
Citation: Chen, J.; Xiao, W.; Li, X.;

Zheng, Y.; Huang, X.; Huang, D.;

Wang, M. A Routing Optimization

Method for Software-Defined Optical

Transport Networks Based on

Ensembles and Reinforcement

Learning. Sensors 2022, 22, 8139.

https://doi.org/10.3390/s22218139

Academic Editors: Chien Aun Chan,

Ming Yan and Chunguo Li

Received: 11 October 2022

Accepted: 20 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Routing Optimization Method for Software-Defined Optical
Transport Networks Based on Ensembles and
Reinforcement Learning
Junyan Chen 1,2 , Wei Xiao 1, Xinmei Li 1, Yang Zheng 3,*, Xuefeng Huang 1, Danli Huang 1 and Min Wang 1

1 School of Computer Science and Information Security, Guilin University of Electronic Technology,
Guilin 541004, China

2 School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
3 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: yang.zheng@ia.ac.cn

Abstract: Optical transport networks (OTNs) are widely used in backbone- and metro-area trans-
mission networks to increase network transmission capacity. In the OTN, it is particularly crucial to
rationally allocate routes and maximize network capacities. By employing deep reinforcement learn-
ing (DRL)- and software-defined networking (SDN)-based solutions, the capacity of optical networks
can be effectively increased. However, because most DRL-based routing optimization methods have
low sample usage and difficulty in coping with sudden network connectivity changes, converging
in software-defined OTN scenarios is challenging. Additionally, the generalization ability of these
methods is weak. This paper proposes an ensembles- and message-passing neural-network-based
Deep Q-Network (EMDQN) method for optical network routing optimization to address this prob-
lem. To effectively explore the environment and improve agent performance, the multiple EMDQN
agents select actions based on the highest upper-confidence bounds. Furthermore, the EMDQN
agent captures the network’s spatial feature information using a message passing neural network
(MPNN)-based DRL policy network, which enables the DRL agent to have generalization capability.
The experimental results show that the EMDQN algorithm proposed in this paper performs better
in terms of convergence. EMDQN effectively improves the throughput rate and link utilization of
optical networks and has better generalization capabilities.

Keywords: optical transport network; software-defined networking; deep Q-network;
message-passing neural network; ensemble learning

1. Introduction

The optical transport network (OTN) is a transport network that enables the transmis-
sion, multiplexing, route selection, and monitoring of service signals in an optical domain,
ensuring its performance index and survivability. The OTN can support the transparent
transmission of customer signals, high-bandwidth multiplexing, and configuration. It also
provides end-to-end connectivity and networking capabilities. With the rapid development
of network communication technology, the demand for OTN networks has increased sig-
nificantly in terms of the scale of information volume, demand complexity, and dynamic
spatio-temporal distribution. Unlike traditional networks, the OTN can meet more network
requirements due to its suitable transmission medium, which has a high transmission
speed, more data transmission, and a long transmission distance.

Traditional routing design schemes manually model network demand characteristics
and design routing policies in a focused way. The traditional routing protocol is designed for
wired networks, with a fixed bandwidth allocation pattern and low bandwidth utilization.
It cannot provide differentiated services based on the level of assistance, nor can it cope with
the rapid changes in topology and link quality standards in optical network environments.

Sensors 2022, 22, 8139. https://doi.org/10.3390/s22218139 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6516-9067
https://doi.org/10.3390/s22218139
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218139?type=check_update&version=1

Sensors 2022, 22, 8139 2 of 19

Additionally, because OTN demand has complex spatio-temporal distribution fluctuations,
the optimization problem of its routing is an NP-hard problem [1]. In this case, traditional
network routing design schemes do not apply to the OTN.

With the development of new network architectures, such as the software-defined
networking (SDN) and the maturation of deep reinforcement learning (DRL) techniques in
recent years, software-defined optical transport networks (SD-OTNs) based on the SDN
are gaining popularity in the industry. Recent studies have used the DRL to address SDN-
related problems, such as QoS-aware secure routing for the SDN-IoT [2], SDN routing
optimization problems [3], and the SDN demand control [4]. However, due to DRL
agents’ lack of generalization capabilities, they do not achieve good results in new network
topologies. Thus, DRL agents cannot make correct routing decisions when presented
with unexplored network scenarios during the training phase. The main reason behind
this phenomenon is that graphs essentially represent computer networks. In addition,
traditional DRL algorithms use typical neural network (NN) architectures (e.g., fully
connected convolutional neural networks), which are unsuitable for modeling information
about graph structures. Due to the computational effort and high time complexity of the
routing optimization problem, traditional DRL algorithms are challenging for the DRL
agent to converge quickly when addressing the network routing optimization problem.
Additionally, OTN network problems are incredibly complex and have high trial-and-error
costs, making it difficult to implement DRL algorithms in real optical networks.

This paper proposes an ensembles- and message-passing neural-network-based deep
Q-network (EMDQN) method to solve the SD-OTN routing decision problem. The message-
passing neural network (MPNN) is a deep learning (DL) method based on a graph struc-
ture [5]. The MPNN contributes to learning the relationship between graph elements and
their rules. In this paper, the MPNN is used to capture information about the relationship
between the demand on links and network topology, which can improve the model’s
generalization ability. Despite computationally complex network problems, ensemble
learning has a unique advantage that can increase sample utilization. We reweigh the
sample transitions based on the uncertainty estimates of ensemble learning. This method
can improve the signal-to-noise ratio during Q-network updates, and stabilize the learning
process of the EMDQN agent, which helps the deep Q-network (DQN) [6] operate stably in
OTN networks.

The main contributions of this paper are as follows:

1. We propose an SD-OTN routing optimization algorithm based on the reinforcement
learning model of the EMDQN. To effectively improve the extrapolation capability of
DRL decision-makers, we design a more refined state representation and a limited set
of actions.

2. We use the MPNN algorithm instead of the traditional DQN’s policy networks,
which can capture the relationship between links and network topology demand and
improve the DRL decision-maker performance and generalization capability. Addi-
tionally, we exploit the advantages of efficient exploration through ensemble learning
to explore the environment in parallel and improve convergence performance.

3. We design practical comparison experiments to verify the superior performance of
the EMDQN model.

The rest of this paper is structured as follows. In Section 2, this paper discusses
research related to the proposed solution for the network problem. Section 3 describes
the software-defined network system architecture and the OTN optimization scenarios
and tasks. In Section 4, this paper describes the design of DRL-based routing optimization
decisions. In Section 5, this paper presents an extensive evaluation of DRL-based solutions
in some realistic OTN scenarios. Finally, in Section 6, we present our conclusion and
directions for future work.

Sensors 2022, 22, 8139 3 of 19

2. Related Research

Traditional routing optimization schemes are usually based on the OSPF (open shortest
path first) [7] or ECMP (equal-cost multipath routing) [8]. The OSPF protocol routes all
flow requests individually to the shortest path. The ECMP protocol increases transmission
bandwidth using multiple links simultaneously. However, these approaches, based on
fixed forwarding rules, are prone to link congestion and cannot meet the demand of
exponential traffic growth. Recently, most heuristic algorithm-based approaches have been
built under the architecture of the SDN. The authors in [9] proposed a heuristic ant-colony-
based dynamic layout algorithm for SDNs with multiple controllers, which can effectively
reduce controller-to-switch and controller-to-controller communication delays caused by
link failures. The authors in [10] applied a random-based heuristic method called the
alienated ant algorithm, which forces ants to spread out across all available paths while
searching for food rather than converging on a single path. The authors in [11] analytically
extract historical user data through a semi-supervised clustering algorithm for efficient
data classification, analysis, and feature extraction. Subsequently, they used a supervised
classification algorithm to predict the flow of service demand. The authors in [12] proposed
a heuristic algorithm-based solution for DWDM-based OTN network planning. The authors
in [13] proposed a least-cost tree heuristic algorithm to solve the OTN path-sharing and load-
balancing problem. However, because of a lack of historical experience in data learning,
heuristic algorithms can only build models for specific problems. When the network
changes, it is difficult to determine the network parameters and there is limited scalability
to guarantee service quality. Furthermore, because of the tremendous computational effort
and high computational complexity of these methods, heuristic algorithms do not perform
well on OTN networks.

