated in legislation; hence, measuring and sustaining performance in
real-time is a serious requirement.

In the security, safety and fire safety domains, the need is to generate an alert based on
a multifactor assessment of complex sensor data, to keep “unwanted event” triggers to a
minimum. Industry statistics for false or “unwanted” alarms are close to 90% [14], resulting
in a waste of resources, time to attend these events and severe economic loss in some
cases. In all these situations, constant changes occur, and sensor management systems that
send ineffective post-event advice continue to disrupt normal processes [15]. Our method
improves detection quality and ensures event predictability to improve outcomes [16].
Flow charts, tables and a framework based on machine learning techniques at the “edge”
explain the model’s detection, prediction processes and performance outcomes.

Highlights and original ideas over existing state of the art, presented in several sec-
tions of the paper, are summarised for clarity. The basic idea of using machine learning
is not new, but the creation of a model to overcome specific “real-time” industry domain
application issues is one of the key highlights. Our development overcomes issues with the
management of real-time operational process flows and optimises situational awareness by
delivering event information directly to the “first responder”. Several examples demon-
strated in different sections show how “event detection” is more than just the result of a
single sensor trigger but the result of a “cluster” of sensors of different types delivering
“intelligence” using “collaborative, corroborative and reinforcement” techniques. This, we
believe, is our unique contribution using machine learning in health, safety, security and
fire safety where time is of the essence and critical to life-saving processes.

2. Materials and Methods

Sensor data from monitored parameters at the site [17] are part of the organisation’s
established risk management strategy. Identifying and managing data loss, data “cleaning”
and data storage in the repository from where the analytic engine ingests, corrects and
analyses data to comply with the requirement of the data-driven environment is a core
responsibility [7]. The two key issues that reduce the efficacy of many data-harvesting
operations are the quality of data arriving and data analysis in temporal sync. The first
issue tackled is the quality of data. Multiple sensors deliver multiple data streams, so data
fusion techniques reduce a sensor cluster’s results payload. The results are sent directly to
the “first responder” dashboards to improve real-time situational awareness (see simplified
explanation in Appendix A).

2.1. Related Work—A Two-Year Quest to Meet Real-Time Smart City Objectives

A prior two-year design and implementation of a smart city research system funded
by local government and a university research endowment provided adequate experience
in data management. The knowledge and understanding of how vital temporal sync is to
support health and well-being concerns are documented in system configuration drawings
(graphs in Figure 2) [7], data management records, published papers and reports. The
research explained how seventy-one in-house developed multisensor IoT nodes connected
to two city-wide gateways delivered vital data over public LoRaWAN infrastructure. Over
two years, the experience demonstrated that reliability, data throughput and temporal sync
were vital to the usability, effectiveness and efficiency of city-wide services. Other instances
also reinforce this conclusion [18].
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2.2. “Intelligence”—Training Machine Learning Resources to Produce Efficient and
Effective Outcomes

“Intelligence” describes the outcome of a fusion process used to securely package the
results of the data analysis at the “edge”. This process no longer requires expensive data
handling to produce accurate results or to maintain the integrity of the data at the point of
collection where the data generation and analysis will occur. Results from analytics at the
“edge” are fed directly to a live operational dashboard [19].

The process uses techniques that include the use of “situational knowledge” or “fea-
tures” (Table 1) essential to train the machine learning system to improve decision-making
and prediction capability. Machine learning (ML) [20] requires a training data set to ex-
tract associations and insights from disparate data. Hardware-constrained microcontroller
“edge” devices use (TinyML) [11] models created in the cloud to function at the “edge” [21].
These models enable sensor fusion analysis to improve “classification” and detect anoma-
lies, leading to an improved detection performance and prediction capability.

2.3. “Feature” Logic Designs for Targeted Real-Time Domains

The sensor grouping enables the mapping of multiple sensor outputs to “collaborate,
corroborate and reinforce” to confirm an event. The concept developed in this research is
explained diagrammatically in Figure 3. The human algorithm builder can only do so much
based on the associations seen in the data. Machines can do this many times faster and
build many more unbiased associations. The core learning is that allowing ML to extract
relationships, associations and relevance produces better insights but requires plenty of
relevant data to be used in training, as per the logic flow example described in Figure 3.

2.4. “Event Reinforcement” Techniques Using “Collateral” Sensor Data Example

The process workflow of a “reinforced” data point is explained in the flow chart
Figure 4 and Table 1. The accompanying “pressure wave” is detected if a properly shut
door is opened. This “collateral” sense confirms the door has been opened from a shut
position rather than from an open (ajar) state.



Sensors 2022, 22, 8143 5 of 23Sensors 2022, 22, x FOR PEER REVIEW 5 of 24 
 

 
Figure 3. Reinforcing and collateral data workflows demonstrate how data from different sensors 
“collaborate, corroborate and confirm” outcomes. (Sensors S1 to Sn, Probability & accuracy in yel-
low, decision points in mauve diamond and outcome from “fusion” in yellow). 