With SDN’s maturity and large-scale commercialization, the SD-OTN based on the
SDN is becoming increasingly popular in the industry. SD-OTN adapts the reconfigurable
optical add-drop multiplexer (ROADM) nodes through the southbound interface protocol
and establishes a unified resource and service model. The SD-OTN controller can realize
topology and network status data collection, routing policy distribution, and network
monitoring. Therefore, many researchers deploy artificial intelligence algorithms in the
controller. Deep learning, with its powerful learning algorithms and excellent performance
advantages, has gradually been applied to the SDN. To solve the SDN load-balancing
problem, Chen et al. [14] used the long short-term memory (LSTM) to predict the network
traffic in the SDN application plane. The authors in [15] proposed a weighted Markov
prediction model based on mobile user classification to optimize network resources and
reduce network congestion. The authors in [16] proposed an intrusion detection system
based on SDN and deep learning, reducing the burden of security configuration files on
network devices. However, deep learning requires many datasets for training and has poor
generalization abilities due to its inability to interact with the environment. These factors
make it difficult to optimize the performance of dynamic networks. Compared with deep
learning, reinforcement learning uses online learning for model training, changing agent
behaviors through continuous exploration, learning, and experimentation to obtain the
best return. Therefore, reinforcement learning does not require the model to be trained
in advance. It can change its action according to the environment and reward feedback.
The authors in [17] designed a Q-learning-based localization-free routing for underwater
sensor networks. The authors in [18] proposed a deep Q-routing algorithm to compute
the path of any source-destination pair request using a deep Q-network with prioritized
experience replay. The authors in [19] proposed traction control ideas to solve the routing
problem. The authors in [20] proposed a routing optimization algorithm based on the
proximal policy optimization (PPO) model in reinforcement learning. The authors in [21]
discussed a solution for automatic routing in the OTN using DRL. Although the studies
described above have been successful for the SDN demand-routing optimization problem,
they do not perform as well in new topologies because they do not consider the model’s
generalization capability.

Sensors 2022, 22, 8139 4 of 19

The traditional DRL algorithms use a typical neural network (NN) as the policy
network. The NN can extract and filter the features of the input information and data layer
by layer to finally obtain the results of tasks, such as classification and prediction. However,
as research advances, conventional neural networks are unable to solve all network routing
problems and will struggle to handle non-Euclidean-structured graph data. Therefore, we
need to optimize the traditional reinforcement learning algorithm to improve its ability
to extract the information features of the sample. Off-policy reinforcement learning (Off-
policy RL) algorithms significantly improve sample utilization by reusing past experiences.
The authors in [22] propose an off-policy actor–critic RL algorithm based on a maximum
entropy reinforcement learning framework. The participants’ goal in this framework is to
maximize the expected reward while maximizing the entropy. They achieved state-of-the-
art sample efficiency results by combining a maximum entropy framework. However, in
practice, the commonly used off-policy approximate dynamic programming methods based
on the Q-learning and actor–critic methods are susceptible to data distribution. They can
only make limited progress without collecting additional on-policy data. To address this
problem, the authors in [23] proposed bootstrap error accumulation reduction to reduce
off-policy algorithm instability caused by accumulating backup operators via the Bellman
algorithm. The authors in [24] developed a new estimator called offline dual reinforcement
learning, which is based on the cross-folding estimation of Q-functions and marginalized
density ratios. The authors in [25] used a framework combining imitation learning and deep
reinforcement learning, effectively reducing the RL algorithm’s instability. The authors
in [26] used the DQN replay datasets to study off-policy RL, effectively reducing the off-
policy algorithm’s instability. The authors in [27] proposed an intelligent routing algorithm
combining the graph neural network (GNN) and deep deterministic policy gradient (DDPG)
in the SDN environment, which can be effectively extended to different network topologies,
improving load-balancing capabilities and generalizability. The authors in [28] combined
GNN with the DQN algorithm to address the lack of generalization abilities in untrained
OTN topologies. OTN topology graphs are non-Euclidean data, and the nodes in their
topology graphs typically contain useful feature information that most neural networks
are unable to comprehend. They use MPNN to extract feature information between OTN
topological nodes, which improves the generalization performance of the DRL algorithm.

However, it is a challenge for a single DRL agent to balance exploration and devel-
opment, resulting in limited convergence performance. Ensemble learning solves a single
prediction problem by building several models. It works by generating several classifiers
or models, each of which learns and predicts independently. These predictions are finally
combined into a combined prediction, which outperforms any single classification for
making predictions [29]. There are two types of integrated base learning machines. One
type involves using various learning algorithms on the same dataset to obtain a base
learning machine, which is usually referred to as heterogeneous [30–32]. The other type
applies the same learning algorithm on a different training set (which can be obtained
by random sampling based on the original training dataset, etc.), and the base learning
machine obtained using this method is said to be a homogeneous type. However, because
of the high implementation difficulty and low scalability of heterogeneous types of base
learning machines, expansion to high-dimensional state and action spaces is difficult, mak-
ing it unsuitable for solving OTN routing optimization problems. Table 1 summarizes
the description of the papers reviewed, whether SDN and RL are considered, and the
evaluation indicators. The EMDQN algorithm we propose applies the same reinforcement
learning algorithm to different training sets to generate the base learning machine. We
combine multiple EMDQN agents to construct an ensemble learning machine and generate
diverse samples to effectively generate learning machines with high generalization abilities
and significant differences.

Sensors 2022, 22, 8139 5 of 19

Table 1. Related work.

Paper Description RL DL OTN Evaluating Indicator

[7] Performance analysis of OSPF Network convergence, traffic
dropped

[8] Embarks upon a systematic algorithmic study of
traffic engineering with ECMP Throughput

[9] Allocation of computational resources based on
heuristic ant colony algorithm

Latency, load balancing, task
completion time.

[10] A load-balancing algorithm based on the alienated
ant algorithm

Throughput, delay, packet
loss rate

[11] SDN routing solution about flow feature extraction,
requirement prediction and route selection Routing efficiency

[12] An OTN network planning solution over DWDM
based on heuristic algorithms

√ Network resource
consumption

[13] A heuristic algorithm of minimum cost tree for path
sharing and load balancing

√ Tree cost, run time, degree of
load balancing

[14] A network traffic prediction model based on LSTM
√ Throughput, load-balancing

degree

[16] Deep learning classifier for detection of anomalies
√ Precision, recall, accuracy of

classification

[17] A Q-learning-based localization-free anypath
routing

√ Delay, network lifetime,
packet delivery ratio

[19] Combines the control theory and DRL technology to
achieve an efficient network control scheme

√ √
Transmission delay

[20] An RL routing algorithm to solve a traffic
engineering

√ √ Throughput and delay,
transmission time

[21] Designing state and action to simplify the DRL
algorithm

√ √ √
Link utilization

[27] A set of extensions to the MQTT protocol that meet
application-defined real-time requirements

√ √
Latency

[28] A DRL algorithm combined with GNN
√ √ √

Network capacity

[30] A new method of data missing estimation with
tensor heterogeneous ensemble learning

√
Data missing rates

[32] A method to automatically learn long-term
associations between traffic samples

√ Calculates precision, recall
and F1-score

3. SD-OTN Architecture

In this paper, the designed SD-OTN architecture consists of the application, control,
and data planes, as shown in Figure 1. The description of each part of the network
architecture is as follows:

Sensors 2022, 22, 8139 6 of 19Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

Figure 1. The SD-OTN architecture. The architecture consists of the application plane, control plane,
and data plane.

1. Data plane. The data plane consists of the ROADM nodes and the predefined optical
paths connecting them. In the data plane, the capacity of the links and the connection
status of the ROADM nodes are predefined. The data plane must collect the current
optical data unit (ODU) signal requests and network status information, which it
must then send to the control plane via the southbound interface. The data plane
implements the new routing forwarding policy after receiving it from the control
plane. It communicates the new network state and traffic demand to the control plane,
from which decision-makers in the application plane learn.

2. Control plane. The control plane consists of the SDN controller. The control plane
obtains the ODU signal request and network status information via the southbound
interface and calculates the reward using the reward function. Through the north-
bound interface, the control plane sends the network state, traffic demand, and re-
ward to the application plane via the northbound interface. When receiving opti-
mized routing action from the application plane, the control plane sends a routing
forwarding policy to the data plane based on the routing action.

3. Application plane. The application plane manages the EMDQN agents. The agents
obtain network state information from the control plane, encode it, and feed it into
the agents’ policy network, which generates optimized routing actions. Subsequently,
the routing actions are sent down to the control plane.

4. EMDQN-Based Decision Design for Routing Optimization
In this section, we describe in detail the EMDQN algorithm proposed in this paper.

4.1. DRL-Based Routing Optimization in SD-OTN
Based on the system architecture described above, the DRL agent’s role is to assign

routes to incoming traffic demands for a specific sequence of optical paths (i.e., end-to-
end paths) to maximize network utility. Because the DRL agent operates in the electrical
domain, traffic demands are treated as requests for ODU signals. These signals, which
may originate from different clients, are multiplexed into an optical transform unit (OTU),
as shown in Figure 1. The final OTU frames are transmitted through the optical channels
in the OTN [33].