2.4. “Event Reinforcement” Techniques Using “Collateral” Sensor Data Example 
The process workflow of a “reinforced” data point is explained in the flow chart Fig-

ure 4 and Table 1. The accompanying “pressure wave” is detected if a properly shut door 
is opened. This “collateral” sense confirms the door has been opened from a shut position 
rather than from an open (ajar) state. 

 
Figure 4. How one sensor data point and another sensor data point “collaborate” and “corroborate” 
to confirm an event. 

A similar phenomenon is used to “corroborate” activity such as using “gesture” 
recognition. Just the motion sensor triggering might not help define the event, but a side-
to-side motion (directional detection) would generate a unique motion signature as tem-
porally synchronised “collateral” data from the motion sensor on board. This event could 
be assigned to a different response or output—such as a “nurse call” to care staff. 

2.5. Visual Colour Sense “Camera”-Like “Features” (No Privacy Broken—Single-Pixel Resolu-
tion) 

The “reinforcement” techniques Figure 5 are essential because the ability of the sen-
sor to detect colour, albeit just a few pixels, “reinforces” sensor data that point towards a 
specific characteristic such as the colour yellow in fire or red on a caregiver uniform. 

 
Figure 5. Using colour information to “reinforce” the arrival of a “nurse” in red clothing just after 
a “nurse-call” trigger is initiated. (sensor data in green detected but not accurate enough at 

Figure 3. Reinforcing and collateral data workflows demonstrate how data from different sensors
“collaborate, corroborate and confirm” outcomes. (Sensors S1 to Sn, Probability & accuracy in yellow,
decision points in mauve diamond and outcome from “fusion” in yellow).

Sensors 2022, 22, x FOR PEER REVIEW 5 of 24 
 

 
Figure 3. Reinforcing and collateral data workflows demonstrate how data from different sensors 
“collaborate, corroborate and confirm” outcomes. (Sensors S1 to Sn, Probability & accuracy in yel-
low, decision points in mauve diamond and outcome from “fusion” in yellow). 

2.4. “Event Reinforcement” Techniques Using “Collateral” Sensor Data Example 
The process workflow of a “reinforced” data point is explained in the flow chart Fig-

ure 4 and Table 1. The accompanying “pressure wave” is detected if a properly shut door 
is opened. This “collateral” sense confirms the door has been opened from a shut position 
rather than from an open (ajar) state. 

 
Figure 4. How one sensor data point and another sensor data point “collaborate” and “corroborate” 
to confirm an event. 

A similar phenomenon is used to “corroborate” activity such as using “gesture” 
recognition. Just the motion sensor triggering might not help define the event, but a side-
to-side motion (directional detection) would generate a unique motion signature as tem-
porally synchronised “collateral” data from the motion sensor on board. This event could 
be assigned to a different response or output—such as a “nurse call” to care staff. 

2.5. Visual Colour Sense “Camera”-Like “Features” (No Privacy Broken—Single-Pixel Resolu-
tion) 

The “reinforcement” techniques Figure 5 are essential because the ability of the sen-
sor to detect colour, albeit just a few pixels, “reinforces” sensor data that point towards a 
specific characteristic such as the colour yellow in fire or red on a caregiver uniform. 

 
Figure 5. Using colour information to “reinforce” the arrival of a “nurse” in red clothing just after 
a “nurse-call” trigger is initiated. (sensor data in green detected but not accurate enough at 

Figure 4. How one sensor data point and another sensor data point “collaborate” and “corroborate”
to confirm an event.

A similar phenomenon is used to “corroborate” activity such as using “gesture”
recognition. Just the motion sensor triggering might not help define the event, but a
side-to-side motion (directional detection) would generate a unique motion signature as
temporally synchronised “collateral” data from the motion sensor on board. This event
could be assigned to a different response or output—such as a “nurse call” to care staff.

2.5. Visual Colour Sense “Camera”-Like “Features” (No Privacy Broken—Single-Pixel Resolution)

The “reinforcement” techniques Figure 5 are essential because the ability of the sensor
to detect colour, albeit just a few pixels, “reinforces” sensor data that point towards a
specific characteristic such as the colour yellow in fire or red on a caregiver uniform.
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Figure 5. Using colour information to “reinforce” the arrival of a “nurse” in red clothing just after a
“nurse-call” trigger is initiated. (sensor data in green detected but not accurate enough at decision
point in mauve diamond. However at a fusion decision point in mauve diamond they reinforce and
confirm the event in yellow).

Humans build unique algorithms with the capability to build associations using a
few sensors. Machine learning can build associations using many or all sensor inputs of
different types and in temporal sync. This widens the opportunity to find similarities,
correlations, dependencies, links, etc., to enrich the data and detection quality, accuracy,
depth, reach, etc., and perform it in seconds to ensure that nothing is missed.

In the case shown in Figure 5, a single pixel colour detection sensor is already on
board. Therefore, associating this colour detection with the colour of the nurse uniform
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will reinforce the association of detecting caregiver movement near patients. In addition, in
the case of a fire, the yellow colour reinforces the existence of a flame.

The few associations developed by humans are helpful but not as useful as the thou-
sands that are possible across the entire operation, which machines (MCU and ML) can
perform very fast in human time.

2.6. The Feature Set and Performance Specification

Key system operational “features” and performance requirements are shown in Table 1.

2.7. Machine Learning Training Requirements and Operational Examples

The targeted domain-sensitive training outcomes are shown in Table 2. The domains
considered are a whole class of environments that require real-time event detection and
immediate response. The physical environment is not so critical, for example, indoor,
outdoor, small room, large hall, bedroom, lift, etc. The key issue is “what is to be detected?”
(i.e., the objective). Enough examples of the type of event are required in the training of
the ML model. ML will build associations based on triggers from various sensors in the
systems that are in temporal sync.

Table 2. A tabular listing of typical “wake” trigger options in each activity domain (truncated to fit).

Standard Multi-Domain
“Wake” Trigger

Options
Typical Risk Factor—Health Security Typical Risk Factor—Safety Typical Risk

Factor—Fire

Detecting a human or
humans entering and leaving

the sensor area in daylight

Several “sterile” areas could
be “compromised” if people
without PPE are allowed to

roam unchallenged.

Designated “no go” (sterile)
security areas are typical risk

triggers set up to keep
“intruders” away.

Building areas with cranes,
etc., must be isolated so no

one gets hurt. Thus, a man or
machine “wake

triggers” applied.

Often a “roll call” is taken on
a fire alert to see who is on

the premises. Any human or
animal presence triggers

“wake triggers”.

Detecting a human or
humans entering and leaving
the sensor area in “darkness”

(no light)

Dark areas have severe risk
implications. Special sensors
with IR illumination or high

gain deliver similar
situational awareness as in

the day.

Dark areas have severe risk
implications, but illumination

triggered by human
movement helps.

Dark areas have severe risk
implications, and

illumination is essential for
safety. Lights could be

automatically turned on.

Dark areas have severe
risk/rescue implications.

Smoke and carbon monoxide
are the most significant

threats—smoke/CO sensors
are used to trigger the siren

and lights.

Establishing the time of day
All incoming and outgoing
personnel must be timed in

and out.

All incoming and outgoing
personnel must be timed in

and out,

All incoming and outgoing
personnel must be timed in

and out.

All incoming and outgoing
personnel must be timed in

and out.

Establishing the route Movement history Movement history Movement history Movement history

Establishing the count
for 24 h

Counts of people through to
waiting rooms could be used

to control congestion.

Counts determine traffic flow
into service areas.

Counts are used to restrict
people’s traffic to
stop overloading.

Counts are used during the
evacuation of people to safety.

Data generation failure Fused sensor detectors
deliver continuity.

Fused sensor detectors
offer continuity.

Fused sensor detectors offer
continuity.

Fused sensor detectors
provide continuity.

Establishing “door
open/closed/ajar

Essential to establish the
status of the door to stop the

spread of infections.

Door status is vital to
isolating the threat.

Door status is essential to
isolating threats by sealing

the area.

Fire door status is very
critical to establishing or

maintaining safety.

Establishing bed movement
and positioning

Specific to “aged care”.
Location of crucial
caregiving assets.

Unusual activity of assets in
working space related

to security.

Assets left unattended block
vital thoroughfare.

Legislated fire safety
requirements super-
vised autonomously.

Establishing staff attendance
Specific to “aged care”.

Colour of staff clothing (see
image Figure 6, blue).

Use of HiVisibility vests or
uniforms (see image

Figure 6, yellow).

Use of high-visibility and
safety gear (see image

Figure 6, yellow).

All fire kits are a specific
colour (yellow/red), and

hence can be
easily recognised.
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A motion is detected along with a “blue uniform” colour recognition trigger; it does 
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movement and the colour of the uniform worn by the responder, would flag a caregiving 
episode. Similarly, a vehicle travelling outdoors and a group of people detected in the 
path could be an accident waiting to happen. In a room, if a door was opened and the 
pressure sensor was also triggered, then the association of the opening door and pressure 
wave indicates the opening of a closed door, not a door left ajar. Some other sensors will 
indicate human movement, which could mean intrusion, the arrival of help, etc. ML 
thrives on building associations of such value that detection of incidents (with recognition 
of event type) or “anomalies” (unusual activity) is no longer conducted by a single sensor 
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Figure 6. Staff in uniform.