Figure 1. The SD-OTN architecture. The architecture consists of the application plane, control plane,
and data plane.

1. Data plane. The data plane consists of the ROADM nodes and the predefined optical
paths connecting them. In the data plane, the capacity of the links and the connection
status of the ROADM nodes are predefined. The data plane must collect the current
optical data unit (ODU) signal requests and network status information, which it
must then send to the control plane via the southbound interface. The data plane
implements the new routing forwarding policy after receiving it from the control
plane. It communicates the new network state and traffic demand to the control plane,
from which decision-makers in the application plane learn.

2. Control plane. The control plane consists of the SDN controller. The control plane
obtains the ODU signal request and network status information via the southbound in-
terface and calculates the reward using the reward function. Through the northbound
interface, the control plane sends the network state, traffic demand, and reward to the
application plane via the northbound interface. When receiving optimized routing
action from the application plane, the control plane sends a routing forwarding policy
to the data plane based on the routing action.

3. Application plane. The application plane manages the EMDQN agents. The agents
obtain network state information from the control plane, encode it, and feed it into
the agents’ policy network, which generates optimized routing actions. Subsequently,
the routing actions are sent down to the control plane.

4. EMDQN-Based Decision Design for Routing Optimization

In this section, we describe in detail the EMDQN algorithm proposed in this paper.

4.1. DRL-Based Routing Optimization in SD-OTN

Based on the system architecture described above, the DRL agent’s role is to assign
routes to incoming traffic demands for a specific sequence of optical paths (i.e., end-to-
end paths) to maximize network utility. Because the DRL agent operates in the electrical
domain, traffic demands are treated as requests for ODU signals. These signals, which may
originate from different clients, are multiplexed into an optical transform unit (OTU), as
shown in Figure 1. The final OTU frames are transmitted through the optical channels in
the OTN [33].

Sensors 2022, 22, 8139 7 of 19

We use G to refer to an optical transmission network, as shown in Equation (1):

G = (V, E) (1)

where V and E represent the set of n ROADM nodes and m optical links in the network
topology, respectively, as shown in Equations (2) and (3).

V = [v1, v2, . . . , vn]. (2)

E = [e1, e2, . . . , em]. (3)

We use C to denote the set of link bandwidth capacity, as shown in Equation (4), where
|C| = |E| = m:

C = [c1, c2, . . . , cm]. (4)

The path k from node vi to node vj is defined as a sequence of links, as shown in
Equation (5), where ek(i) ∈ E:

pk =
{

ek(0), ek(1), . . . , ek(n)

}
. (5)

We use dk to denote the traffic demand of the path k, and define D as the set of all
traffic demands, as shown in Equation (6):

D = [d1, d2, . . . , dn∗n]. (6)

The traffic routing problem in OTN is a classical resource allocation problem [26]. If the
bandwidth capacity of the distributed routing path is greater than the size of the bandwidth
requirement, the allocation is successful. After successfully allocating bandwidth capacity
for a node pair’s traffic demand, the routing path will not be able to release the bandwidth
occupied by that demand until the end of this episode. We use rbi to describe the remaining
bandwidth of the link ei, which is the link bandwidth capacity ci minus the traffic demands
of all paths passing through link ei, as shown in Equation (7). RB is the set of the remaining
bandwidth of all links, as shown in Equation (8).

rbi = ci −∑ dk. (7)

RB = [rb1, rb2, . . . , rbm]. (8)

We use qk to denote the allocating traffic demand of the path k, as shown in Equation
(9). Q is the set of all allocating traffic demands, as shown in Equation (10).

qk =

{
dk, i f ∀e ∈ pk and re > dk

0, else
. (9)

Q = [q1, q2, . . . , qn∗n]. (10)

The optimization objective in this paper is to successfully allocate as much of the traffic
demand as possible, as shown in Equation (11):

max(∑
qi∈Q

qi). (11)

In view of the above optimization objective, the routing optimization can be modeled
as a Markov decision process, defined by the tuple {S, A, P, R}, where S is the state space,
A is the action space, P is the set of transfer probabilities, and R is the set of rewards. The
specific design is as follows:

1. Action space: The action space is designed as k shortest hop-based paths of source-
destination nodes. The action selects one of the k paths to transmit the traffic demand

Sensors 2022, 22, 8139 8 of 19

of source–destination nodes. The parameter k is customizable and varies according to
the topology’s complexity. The action space is invariant to the arrangement of nodes
and edges, which is discretely distributed, allowing the DRL agent to understand the
actions on arbitrary network states easily.

2. State space: The state space is designed as the remaining bandwidth RB, the traffic
demand D, and the link betweenness. The link betweenness is a centrality metric,
which indicates how many paths are likely to cross the link. For each node pair in the
topology, k candidate shortest routes are calculated, with the link betweenness value
being the number of shortest routes passing through the link divided by the total
number of paths, as shown in Equation (12), where bni represents the betweenness of
the link ei, N represents he total number of paths, pk

i represents the number of shortest
routes passing through the link ei in k candidate shortest routes:

bni = pk
i /N. (12)

3. Reward function: The reward function returns a positive reward if the selected
link has sufficient capacity to support the traffic demand in an episode; otherwise, it
returns no reward and terminates the episode. According to the optimization objective
in Equation (11), the final reward for the episode is the sum of the rewards of all
successfully assigned traffic demand tuples {src, dst, demand}, as shown in Equation
(13), where N is the number of traffic demand tuples, rt represents the reward after
the action at time t, qi represents the i-th traffic demand successfully assigned, and
qmax represents the maximum traffic demand successfully assigned. The higher the
reward, the more bandwidth demands are successfully allocated in that time step,
and the better the network load-balancing capability.

.

rt =
N

∑
i=1

qi/qmax. (13)

4.2. DQN Algorithm

Based on the above DRL-based optimization solution, this paper selects the DQN
algorithm to implement a reinforcement learning agent. The DQN is a classical DRL
algorithm based on value functions. It combines a convolutional neural network (CNN)
with the Q-learning algorithm, using the CNN model to output the Q-value corresponding
to each action to ascertain which to perform [6].

The DQN algorithm uses two network models containing CNNs for learning: the
prediction network Q(s, a, θ) and the target network Q̂

(
s, a, θ

)
, where θ and θ are the

network parameters of the prediction and target networks, respectively. The prediction
network outputs the predicted Q-value corresponding to the action, whereas the target
network calculates the target value and updates the parameters of the prediction network
based on a loss function. The DQN copies the parameters of the prediction network model
to the target network after each C-round iteration.

The prediction network approximates the action value function through the CNN
model Qπ(s, a), as shown in Equation (14):

Q(s, a, θ) ≈ Qπ(s, a). (14)

The DQN agent selects and executes an action based on an ε-greedy policy. The policy
generates a random number in [0, 1] interval through a uniform distribution. If the number

Sensors 2022, 22, 8139 9 of 19

is less than 1− ε, it selects an action that maximizes the Q-value; otherwise, it selects an
action randomly, as shown in Equation (15):

at =

{
argmax

a
Q(st, a, θ), with probability 1−ε

random action, otherwise
. (15)

The target network calculates the target value y by obtaining a random mini-batch
storage sample from the replay buffer, as shown in Equation (16), where r is the reward
value and γ is the discount factor:

y = r + γmax
a′

Q̂
(
s′, a′, θ

)
. (16)

The DQN defines the loss function of the network using the mean-square error, as
shown in Equation (17). The parameter θ is updated by the mini-batch semi-gradient
descent, as shown in Equations (18) and (19):

L(θ) = E
[
(y−Q(s, a, θ))2

]
, (17)

∇θ L(θ) ≈ 1
N

N

∑
i
(y−Q(s, a, θ))∇Q(s, a, θ), (18)

θ ← θ − α∇θ L(θ), (19)

where N represents the number of samples and α represents the update parameter.
The target network is used by the DQN to keep the target Q-value constant over

time, which reduces the correlation between the predicted and target Q-values to a certain
extent. This operation reduces the possibility of loss value oscillation and divergence
during training and improves the algorithm’s stability.

4.3. Message-Passing Neural Network

The CNN model has better results in extracting features from Euclidean spatial data
(e.g., picture data), characterized by a stable structure and dimensionality. However, graph-
structured or topologically structured data are infinitely dimensional and irregular, and the
network surrounding each node may be unique. Such structured data renders traditional
CNNs ineffective and unable to extract data features effectively. To address this problem,
we use the MPNN rather than the CNN as a network model for the DQN. The MPNN is a
type of GNN that is suitable for extracting spatial features of topological graph data [5].

Through repeated iterations of the process of passing data about the link’s hidden
state, the MPNN algorithm abstract information about the characteristics of the network.
The characteristic values of the hidden state hi include the remaining bandwidth rbi, the
link betweenness bni, and the traffic demand feature d fi. The traffic demand feature
d fi represents the quantitative characteristics of the traffic demand di. Because the traffic
demand of the OTN environment is discrete and finite, the traffic demand feature is denoted
by an n-element one-hot encoding, and link characteristics that are not included in the k
routes have a zero value. Additionally, the size of the hidden state is usually larger than
the size of the feature values in the hidden state; thus, we use zero values to populate the
feature value vector, as shown in Equation (20):

hi = [rbi, bni, d fi, 0, . . . , 0]. (20)

The MPNN workflow is shown in Figure 2. We perform a message-passing process
between all links which will be executed T times. First, the MPNN receives link hidden
features as the input. Second, each link iterates over all of its adjacent links to obtain the
link features. In the message-passing process, for each link k, we generate messages by
entering the hidden state hk of the link and the hidden state hi of all neighboring links into

Sensors 2022, 22, 8139 10 of 19

the message function m(·). The message function m(·) is a fully connected CNN. After
iterating over all links, the link k receives messages from all neighboring links (denoted
by N(k)). It generates a new feature vector Mk using message aggregation, as shown in
Equation (21):

Mt+1
k = ∑

i∈N(k)
m
(
ht

k, ht
i
)
, (21)

where N(k) represents all neighboring links of the link k.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19

ℎ = 𝑢(ℎ , 𝑀). (22)

Finally, after the T-step message transmission, we use the readout function 𝑅(·) to
aggregate the hidden state of all links and obtain the Q-value, as shown in Equation (23): 𝑄(𝑠, 𝑎, 𝜃) = 𝑅(∑ ℎ ∈), (23)

where 𝐸 represents the set of all links in the topology.

Figure 2. The MPNN workflow.

4.4. Ensemble Learning
In the DQN algorithm, it is challenging for a single agent to balance exploration and

development, resulting in limited convergence performance. Furthermore, errors in the
DQN target values can increase the overall error in the Q-function, leading to an unstable
convergence. In this paper, we use ensemble learning to solve the above problems. En-
semble learning has the advantage of efficient exploration and can reduce uncertainty in
new samples.

As shown in Figure 3, ensemble learning is realized by a set of multiple EMDQN
agents {𝑄(𝑠, 𝑎, 𝜃)} , where 𝜃 represents the parameter of the 𝑖-th agent. To diversify
the training of the EMDQN agents, we randomly initialize the policy network of all
EMDQN agents. In the training phase, we employ the ϵ-greedy-based upper-confidence
bound (UCB) exploration strategy [34], as shown in Equation (24): 𝑎 = max{𝑄mean(𝑠 , 𝑎, 𝜃) + 𝜆𝑄std(𝑠 , 𝑎, 𝜃)}, with probability 1-𝜀random action, otherwise , (24)

where 𝑄mean(𝑠 , 𝑎, 𝜃) and 𝑄std(𝑠 , 𝑎, 𝜃) are the mean and standard deviation of the Q-val-
ues output by all MPNN policy networks {𝑄(𝑠, 𝑎, 𝜃)} . The exploration reward 𝜆 > 0
is a hyper-parameter. When 𝜆 increases, the EMDQN agents become more active in ac-
cessing unknown state–action pairs.

The traditional DQN loss function (Equation (6)) may be affected by error propaga-
tion, that is, it propagates the target Q-network 𝑄(𝑠 , 𝑎 , �̅�) error to the current state of the
Q-network 𝑄(𝑠, 𝑎, 𝜃). This error propagation can lead to an unstable convergence. To al-
leviate this problem, for each EMDQN agent 𝑖, this paper uses Bellman weighted back-
ups, as shown in Equation (25): 𝑳 (𝜃) = 𝑤(𝑠) 𝑟 + 𝛾 max 𝑄(𝑠 , 𝑎 , 𝜃) − 𝑄(𝑠, 𝑎, 𝜃) , (25)

Figure 2. The MPNN workflow.

Second, we update the hidden state of the link by aggregating the feature vector Mt+1
k

with the link-hidden state ht
k through the update function u(·), as shown in Equation (22).

The update function u(·) is the Gate Recurrent Unit (GRU), which has the characteristics of
high training efficiency.

ht+1
k = u

(
ht

k, Mt+1
k

)
. (22)

Finally, after the T-step message transmission, we use the readout function R(·) to
aggregate the hidden state of all links and obtain the Q-value, as shown in Equation (23):

Q(s, a, θ) = R

(
∑
k∈E

hk

)
, (23)

where E represents the set of all links in the topology.

4.4. Ensemble Learning

In the DQN algorithm, it is challenging for a single agent to balance exploration
and development, resulting in limited convergence performance. Furthermore, errors
in the DQN target values can increase the overall error in the Q-function, leading to an
unstable convergence. In this paper, we use ensemble learning to solve the above problems.
Ensemble learning has the advantage of efficient exploration and can reduce uncertainty in
new samples.

As shown in Figure 3, ensemble learning is realized by a set of multiple EMDQN
agents {Q(s, a, θi)}N

i=1, where θi represents the parameter of the i-th agent. To diversify the
training of the EMDQN agents, we randomly initialize the policy network of all EMDQN
agents. In the training phase, we employ the ε-greedy-based upper-confidence bound
(UCB) exploration strategy [34], as shown in Equation (24):

at =

{
max

a
{Qmean(st, a, θ) + λQstd(st, a, θ)}, with probability 1−ε

random action, otherwise
, (24)

Sensors 2022, 22, 8139 11 of 19

where Qmean(st, a, θ) and Qstd(st, a, θ) are the mean and standard deviation of the Q-values
output by all MPNN policy networks {Q(s, a, θi)}N

i=1. The exploration reward λ > 0 is a
hyper-parameter. When λ increases, the EMDQN agents become more active in accessing
unknown state–action pairs.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

where 𝑤(𝑠) represents the confidence weight of the set of target Q-networks in the inter-
val [0.5, 1.0]. 𝑤(𝑠) is calculated from Equation (26), where the weight parameter 𝑊 is a
hyper-parameter, 𝜎 is a sigmoid function, 𝑄 (𝑠) is the empirical standard deviation of

all target Q-networks 𝑚𝑎𝑥 𝑄(𝑠, 𝑎, �̅�) . 𝐿 (·) reduces the weights of sample tran-

sitions with high variance between target Q-networks, resulting in better signal-to-noise
ratios for network updates. 𝑤(𝑠) = 𝜎 −𝑄 (𝑠) ∗ 𝑊 + 0.5. (26)

Figure 3. EMDQN workflow.

4.5. The Working Process of the EMDQN Agent
The working process of the EMDQN agent at each iteration is described in Algorithm

1. We first reset the environment and obtain the environment link capacity and traffic
demand tuple {𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑑𝑒𝑚𝑎𝑛𝑑} (line 1). Subsequently, we execute a loop to continu-
ously assign traffic demands. In the process, we compute 𝑘 shortest links (Line 3) and
allocate the traffic demand for each shortest link through 𝑘 cycles (Lines 4–8). Based on
this, we can compute the Q-value for each action. We select actions using an 𝜖-greedy-
based UCB exploration strategy (Line 9); subsequently, we apply the chosen route to the
environment (Line 10). We store the rewards and state transfer during the interaction with
the environment in the experience replay buffer (Line 11) while applying the transferred
state (Line 12). The cycle stops when any link is unable to carry the traffic demand. Next,
we execute the agent learning phase. For the sampled batch (Line 15), we plot the mask
using the Bernoulli distribution (Line 16) and calculate the batch weight using all EMDQN
agents. Following that, we multiply the sample by the weight and mask to minimize 𝐿 (Line 18). Finally, we evaluate the set of EMDQN agents in the environment (Line
21) and collect the rewards, as well as the status of the environment, in the evaluation
process to analyze the training situation of the EMDQN agent.

Algorithm 1: working process of the EMDQN agent

1: s, demand, src, dst ← env.reset()
2: while (Done != False) do
3: k_path ← compute_k_path(k, src, dst)
4: for i ← 1 to k do
5: path ← get_path(i, k_path)
6: s’ ← allocate(s, path, src, dst, demand)
7: k_Q[i] ← compute_Q(s’, path)
8: end for
9: a ← act(k_Q, ε, k_path, s)
10: s’, r, done, demand’, src’, dst’ ← env.step(s, a)

Figure 3. EMDQN workflow.