2.8. Examples to Explain How ML Would Build Associations, Collate, Collaborate, Corroborate,
Reinforce Better Than Humans by Using Multiple Sensors on Board the MCU

A motion is detected along with a “blue uniform” colour recognition trigger; it does
not matter where the incident occurs. The association of two key known criteria, person
movement and the colour of the uniform worn by the responder, would flag a caregiving
episode. Similarly, a vehicle travelling outdoors and a group of people detected in the path
could be an accident waiting to happen. In a room, if a door was opened and the pressure
sensor was also triggered, then the association of the opening door and pressure wave
indicates the opening of a closed door, not a door left ajar. Some other sensors will indicate
human movement, which could mean intrusion, the arrival of help, etc. ML thrives on
building associations of such value that detection of incidents (with recognition of event
type) or “anomalies” (unusual activity) is no longer conducted by a single sensor but by
a group of sensor types because of the speed and capability to create associations by a
trained ML model. This heightened situational awareness is due to the creation of many
associations made by the ML model during training. This becomes an efficient and effective
tool to support a human operator’s “inference” capability. These benefits are explained
in the decision tree tables and workflow diagrams provided later in the description of
the trials.

2.9. Implementation of an Experimental Environment to Test the Hypothesis

At the “edge”, each domain will have a “wake” trigger to activate the “intelligent
edge analysis” on the data generated by a sensor or a group of sensors (fusion) [22]. We
put together the target “behaviour” outcomes for our training set, as listed in the domain
segmentation Table 2.

A small system combines location- or task-specific sensors [7]. A cluster of small
systems in a larger configuration (i.e., multiple small systems tied together) require a
federated learning approach to using “intelligence” at the “edge”. We propose scalability
using a fusion sensor approach and BLE (Bluetooth Low Energy) communications.

2.10. Applied Traditional and Machine Learning Workflows

We use value engineering [23] to design the model to ensure it is scalable. To this
end, all logic (including design, programming and simulation) goes into delivering these
benefits Figure 7.
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Live simulations, from the existing system, with as many examples of match and
non-match as possible, were used to meet machine learning (ML) ingestion workflow
standards (Figure 8). The accuracy of the model generated by the machine learning build
process depends very much on the variations fed during training. After this training, the
model serves as the “selector”, looking through all the new data to explore all associa-
tions, relationships and relevance to produce the best match determination that improves
situational awareness.
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2.11. Embedded Systems Evolution and Deployment in This Research

Embedded systems with I/O and processing power deployed at “the edge” is en-
hanced using BLE (low-energy mesh communications). Typical system configuration [24]
is shown in Figure 9. Tiny Machine Learning (TinyML) reduces the size of the generated
models to fit into resource-constrained hardware with BLE capability enabling an ecosys-
tem to emerge from this work. Each “cluster” of sensors on board an MCU device forms
an intelligent node. As we expand connectivity between “clusters” over BLE, the network
grows in capability to share information [25], and “intelligence at the edge” is created.
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2.12. Architecture Deployed and Lessons Learned

Multisensor microcontroller (MCU) boards currently have physical, chemical, envi-
ronmental, video, audio and optical sensors built on the single embedded board. These
multidimensional data sensor architectures provide machine learning systems access to rich
data to unearth observations that contribute to a greater understanding of each dimension’s
inputs to the system’s overall operational performance.

As demonstrated earlier in logic diagrams, ML-based event detection is no longer a
single sensor endeavour. ML uses thousands of associations to collaborate, corroborate and
reinforce new scenario settings and unique event detection episodes.

The MCU used is the Arduino Nano BLE Sense with eleven (11) independent sensory
capabilities in five (5) sensor groups. These MEMS-based sensors are very reliable, capable
devices on the MCU as a cluster of sensors of different types—ideal for machine learning
to generate complex associations (Figure 10).
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Figure 10. MCU features and choices.

Our research uses off-the-shelf MCUs. The choice, capability and sensor density
vary; hence, as a first step, sensors relevant to the domains were identified. In the
health, safety, security and fire safety domains, person detection, parameter detection
(such as temperature, humidity, air quality, airflow, hygrometric levels wetness), vibration,
movement, colour, pressure and sound thresholds (unique sounds and keywords) were
prime requirements.

Applications in health care are explained with bed-mounted and wall-mounted config-
urations shown later in graphed results. Each MCU with sensors on board act as a “sensor
cluster”. They have an ML model uploaded to it and perform as per the training provided
during the model creation. Layouts and images of actual test training procedures and set
ups are explained with relevant test frame grabs.

There is no single sensor per area because each MCU is a sensor cluster connected to
other clusters via BLE. Each cluster could have eleven or more parametric sensory outputs
to an ML model, which would then proceed to extract events, anomalies, etc., based on
the model uploaded to it. By using associations, it generates from multiple sensors as
explained in the collaborations, corroboration and reinforcement framework workflows;
ML conducts them many times faster to present a range of associations and result options
to a live dashboard.

TinyML models are uploaded to different form factor MCU configurations. Tiny
compute hardware, with constrained resources and different onboard sensors, as shown
in Figure 11, provide a rich source of functional performance measurements required in
health, safety, security and fire safety environments. Thermal sensor add-ons for predictive
fire safety also follow the same principles but use an extended spectral dimension to predict
the onset of fire risk.
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Figure 11. Example of an installed multisensor microcontroller device.