The traditional DQN loss function (Equation (6)) may be affected by error propagation,
that is, it propagates the target Q-network Q̂

(
s′, a′, θ

)
error to the current state of the Q-

network Q(s, a, θ). This error propagation can lead to an unstable convergence. To alleviate
this problem, for each EMDQN agent i, this paper uses Bellman weighted backups, as
shown in Equation (25):

LEMDQN
WQ (θi) = w(s)

(
r + γmax

a′
Q̂
(
s′, a′, θi

)
−Q(s, a, θi)

)2
, (25)

where w(s) represents the confidence weight of the set of target Q-networks in the interval
[0.5, 1.0]. w(s) is calculated from Equation (26), where the weight parameter W is a hyper-
parameter, σ is a sigmoid function, Q̂std(s) is the empirical standard deviation of all target

Q-networks
{

max
a

Q̂
(
s, a, θ

)}N

i=1
. LEMDQN

WQ (·) reduces the weights of sample transitions

with high variance between target Q-networks, resulting in better signal-to-noise ratios for
network updates.

w(s) = σ
(
−Q̂std(s) ∗W

)
+ 0.5. (26)

4.5. The Working Process of the EMDQN Agent

The working process of the EMDQN agent at each iteration is described in Algorithm 1.
We first reset the environment and obtain the environment link capacity and traffic demand
tuple {src, dst, demand} (line 1). Subsequently, we execute a loop to continuously assign
traffic demands. In the process, we compute k shortest links (Line 3) and allocate the traffic
demand for each shortest link through k cycles (Lines 4–8). Based on this, we can compute
the Q-value for each action. We select actions using an ε-greedy-based UCB exploration
strategy (Line 9); subsequently, we apply the chosen route to the environment (Line 10).
We store the rewards and state transfer during the interaction with the environment in
the experience replay buffer (Line 11) while applying the transferred state (Line 12). The
cycle stops when any link is unable to carry the traffic demand. Next, we execute the agent
learning phase. For the sampled batch (Line 15), we plot the mask using the Bernoulli
distribution (Line 16) and calculate the batch weight using all EMDQN agents. Following
that, we multiply the sample by the weight and mask to minimize LEMDQN

WQ (Line 18).
Finally, we evaluate the set of EMDQN agents in the environment (Line 21) and collect the
rewards, as well as the status of the environment, in the evaluation process to analyze the
training situation of the EMDQN agent.

Sensors 2022, 22, 8139 12 of 19

Algorithm 1: working process of the EMDQN agent

1: s, demand, src, dst← env.reset()
2: while (Done != False) do
3: k_path← compute_k_path(k, src, dst)
4: for i← 1 to k do
5: path← get_path(i, k_path)
6: s’← allocate(s, path, src, dst, demand)
7: k_Q[i]← compute_Q(s’, path)
8: end for
9: a← act(k_Q, ε, k_path, s)
10: s’, r, done, demand’, src’, dst’← env.step(s, a)
11: agent.rememble(s, a, r, s’, done)
12: s, demand, src, dst← s’, demand’, src’, dst’
13: end while
14: for i← 1 to STEP do
15: batch← sample()
16: m← bernoulli()
17: for each agent i do
18: Update agent by minimizing LWQ

EMDQN(θi)

19: end for
20: end for
21: agent.evaluate()

5. Experiments and Analysis

In this section, we simulate the SD-OTN routing scenario using the OpenAI gym
framework to train and evaluate the EMDQN algorithm. Furthermore, we conduct ex-
periments and analyses by adjusting the hyper-parameters and evaluating the algorithm
load-balancing ability and generalization ability.

5.1. Experimental Environment

The computer used for the experiments has an AMD R5 5600G processor with a base
frequency of 2900 MHz, a 2 TB solid-state drive, and 32 GB of RAM. The experiment uses
the Tensorflow deep learning framework to implement the EMDQN algorithm. We select
NSFNET, GEANT2, and GBN for the optical transmission network topology, with the
lightpath bandwidth being 200 ODU0 bandwidth units, as shown in Figure 4. Among
these, the NSFNET network contains 14 ROADM nodes and 21 lightpaths, the GEANT2
network contains 24 ROADM nodes and 36 lightpaths, and the GBN network contains 17
ROADM nodes and 27 lightpaths.

In this paper, the lightpath bandwidth requirements are expressed as multiples of
ODU0 signals, i.e., 8, 32, and 64 ODU0 bandwidth units. In each episode, the environment
generates a traffic demand tuple {src, dst, demand} at random. Additionally, the EMDQN
agent should assign the appropriate route for each tuple received. If the assignment is
successful, it will receive a reward as defined in Equation (1). Otherwise, it will not be
rewarded. Since the new traffic demand is randomly generated, the routing policy designed
by the EMDQN agent does not rely on traffic demand distribution information, reducing
the EMDQN agent’s overfitting to the particular network scenario used for training.

Sensors 2022, 22, 8139 13 of 19

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

5. Experiments and Analysis
In this section, we simulate the SD-OTN routing scenario using the OpenAI gym

framework to train and evaluate the EMDQN algorithm. Furthermore, we conduct exper-
iments and analyses by adjusting the hyper-parameters and evaluating the algorithm
load-balancing ability and generalization ability.

5.1. Experimental Environment
The computer used for the experiments has an AMD R5 5600G processor with a base

frequency of 2900 MHz, a 2 TB solid-state drive, and 32 GB of RAM. The experiment uses
the Tensorflow deep learning framework to implement the EMDQN algorithm. We select
NSFNET, GEANT2, and GBN for the optical transmission network topology, with the
lightpath bandwidth being 200 ODU0 bandwidth units, as shown in Figure 4. Among
these, the NSFNET network contains 14 ROADM nodes and 21 lightpaths, the GEANT2
network contains 24 ROADM nodes and 36 lightpaths, and the GBN network contains 17
ROADM nodes and 27 lightpaths.

In this paper, the lightpath bandwidth requirements are expressed as multiples of
ODU0 signals, i.e., 8, 32, and 64 ODU0 bandwidth units. In each episode, the environment
generates a traffic demand tuple {src, dst, demand} at random. Additionally, the EMDQN
agent should assign the appropriate route for each tuple received. If the assignment is
successful, it will receive a reward as defined in Equation (1). Otherwise, it will not be
rewarded. Since the new traffic demand is randomly generated, the routing policy de-
signed by the EMDQN agent does not rely on traffic demand distribution information,
reducing the EMDQN agent’s overfitting to the particular network scenario used for train-
ing.

11: agent.rememble(s, a, r, s’, done)
12: s, demand, src, dst ← s’, demand’, src’, dst’
13: end while
14: for i ← 1 to STEP do
15: batch ← sample()
16: m ← bernoulli()
17: for each agent i do
18: Update agent by minimizing 𝑳 (𝜃)
19: end for
20: end for
21: agent.evaluate()

Figure 4. The optical transmission network topologies: (a) the NSFNET topology; (b) the GEANT2
topology; (c) the GBN topology.

5.2. Hyper-Parameters Settings

We experimentally select suitable hyper-parameters for the EMDQN agent, as shown
in Figure 5. In the experiments, we chose the NSFNET as the experimental network
topology. The size of the link-hidden state is related to the amount of coding information.
We set the size of the link-hidden state to twenty and the number of feature values to five,
and filled the rest with zero. To facilitate observation, we smoothed the data when drawing
the graph.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

Figure 5. Comparison of the effect of some super-references: (a) ensemble number; (b) learning rate;
(c) ϵ-decay; (d) UCB exploration reward λ; (e) weight parameter W.

Table 2 shows some relevant parameters of the EMDQN and values taken after tun-
ing the parameters.

Table 2. Some relevant parameters of the EMDQN.

Parameter Value
Batch size 32

Learning rate 0.001
Soft wights copy 𝛼 0.08

Dropout rate 0.01
State hidden 20

Ensemble number 2
UCB exploration reward 𝜆 5

Weight parameter 𝑊 0.05 𝜖-decay 0.995
Discount factor 𝛾 0.95

5.3. Load-Balancing Performance Evaluation
In this section, we experimentally evaluate the EMDQN in the three network topol-

ogies, as described in Section 5.1. The DRL agent runs 2000 iterations. In each iteration,
the agent trains 50 episodes and evaluates 40 episodes. Furthermore, the DRL agent up-
dates the network during the training period. During the evaluation, the DRL agent does

Figure 5. Comparison of the effect of some super-references: (a) ensemble number; (b) learning rate;
(c) ε-decay; (d) UCB exploration reward λ; (e) weight parameter W.

Sensors 2022, 22, 8139 14 of 19

Figure 5a shows the training results for the different numbers of EMDQN agents.
When the number of agents is high, the training slows down and aggravates the overfitting
of DRL agents in the application scenario, resulting in poorer results. The performance is
optimal when the number of EMDQN agents is two. Figure 5b shows the training results of
the stochastic gradient descent algorithm with different learning rates. When the learning
rate was 0.001, the algorithm reward achieved the highest value. Figure 5c shows the
training results for different decay rates of ε. In the initial stage of training, ε is close to
1. We executed 70 iterations and started to reduce ε exponentially using ε-decay until it
decreased to 0.05. During the process of ε reduction, the training curve tends to flatten
out, finally reaching convergence. The training results show that the reward value curve is
most stable after convergence when ε-decay is 0.995. Figure 5d shows the training results
for different λ values in Equation (11). λ denotes the exploration reward of the EMDQN
agent. From the results in Figure 5d, it is clear that the algorithm reward value is highest
when λ value is 5. Figure 5e depicts the training results for different weight parameters
W in Equation (14). In this paper, we set the size of samples to 32. As W increases, the
sample weights converge and become less than one, which affects the sample efficiency of
the EMDQN. The reward of this algorithm reaches its highest value when the value of W
is 0.05.

Table 2 shows some relevant parameters of the EMDQN and values taken after tuning
the parameters.

Table 2. Some relevant parameters of the EMDQN.

Parameter Value

Batch size 32
Learning rate 0.001

Soft wights copy α 0.08
Dropout rate 0.01
State hidden 20

Ensemble number 2
UCB exploration reward λ 5

Weight parameter W 0.05
ε-decay 0.995

Discount factor γ 0.95

5.3. Load-Balancing Performance Evaluation

In this section, we experimentally evaluate the EMDQN in the three network topolo-
gies, as described in Section 5.1. The DRL agent runs 2000 iterations. In each iteration, the
agent trains 50 episodes and evaluates 40 episodes. Furthermore, the DRL agent updates
the network during the training period. During the evaluation, the DRL agent does not up-
date the network; rather, it applies the action to the environment intending to maximize the
Q-function, and subsequently records network state data, such as rewards, link utilization,
and throughput for each episode.

We implement other SDN solutions for performance comparison with EMDQN al-
gorithms, such as OSPF [7], ECMP [8], DQN [17], PPO [19], and DQN+GNN [26]. The
DQN+GNN is an ablation experiment among the compared algorithms, i.e., a performance
comparison of the EMDQN model with ensemble learning removed. The DQN and PPO
are classic DRL algorithms that use a fully connected feedforward NN as a policy network.
The OSPF is an open shortest path algorithm that performs an action selection by calculat-
ing the shortest number of hops of the link traversed between the source and destination
nodes. The ECMP algorithm is an equal-value multipath routing protocol that allows the
use of multiple links simultaneously in the network. The ECMP algorithm distributes the
bandwidth demand equally over k lightpaths in this experiment. Furthermore, OUD0
signals are not divisible, but we can verify the performance in other network scenarios in
this way.

Sensors 2022, 22, 8139 15 of 19

Figure 6 shows the average reward of all algorithms for the three evaluation scenarios,
where the confidence interval is 95%. In this paper, we design the reward based on whether
the bandwidth demand can be successfully allocated. The greater the reward, the more
bandwidth demand is successfully allocated, and the better the network load-balancing
capability. In all three evaluation scenarios, the EMDQN algorithm proposed in this
paper performs better than other algorithms after convergence. The EMDQN algorithm
outperforms the DQN+GNN algorithm with ensemble learning removed after convergence
by more than 7%, demonstrating that the multi-agent ensemble learning approach can
effectively improve the convergence performance of the DQN. Additionally, the EMDQN
and DQN+GNN outperform the classical reinforcement learning algorithms (DQN and
PPO) by more than 25% in all three evaluated scenarios. This indicates that the MPNN
can effectively improve the decision performance of the reinforcement learning model by
capturing information about the relationship between the demand on links and network
topology. The DQN and PPO algorithms perform about as well as the ECMP algorithm after
convergence. The OSPF algorithm, on the other hand, routes all flow requests singularly to
the shortest path. Since this method is based on fixed forwarding rules, it can easily lead to
link congestion. Therefore, the OSPF algorithm is only close to ECMP in the GBN scenario
and the lowest in other scenarios.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19

not update the network; rather, it applies the action to the environment intending to max-
imize the Q-function, and subsequently records network state data, such as rewards, link
utilization, and throughput for each episode.

We implement other SDN solutions for performance comparison with EMDQN al-
gorithms, such as OSPF [7], ECMP [8], DQN [17], PPO [19], and DQN+GNN [26]. The
DQN+GNN is an ablation experiment among the compared algorithms, i.e., a perfor-
mance comparison of the EMDQN model with ensemble learning removed. The DQN and
PPO are classic DRL algorithms that use a fully connected feedforward NN as a policy
network. The OSPF is an open shortest path algorithm that performs an action selection
by calculating the shortest number of hops of the link traversed between the source and
destination nodes. The ECMP algorithm is an equal-value multipath routing protocol that
allows the use of multiple links simultaneously in the network. The ECMP algorithm dis-
tributes the bandwidth demand equally over k lightpaths in this experiment. Further-
more, OUD0 signals are not divisible, but we can verify the performance in other network
scenarios in this way.

Figure 6 shows the average reward of all algorithms for the three evaluation scenar-
ios, where the confidence interval is 95%. In this paper, we design the reward based on
whether the bandwidth demand can be successfully allocated. The greater the reward, the
more bandwidth demand is successfully allocated, and the better the network load-bal-
ancing capability. In all three evaluation scenarios, the EMDQN algorithm proposed in
this paper performs better than other algorithms after convergence. The EMDQN algo-
rithm outperforms the DQN+GNN algorithm with ensemble learning removed after con-
vergence by more than 7%, demonstrating that the multi-agent ensemble learning ap-
proach can effectively improve the convergence performance of the DQN. Additionally,
the EMDQN and DQN+GNN outperform the classical reinforcement learning algorithms
(DQN and PPO) by more than 25% in all three evaluated scenarios. This indicates that the
MPNN can effectively improve the decision performance of the reinforcement learning
model by capturing information about the relationship between the demand on links and
network topology. The DQN and PPO algorithms perform about as well as the ECMP
algorithm after convergence. The OSPF algorithm, on the other hand, routes all flow re-
quests singularly to the shortest path. Since this method is based on fixed forwarding
rules, it can easily lead to link congestion. Therefore, the OSPF algorithm is only close to
ECMP in the GBN scenario and the lowest in other scenarios.

Figure 6. Comparison of the rewards of each algorithm in different scenarios: (a) NSFNET scenario
evaluation; (b) GEANT2 scenario evaluation; (c) GBN scenario evaluation.

Figure 6. Comparison of the rewards of each algorithm in different scenarios: (a) NSFNET scenario
evaluation; (b) GEANT2 scenario evaluation; (c) GBN scenario evaluation.

Table 3 shows the average throughput of each algorithm in ODU0 bandwidth units
for the three network topologies. Table 4 displays the average link utilization of each
algorithm across the three network topologies. The average throughput and link utilization
of the EMDQN are higher than those of other algorithms under various network topologies,
indicating that the EMDQN algorithm has a better load-balancing capability for the network
after convergence. The performance of the EMDQN algorithm is higher than that of the
DQN+GNN algorithm, which is a good indication that ensemble learning can improve the
convergence performance of the model. The results show that the EMDQN has excellent
decision-making abilities.

Table 3. A comparison of the average throughput of each algorithm in different scenarios.

EMDQN DQN+GNN DQN PPO ECMP OSPF

NSFNET 1028.17 ± 27.45 899.28 ± 24.21 709.47 ± 35.47 737.48 ± 26.92 747.68 ± 13.50 548.86 ± 20.97
GEANT2 995.56 ± 35.26 903.48 ± 35.36 721.97 ± 31.07 726.89 ± 24.09 717.35 ± 19.59 605.27 ± 21.53

GBN 864.77 ± 30.28 826.06 ± 30.19 646.56 ± 29.71 652.05 ± 15.51 636.10 ± 18.69 627.70 ± 23.02

Sensors 2022, 22, 8139 16 of 19

Table 4. A comparison of the average link utilization of each algorithm in different scenarios.