A systems approach establishes steady-state operating parameters. This process is
shown in graphs produced by device simulations in fixed and flexible configurations. It
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measures quiescent operating conditions and real-time sensing variations for different
sensor inputs, which provides an understanding of how the device (and ML model) would
function in a fixed or tailored configuration. Most of these simulations use cloud services
connected live to the “cluster” or use data uploaded to it, which is usually the process
followed to “fine tune” the system.

2.13. Machine Learning (TinyML) Sensor Fusion Process

The fusion of all relevant detection input data is performed by uploading all relevant
data to the service provider cloud repository. Once all data types are uploaded to the cloud
after all preliminary sensor tests are finalised, the cloud service creates the model in the
cloud using the software learning block apps provided. Subsequently, the model is reduced
to run on a standard low-cost microcontroller (MCU) [22] device installed, for example,
on a wall (Figure 11), with the TinyML model on it. The MCU and model run at less than
1 mW in “listening mode” (awaiting the “wake word”). When triggered, they take up to a
maximum of 10 mW to process an event and then drop back into “listen” mode (Figure 12).
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One of the many industry-developed cloud-based tools was used to understand the
process and work on the key steps in producing an “intelligent edge device”. Current device
technology uses “digitised” (MEMS [26]) sensor technology, so a combination of sensors
are built on board (Figure 12), allowing the “edge intelligence”application (Figure 13) that
performs all existing functions to be implemented.
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2.14. Deploying a Machine Learning Process

The “tooling” is a term used to describe the set of instructions, methods, support
software and infrastructure provided by some providers of cloud-based ecosystems to
build TinyML models. Support infrastructure allows uploading sensor data and external
sources to the cloud for analysis and preparation [27,28], before the model is created.

Figure 14 describes the workflow followed when developing the solution from live
data [5], which are collected based on training requirements to ensure the trained model
delivers effective outcomes. Sometimes the results are below expectations, so retraining is
needed, or the results are very encouraging and can be installed confidently.
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2.15. Training the ML Model (Figure 14)

The key steps to follow in planning the application in the selected domains are:

1. Choosing the right MCU “appliance” (sometimes referred to as the microcontroller
or “silicon”).

2. Collecting the data (achieved using the device itself connected to the cloud service
provider). This data can also be collected locally and uploaded to the cloud service
storage for analysis.

The service provider also provides the testing and training tools that help create a
working model in the cloud, which one can test, verify and test again on unseen data. After
the successful first passes based on the domain requirements, the next step is to “squeeze”
the model down to the device requirements and upload it to the firmware. At this point, a
fully functioning “intelligent edge device” emerges with a model loaded to its firmware
customised to suit our application. The Actual Working Steps (soft considerations in the
application such as the “Help Me!” call) are expanded below. The steps to successfully
create a model in the cloud and upload it to a microcontroller device vary from provider to
provider. Details on how we achieved this follow.

2.16. The Application Objective

Choosing the ecosystem described earlier, we needed an “intelligent edge” device
to meet the detection requirements of four distinct domains with very similar detection
demands (see Tables 1 and 2).
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2.17. Data Collection—Designing What and How

The microcontroller device with multiple sensors on board is connected to the service
provider server via a custom CLI or a WEBLink. Figure 15 demonstrates the process of
collecting data for the “wake word” “Help Me!”.
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2.18. Collecting and Obtaining the Right Data

A comprehensive data set was collected from multiple sensors to help the ML process
find many more associations between sensor triggers. The “wake word” will trigger the
analytic system to respond to a higher-level risk analysis triggered by the microphone
sensor, thereby conserving energy to process the other “feature detection” requirements
designed into the ML application. We found this to be a powerful framework that allows
the ML analysis tool to optimise the associations using the “collaborative, corroborative
and reinforcement” techniques designed into the framework. The ML process will find
many more associations in temporal sync, depending on the level of training data used,
which is just impossible using human observation alone, as shown in Figure 17 below.
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Process flows presented earlier show “collateral”, “collaborative” and “reinforcement”
data analysis techniques confirmed the occurrence of “events”, reducing the “FALSE
ALARM” rate that beleaguers the industry. Machine learning analysis produces many more
associations when using the framework’s “collaborative, corroborative and reinforcement”
techniques. Learning to develop the model in the cloud with adequate computing resources
is a very effective method to develop the “wake word” mechanism from scratch.

2.19. Summary of Materials and Methods

Our research exposed several areas of interest in the quest to build a universal sensor
for the chosen domains. We focused on health care and its immediate needs, i.e., to respond
to issues of care.

To call for help assistance/support, one “wake up” call, “Help Me!”, was developed.
Once this “wake word” is invoked the system begins to analyse issues based on the training
objectives of the TinyML model.