EMDQN DQN+GNN DQN PPO ECMP OSPF

NSFNET 56 ± 0.90% 50 ± 1.28% 40 ± 1.69% 43 ± 0.65% 41 ± 1.04% 15 ± 1.16%
GEANT2 40 ± 0.92% 36 ± 1.46% 29 ± 1.49% 30 ± 0.60% 21 ± 0.90% 11 ± 0.83%

GBN 45 ± 0.92% 42 ± 1.54% 34 ± 1.48% 35 ± 0.76% 25 ± 1.22% 15 ± 1.07%

5.4. Generalization Performance Evaluation

In a real OTN scenario, there is the possibility that the network topology changes due
to a broken lightpath. In this case, the DRL model usually needs to be retrained, resulting
in a network state that is low-load-balanced for an extended period, which is intolerable
for real network situations. To verify the generalization performance of the EMDQN in
this paper, we simulated the light path breakage case in the training environment. We
randomly break 0–10 lightpaths in each network scenario and evaluate 100 iterations
using the converged EMDQN model while ensuring that the network topology remains
connected.

In the generalization experiments, we compared and analyzed the EMDQN, DQN, and
OSPF. The classical DQN algorithm is implemented using a fully connected network and
will fail if the network topology changes. To avoid retraining the DQN model, we removed
some network parameters and applied the same evaluation method after adjusting the
state inputs. Figure 7 shows the experimental results of the model’s evaluation of randomly
malfunctioning lightpaths in different network scenarios. When a lightpath malfunctions, a
new route needs to be found to avoid the failed lightpath. As the number of faulty lightpaths
increases, fewer routes become available, resulting in a reduction in network transmission
traffic and a decrease in the load capacity of the network. The OSPF and the classical DQN
algorithms have progressively lower rewards as the number of faulty lightpaths increases
and have worse performance than the EMDQN model. In contrast, the EMDQN algorithm
can still understand the state of the network and obtain a higher reward. The results
demonstrate that the MPNN can still improve the model’s generalization ability in the case
of network failure, which allows the EMDQN agent to maintain a good performance.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19

Figure 7. Evaluation of the model in different network scenarios with randomly broken lightpaths:
(a) broken lightpath at NSFNET; (b) broken lightpath at GEANT2; (c) broken lightpath at GBN.

To further verify the generalization performance of EMDQN agents, we use the
EMDQN model trained to converge in NSFNET to transfer to GEANT2 and GBN network
topologies for evaluation. Because of the generalization capabilities of the MPNN, the con-
verged EMDQN agents can directly transfer to operate in different network topologies.
The experimental results are shown in Figure 8. The classical DQN algorithm does not
perform effectively as the traditional routing algorithm OSPF when the network topology
is changed. However, the EMDQN model in this paper still works stably, and the reward
section, average value, and stability are significantly better than the DQN and OSPF algo-
rithms. This confirms that the EMDQN agent can still maintain excellent decision-making
abilities in the case of network connectivity changes.

Figure 8. Performance of the algorithm after changing the network topology: (a) train in the
NSFNET and evaluate in the GEANT2; (b) train in the NSFNET and evaluate in the GBN.

6. Conclusions and Future Work
In this paper, we proposed the EMDQN algorithm, which uses the MPNN as a policy

network for the DRL to improve the DRL agent’s decision-making and generalization abil-
ities, allowing the EMDQN agent to efficiently generalize the unknown topology. We ver-
ify the convergence and generalization performance of the EMDQN algorithm by SD-
OTN simulating experiments, analyzing and comparing traditional routing protocols
with some SDN solutions based on other DRL algorithms. The experimental results show
that the EMDQN model can generalize unknown network topologies and outperform
other SDN solutions. Furthermore, integrating multiple agents using integrated learning
and combining weighted Bellman backup as well as UCB exploration strategies improves
the convergence performance while alleviating the DRL agents’ unstable operation when
converging.

Figure 7. Evaluation of the model in different network scenarios with randomly broken lightpaths:
(a) broken lightpath at NSFNET; (b) broken lightpath at GEANT2; (c) broken lightpath at GBN.

To further verify the generalization performance of EMDQN agents, we use the
EMDQN model trained to converge in NSFNET to transfer to GEANT2 and GBN network
topologies for evaluation. Because of the generalization capabilities of the MPNN, the
converged EMDQN agents can directly transfer to operate in different network topologies.
The experimental results are shown in Figure 8. The classical DQN algorithm does not
perform effectively as the traditional routing algorithm OSPF when the network topology
is changed. However, the EMDQN model in this paper still works stably, and the reward
section, average value, and stability are significantly better than the DQN and OSPF

Sensors 2022, 22, 8139 17 of 19

algorithms. This confirms that the EMDQN agent can still maintain excellent decision-
making abilities in the case of network connectivity changes.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19

Figure 7. Evaluation of the model in different network scenarios with randomly broken lightpaths:
(a) broken lightpath at NSFNET; (b) broken lightpath at GEANT2; (c) broken lightpath at GBN.

To further verify the generalization performance of EMDQN agents, we use the
EMDQN model trained to converge in NSFNET to transfer to GEANT2 and GBN network
topologies for evaluation. Because of the generalization capabilities of the MPNN, the con-
verged EMDQN agents can directly transfer to operate in different network topologies.
The experimental results are shown in Figure 8. The classical DQN algorithm does not
perform effectively as the traditional routing algorithm OSPF when the network topology
is changed. However, the EMDQN model in this paper still works stably, and the reward
section, average value, and stability are significantly better than the DQN and OSPF algo-
rithms. This confirms that the EMDQN agent can still maintain excellent decision-making
abilities in the case of network connectivity changes.

Figure 8. Performance of the algorithm after changing the network topology: (a) train in the
NSFNET and evaluate in the GEANT2; (b) train in the NSFNET and evaluate in the GBN.

6. Conclusions and Future Work
In this paper, we proposed the EMDQN algorithm, which uses the MPNN as a policy

network for the DRL to improve the DRL agent’s decision-making and generalization abil-
ities, allowing the EMDQN agent to efficiently generalize the unknown topology. We ver-
ify the convergence and generalization performance of the EMDQN algorithm by SD-
OTN simulating experiments, analyzing and comparing traditional routing protocols
with some SDN solutions based on other DRL algorithms. The experimental results show
that the EMDQN model can generalize unknown network topologies and outperform
other SDN solutions. Furthermore, integrating multiple agents using integrated learning
and combining weighted Bellman backup as well as UCB exploration strategies improves
the convergence performance while alleviating the DRL agents’ unstable operation when
converging.

Figure 8. Performance of the algorithm after changing the network topology: (a) train in the NSFNET
and evaluate in the GEANT2; (b) train in the NSFNET and evaluate in the GBN.

6. Conclusions and Future Work

In this paper, we proposed the EMDQN algorithm, which uses the MPNN as a policy
network for the DRL to improve the DRL agent’s decision-making and generalization
abilities, allowing the EMDQN agent to efficiently generalize the unknown topology. We
verify the convergence and generalization performance of the EMDQN algorithm by SD-
OTN simulating experiments, analyzing and comparing traditional routing protocols with
some SDN solutions based on other DRL algorithms. The experimental results show that
the EMDQN model can generalize unknown network topologies and outperform other
SDN solutions. Furthermore, integrating multiple agents using integrated learning and
combining weighted Bellman backup as well as UCB exploration strategies improves
the convergence performance while alleviating the DRL agents’ unstable operation when
converging.

However, the difficulty of adjusting parameters is one challenge faced by the DRL.
As seen in Section 5.3, the EMDQN has more hyper-parameters and requires several
experiments to complete the adjustment parameters. Therefore, in our future work, we will
continue to improve the DRL algorithm and reduce the parameter sensitivity of the DRL
method to reduce the reality gap in the DRL method’s landing.

Author Contributions: Conceptualization, J.C. and Y.Z.; methodology, J.C.; software, W.X. and X.L.;
validation, J.C., W.X., and X.L.; formal analysis, X.H.; investigation, M.W.; resources, D.H.; data
curation, J.C.; writing—original draft preparation, J.C., W.X., and X.L.; writing—review and editing,
J.C. and Y.Z.; visualization, X.H.; supervision, Y.Z.; project administration, Y.Z.; funding acquisition,
J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the major program of Guangxi Natural Science Foundation
(No.2020GXNSFDA238001) and the Middle-aged and Young Teachers’ Basic Ability Promotion Project
of Guangxi (No.2020KY05033).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Sensors 2022, 22, 8139 18 of 19

References
1. Karakus, M.; Durresi, A. Quality of service (QoS) in software defined networking (SDN). J. Netw. Comput. Appl. 2017, 80, 200–218.

[CrossRef]
2. Guo, X.; Lin, H.; Li, Z.; Peng, M. Deep-Reinforcement-Learning-Based QoS-Aware Secure Routing for SDN-IoT. IEEE Internet

Things J. 2020, 7, 6242–6251. [CrossRef]
3. Sun, P.; Lan, J.; Guo, Z.; Xu, Y.; Hu, Y. Improving the Scalability of Deep Reinforcement Learning-Based Routing with Control on

Partial Nodes. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2020), Barcelona, Spain, 4–8 May 2020; pp. 3557–3561.

4. Nguyen, T.G.; Phan, T.V.; Hoang, D.T.; Nguyen, T.N.; So-In, C. Federated Deep Reinforcement Learning for Traffic Monitoring in
SDN-Based IoT Networks. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1048–1065. [CrossRef]

5. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings
of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 4–11 August 2017; Volume 70, pp.
1263–1272.

6. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforce-
ment learning. arXiv 2013, arXiv:1312.5602.

7. Ali Khan, A.; Zafrullah, M.; Hussain, M.; Ahmad, A. Performance analysis of OSPF and hybrid networks. In Proceedings of the
International Symposium on Wireless Systems and Networks (ISWSN 2017), Lahore, Pakistan, 19–22 November 2017; pp. 1–4.

8. Chiesa, M.; Kindler, G.; Schapira, M. Traffic engineering with Equal-Cost-Multipath: An algorithmic perspective. IEEE/ACM
Trans. Netw. 2017, 25, 779–792. [CrossRef]

9. Li, C.; Jiang, K.; Luo, Y. Dynamic placement of multiple controllers based on SDN and allocation of computational resources
based on heuristic ant colony algorithm. Knowl. Based Syst. 2022, 241, 108330. [CrossRef]

10. Di Stefano, A.; Cammarata, G.; Morana, G.; Zito, D. A4SDN—Adaptive Alienated Ant Algorithm for Software-Defined Network-
ing. In Proceedings of the 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2015),
Krakow, Poland, 4–6 November 2015; pp. 344–350.

11. Chen, F.; Zheng, X. Machine-learning based routing pre-plan for sdn. In International Workshop on Multi-Disciplinary Trends in
Artificial Intelligence; Springer: Cham, Switzerland, 2015; pp. 149–159.

12. Xavier, A.; Silva, J.; Martins-Filho, J.; Bastos-Filho, C.; Chaves, D.; Almeida, R.; Araujo, D.; Martins, J. Heuristic planning algorithm
for sharing restoration interfaces in OTN over DWDM networks. Opt. Fiber Technol. 2021, 61, 102426. [CrossRef]

13. Fang, C.; Feng, C.; Chen, X. A heuristic algorithm for minimum cost multicast routing in OTN network. In Proceedings of the
19th Annual Wireless and Optical Communications Conference (WOCC 2010), Shanghai, China, 14–15 May 2010; pp. 1–5.

14. Chen, J.; Wang, Y.; Huang, X.; Xie, X.; Zhang, H.; Lu, X. ALBLP: Adaptive Load-Balancing Architecture Based on Link-State
Prediction in Software-Defined Networking. Wirel. Commun. Mob. Comput. 2022, 2022, 8354150. [CrossRef]

15. Yan, M.; Li, S.; Chan, C.A.; Shen, Y.; Yu, Y. Mobility Prediction Using a Weighted Markov Model Based on Mobile User
Classification. Sensors 2021, 21, 1740. [CrossRef]

16. Wani, A.; Revathi, S.; Khaliq, R. SDN-based intrusion detection system for IoT using deep learning classifier (IDSIoT-SDL). CAAI
Trans. Intell. Technol. 2021, 6, 281–290. [CrossRef]

17. Zhou, Y.; Cao, T.; Xiang, W. Anypath Routing Protocol Design via Q-Learning for Underwater Sensor Networks. IEEE Internet
Things J. 2021, 8, 8173–8190. [CrossRef]

18. Jalil, S.Q.; Rehmani, M.; Chalup, S. DQR: Deep Q-Routing in Software Defined Networks. In Proceedings of the 2020 International
Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

19. Sun, P.; Guo, Z.; Lan, J.; Li, J.; Hu, Y.; Baker, T. ScaleDRL: A scalable deep reinforcement learning approach for traffic engineering
in SDN with pinning control. Comput. Netw. 2021, 190, 107891. [CrossRef]

20. Che, X.; Kang, W.; Ouyang, Y.; Yang, K.; Li, J. SDN Routing Optimization Algorithm Based on Reinforcement Learning. Comput.
Eng. Appl. 2021, 57, 93–98.

21. Suárez-Varela, J.; Mestres, A.; Yu, J.; Kuang, L.; Feng, H.; Barlet-Ros, P.; Cabellos-Aparicio, A. Routing based on deep reinforcement
learning in optical transport networks. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition
(OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3.

22. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden,
10–15 July 2018; Volume 80, pp. 1861–1870.

23. Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; Levine, S. Stabilizing off-policy Q-learning via bootstrapping error reduction. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 11784–11794.

24. Kallus, N.; Uehara, M. Double reinforcement learning for efficient off-policy evaluation in Markov decision processes. J. Mach.
Learn. Res. 2002, 21, 6742–6804.

25. Qiang, F.; Xin, X.; Xitong, W.; Yujun, Z. Target-driven visual navigation in indoor scenes using reinforcement learning and
imitation learning. CAAI Trans. Intell. Technol. 2022, 7, 167–176.

26. Agarwal, R.; Schuurmans, D.; Norouzi, M. An optimistic perspective on offline reinforcement learning. In Proceedings of the 37th
International Conference on Machine Learning (ICML 2020), Virtual Event, 13–18 July 2020; pp. 104–114.

http://doi.org/10.1016/j.jnca.2016.12.019
http://doi.org/10.1109/JIOT.2019.2960033
http://doi.org/10.1109/TCCN.2021.3102971
http://doi.org/10.1109/TNET.2016.2614247
http://doi.org/10.1016/j.knosys.2022.108330
http://doi.org/10.1016/j.yofte.2020.102426
http://doi.org/10.1155/2022/8354150
http://doi.org/10.3390/s21051740
http://doi.org/10.1049/cit2.12003
http://doi.org/10.1109/JIOT.2020.3042901
http://doi.org/10.1016/j.comnet.2021.107891

Sensors 2022, 22, 8139 19 of 19

27. Shahri, E.; Pedreiras, P.; Almeida, L. Extending MQTT with Real-Time Communication Services Based on SDN. Sensors 2022, 22,
3162. [CrossRef] [PubMed]

28. Almasan, P.; Suárez-Varela, J.; Badia-Sampera, A.; Rusek, K.; Barlet-Ros, P.; Cabellos-Aparicio, A. Deep Reinforcement Learning
meets Graph Neural Networks: Exploring a routing optimization use case. arXiv 2020, arXiv:1910.07421v2. [CrossRef]

29. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [CrossRef]
30. Zhang, T.; Zhang, D.; Yan, H.; Qiu, J.; Gao, J. A new method of data missing estimation with FNN-based tensor heterogeneous

ensemble learning for internet of vehicle. Neurocomputing 2021, 420, 98–110. [CrossRef]
31. Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide

susceptibility mapping. Int. J. Geogr. Inf. Sci. 2021, 35, 321–347. [CrossRef]
32. Lei, L.; Kou, L.; Zhan, X.; Zhang, J.; Ren, Y. An Anomaly Detection Algorithm Based on Ensemble Learning for 5G Environment.

Sensors 2022, 22, 7436. [CrossRef] [PubMed]
33. Strand, J.; Chiu, A.; Tkach, R. Issues for routing in the optical layer. IEEE Commun. Mag. 2001, 39, 81–87. [CrossRef]
34. Chen, R.; Sidor, S.; Abbeel, P.; Schulman, J. UCB exploration via Q-ensembles. arXiv 2017, arXiv:1706.01502.

http://doi.org/10.3390/s22093162
http://www.ncbi.nlm.nih.gov/pubmed/35590852
http://doi.org/10.1016/j.comcom.2022.09.029
http://doi.org/10.1007/s11704-019-8208-z
http://doi.org/10.1016/j.neucom.2020.09.042
http://doi.org/10.1080/13658816.2020.1808897
http://doi.org/10.3390/s22197436
http://www.ncbi.nlm.nih.gov/pubmed/36236536
http://doi.org/10.1109/35.900635

	Introduction
	Related Research
	SD-OTN Architecture
	EMDQN-Based Decision Design for Routing Optimization
	DRL-Based Routing Optimization in SD-OTN
	DQN Algorithm
	Message-Passing Neural Network
	Ensemble Learning
	The Working Process of the EMDQN Agent

	Experiments and Analysis
	Experimental Environment
	Hyper-Parameters Settings
	Load-Balancing Performance Evaluation
	Generalization Performance Evaluation

	Conclusions and Future Work
	References