The bed vibrations with sensor fixed to the wall Figure 18 and bed vibrations with
strapped sensor Figure 19 directly triggers a call for help (as just another “wake up” trigger)
with better precision than a human who might pick up only one aspect of the problem.
Most occurrences can be “taught” to the ML system using pre-recorded event history.
Sensor data play an essential part during collection to provide input on the temporally
synchronous activity that can precisely identify the problem.
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Audio is used as a “wake word” to provide the best opportunity for the patient to be
heard. Training ML on how to ignore irrelevant sounds was conducted as explained in the
following graphs. The strapping proved to help “listening” because all sympathetic noise
generation is smoothed out with the strapping (Figures 20 and 21).
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The analysis of the “anomaly” triggers from multiple sensors determines much more
than bed shaking. The multidimensional data from, for example, the magnetometer, can
provide information on the bed itself being moved, misaligned, etc., leading caregivers to
investigate why (Figure 22). In all domains the scope of this technology is very encouraging.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 24 
 

the following graphs. The strapping proved to help “listening” because all sympathetic 
noise generation is smoothed out with the strapping (Figures 20 and 21). 

 
Figure 20. Audio sensor is strapped—waveform smoother. 

 
Figure 21. Response from audio when sensor fixed to a hard surface. 

The analysis of the “anomaly” triggers from multiple sensors determines much more 
than bed shaking. The multidimensional data from, for example, the magnetometer, can 
provide information on the bed itself being moved, misaligned, etc., leading caregivers to 
investigate why (Figure 22). In all domains the scope of this technology is very encourag-
ing. 

 
Figure 22. The accelerometer and magnetometer provide positional information instantaneously 
when disturbed. 

Failure cost is a serious consideration because operational performance depends on 
reliable sensors with long battery life. We considered low energy management strategies 
such as the “wake word” and BLE (Bluetooth Low Energy) connectivity and are investi-
gating energy harvesting options such as infrared wireless power to extend the system’s 
operational life. 

  

Figure 22. The accelerometer and magnetometer provide positional information instantaneously
when disturbed.



Sensors 2022, 22, 8143 15 of 23

Failure cost is a serious consideration because operational performance depends on
reliable sensors with long battery life. We considered low energy management strategies
such as the “wake word” and BLE (Bluetooth Low Energy) connectivity and are investi-
gating energy harvesting options such as infrared wireless power to extend the system’s
operational life.

2.20. Application Overview

Health, security, safety and fire safety are the four domains targeted in this research
(Table 2). The configurations were developed to use a multidimensional approach using
MCUs with multiple “digital” sensors on board to maximise the sensor fusion outcomes.
Fusion techniques enabled ML to optimise the benefits of having many data points to
collaborate, corroborate and reinforce outcomes.

The BLE [29] device uses several modes to communicate with other devices or the
outside world (even via the internet). These mechanisms follow the Generic Access Profile
(GAP) guidelines. GAP defines how BLE-enabled devices can make themselves available
and how two devices can communicate directly (Figure 23). The technology is flexible,
reliable and has a maximum range of up to 1 Km with a suitable antenna.
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2.21. Data Used in Training the Machine Learning Model

Data were generated from two sources:

(a) Simulations (because site access was not possible for some tests).
(b) Anonymised data provided from actual live sites.
(c) The simulated data collection described in later sections.

The anonymised data were generously provided by a trusted external source and
contain the following event information:

1. Access control data describing entry and egress events in temporal sync.
2. “Nurse call” data describe health care residents’ activity in calling for help using the

push button on the bed.

2.22. Using Data Provided along with Simulated Data to Train Model

The process of using different data structures is quite complex but made easy using
tools provided by the TinyML service provider (Figure 24).
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Figure 26. “Nurse call” data sample.

This data had to be converted into a format that is time stamped and follows the
prescribed format: timestamp, Data-1, Data-1, Data-3, . . . .

The data (Figures 25 and 26) were uploaded using the interface provided (Figure 24).
The ML model creation was initiated in the cloud service. Advanced “learning blocks”
(sophisticated processing steps Figure 27) such as Transfer Learning and Regression filters,
NN, etc., were provided to improve model performance.
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Figure 27. Additional “learning blocks” (TL, KERAS, NN) provided to improve outcomes.

The TinyML ecosphere is still developing, allowing many opportunities to discover
new techniques to improve the performance of models. The key outcome in this re-
search is understanding the stepped approach to developing models that make it possible
to have “intelligence at the edge” embedded into constrained computing devices such
as microcontrollers.

3. Results
3.1. “Feature”/Function Table

The results table explains how different aspects of the project objectives were met with
system flexibility and performance in focus.

“Feature”/Function “Edge Intelligence” Using Sensor “Clusters” and
Low-Energy Techniques

Quality of sensors and functionality Many unique MEMS low-power reliable sensors on computing device
board (five parametric sensing groups, eleven sensor types).

Sensor fusion in real-time
Sensors are in close proximity, close to where the data are captured, so

optimised, temporally. Synchronised data fusion analysis is
successfully performed.

Data collection Relevant data in many forms can be added to the fusion step.

Power optimisation New techniques such as “wake words” conserve power for those times
that require computing resources.

Advanced feature sets

Data are analysed in real-time—only results stored or sent to storage or
dashboards. The result “payload” is in Kilobytes. Machine learning

extracts associations from the data to improve situational awareness. It
can achieve this many times faster than humans can after appropriate

model training.

“Intelligence”
The power of associations generated by ML enabled “collaboration,

corroboration and reinforcement” avoiding “unwanted” “event
detection” based on just a single sensor trigger.

3.2. The “Wake Word” for Energy Harvesting

Activating and testing the “wake word” simulation returned a 95.4% accuracy rate
(Figure 28). Tests were conducted on the cloud service of EdgeImpule.com (personal
demo account).
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The wake word “Help Me!” trigger is set up as a two-
syllable sound to avoid false detection. 
A “wake” trigger is also chosen from the event detec-
tion list.  
High risk maneuvers are tracked by multiple sensors.  
“Collaborative, corroborative and reinforcement” 
techniques, as presented in workflow drawings, are 
used to confirm the event. 
Machine learning models unearth many more associ-
ations quicker and depending on tools used (such as 
CNN filters), producing “actionable intelligence”. 
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Figure 28. The wake word “Help Me!” turns on event recognition computing resources.

3.3. The Confusion Matrix

A table of the results using the confusion matrix for event detection using machine
learning is recorded in Excel. The number of tests and trials required automatically cal-
culating the results of the “model testing” in an automated spreadsheet, made it easier to
record the consistency and to test different scenarios providing the flexibility to try out
many different operational modes: voice, time sync data, fusion techniques, etc.

The trials (Figure 29) were carried out to experience the machine learning process and
to experience its benefits, applicability and how it relates to existing processes. We also
felt that the real power of TinyML is its ability to deliver a model which can be improved
at will with training and is uploaded to a microcontroller device to perform application
tailored analysis.
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Figure 29. Test results—”event detection” trials.

Automation to Test Multiple Scenarios

A spreadsheet (Figure 30) was developed to automatically take in data and produce
confusion matrix results so many tests and trials could be conducted for comparison over
multiple tests.



Sensors 2022, 22, 8143 19 of 23

Sensors 2022, 22, x FOR PEER REVIEW 20 of 24 
 

Figure 29. Test results—”event detection” trials. 

Automation to Test Multiple Scenarios 
A spreadsheet (Figure 30) was developed to automatically take in data and produce 

confusion matrix results so many tests and trials could be conducted for comparison over 
multiple tests. 

 
Figure 30. Spreadsheet to perform multiple trials to test for consistency using the confusion ma-
trix. 

4. Discussion 
The most effective application of model-based sensor fusion would be in a smart city 

project. We juxtapose two scenarios and represent them in drawings and graphs. 
Scenario-1 is a smart city project with 71 sensor nodes sending data over a LoRaWAN 

network to a central repository. In the design requirements there were no real-time expec-
tations. Therefore, the system performed as per the resources provided to it. Independent 
sensors were used, which shared a LoRaWAN communication channel and produced 
Max1 to 100 Kbits/sec of data to a repository. The data were analysed for insights, then 
transitioned via an analysis package to a dashboard several minutes later depending on 
network traffic delays and retries or loss and “cleaning” functions to replace lost data. The 
time to collect, clean and have data ready for analysis for a real-time threat response was 
in the order of ten to twenty minutes (Figure 31). 

 
Figure 31. Schematic drawing shows the path of sensor data through infrastructure which could 
result in loss of temporal sync. 

The second test scenario was created using the Arduino Nano BLE Sense with many 
more sensors on board. After ML training, presented earlier, the system detected and 

 

 

 
Live 24h dashboard to respond to “health and safety” issues would be 
pointless if the dashboard received data 15 min after the incident. 

Spreadsheet: 
For auto calculating the 
confusion matrix re-
sults based on a multi 
epoch run to establish 
consistency, not abso-
lute performance. 

Figure 30. Spreadsheet to perform multiple trials to test for consistency using the confusion matrix.

4. Discussion

The most effective application of model-based sensor fusion would be in a smart city
project. We juxtapose two scenarios and represent them in drawings and graphs.

Scenario-1 is a smart city project with 71 sensor nodes sending data over a LoRaWAN
network to a central repository. In the design requirements there were no real-time expecta-
tions. Therefore, the system performed as per the resources provided to it. Independent
sensors were used, which shared a LoRaWAN communication channel and produced
Max1 to 100 Kbits/sec of data to a repository. The data were analysed for insights, then
transitioned via an analysis package to a dashboard several minutes later depending on
network traffic delays and retries or loss and “cleaning” functions to replace lost data. The
time to collect, clean and have data ready for analysis for a real-time threat response was in
the order of ten to twenty minutes (Figure 31).
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Figure 31. Schematic drawing shows the path of sensor data through infrastructure which could
result in loss of temporal sync.

The second test scenario was created using the Arduino Nano BLE Sense with many
more sensors on board. After ML training, presented earlier, the system detected and
performed instantly over a sub-giga-hertz BLE (Bluetooth Low Energy) channel providing
“actionable intelligence”, i.e., human deliverable responses.

From the two studies, the following scenarios are described:

(a) Individual sensor data are sent over severely under-resourced networks to a central
repository for processing, where issues such as network availability, speed and relia-
bility are not guaranteed. Background analysis and “cleaning” (i.e., replacing missing
data) at the receiving end is required before the results are sent to a dashboard as
events for operators to respond to (Figure 31).
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(b) Another scenario where “intelligence at the edge” generates analysed results using
a customised machine learning model where the data are fused and analysed at the
point where the data are collected, and “actionable intelligence” is sent out to the first
responders (Figure 32).
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These two scenarios present two different ways of delivering “actionable intelligence”,
which needs to be “on time” or it is of no benefit to the end user.

Limitations

The “need for speed” to deliver solutions that work forces humans to take short cuts,
which does not sit well with machine learning because it expects us to know what kind
of an output we want. “Garbage in–Garbage out” is so very true of the machine learning
process that works incredibly fast and accurately. The process workflow was explained in
depth, but if it is “compromised” by poor input or “reasoning” it is likely to magnify the
lack of rigour in the assumptions made and outcomes delivered.

5. Conclusions

Our research explored, experienced, documented and presented several levels of
discipline required to obtain reliable results when configuring machine learning systems.
We researched and reported preliminary results from the domains where our TinyML
model’s customised detection capability was trialled, documenting the “features” and
model functionality outcomes required, as shown in Tables 1 and 2.

An energy-efficient single-board microcontroller system with MEMS sensors on board
(Figure 10) and BLE communications was set up in a test scenario. As the MCUs (embed-
ded microprocessor control units) develop in sensor density and computing power, the
opportunity to use low-power, high-throughput “meshed” (BLE inter-device communica-
tion) devices can only grow to improve “edge intelligence”. This area is highlighted for
future work.

Our research explored and deployed these sophisticated customised sensor models
using data fusion and techniques that continue to be researched in the industry. The
process of training, identifying features and functions that need to be used in training, is
an expertise that must be practised. We tested and delivered customisable TinyML model
designs to meet real-time operational domain requirements using “edge intelligence”.
These developed models can be used with many different MCUs with similar sensors and
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in other domains with similar detection requirements. This solves a significant issue for
industries with severely restricted resources. We explored all avenues to ensure reliable
data analysis at the “edge” delivers credible reliable results in temporal sync. Therefore, the
results are received by “first responder” hand-held or control room dashboards so that they
can be responded to immediately reducing “unwanted” or false alarms that are a drain
on resources.

This research also explored and presented the possible sophisticated framework that
uses data points to collaborate, corroborate and reinforce results in a data-driven opera-
tional environment using multiple sensor inputs, using four real domain requirements
as examples.

Failure cost is a serious consideration because sensors contribute to operational per-
formance and must be highly reliable. Poor reliability will require a human to physically
attend to a system failure to find out the problem. Nevertheless, poor-quality products tend
to add costs exponentially to the operational cost of a data-driven ecosystem. It is essential,
therefore, to use value-engineered design principles to test and deploy with reliability
in mind.

Further research into this area of “edge intelligence” is necessary along with key topics
covered in this research paper, such as energy harvesting and wireless power, to extend
reliability and satisfy value engineering criteria. TinyML is a formidable development
and a useful tool for using sophisticated machine learning training methods to improve
the performance of the customised models in real-time health, safety, security and fire
safety situations.
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Appendix A Non-Technical Explanation of the Objectives of the Research

The paper highlights key issues because of our reliance on data to function:

1. Data might not be in real time and often become corrupted by constrained infrastruc-
ture, before they are analysed. The paper raises these issues and proposes a solution
to solve it. The solution uses machine learning to fuse data from different sensors,
analyse it and deliver it live to where it is required most. The results are instant and
sent directly to the “first responder”, saving lives.

2. The solution also solves problems for overloaded infrastructure by reducing payload
and ensuring only analysed results are sent.

3. Humans are intelligent and have risen up the evolution tree because they constantly
invent tools that help humans do things better and more quickly. What has been
developed is an intelligent tool that helps humans sieve through a lot of data to build
a solution customised for the chosen real-time domains.

4. If someone is ill, would it be appropriate to obtain a “diagnosis” based on single
parameter, or would you consider all factors causing the problem before treatment?
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5. The TinyML model is developed from human logic, because we train the model by
providing it with many examples of what is required and not required. It ingests
our logic and then works incredibly fast to build associations and relevance (edge
intelligence) by collating, collaborating, corroborating and reinforcing different data
points to deliver a customised solution we designed.

6. We demonstrate how “intelligence at the edge” (close to where the data are collected)
is used effectively to improve the reliability of service outcomes.
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