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Abstract: Three-dimensional (3D) printing, also known as additive manufacturing (AM), has already
shown its potential in the fourth technological revolution (Industry 4.0), demonstrating remarkable
applications in manufacturing, including of medical devices. The aim of this publication is to present
the novel concept of support by artificial intelligence (AI) for quality control of AM of medical devices
made of polymeric materials, based on the example of our own elbow exoskeleton. The methodology
of the above-mentioned inspection process differs depending on the intended application of 3D
printing as well as 3D scanning or reverse engineering. The use of artificial intelligence increases the
versatility of this process, allowing it to be adapted to specific needs. This brings not only innovative
scientific and technological solutions, but also a significant economic and social impact through faster
operation, greater efficiency, and cost savings. The article also indicates the limitations and directions
for the further development of the proposed solution.

Keywords: artificial intelligence; Industrial Internet of Things; process monitoring; production
optimization; 3D printing; medical devices; exoskeleton

1. Introduction

Three-dimensional (3D) printing, also known as additive manufacturing (AM), has
already shown its potential in the fourth technological revolution (Industry 4.0), demon-
strating remarkable applications in manufacturing, including of medical devices. Three-
dimensional printing offers new methods of processing and joining various materials,
particularly plastics, often with specific mechanical properties (increased flexibility), includ-
ing resistance to body fluids and being antibacterial or biodegradable. This encourages us
to explore the development of medical devices covered by the Medical Devices Regulation
(MDR) directive or the ISO 13485 standard. Compliance with all regulations requires not
only precise machining with narrow tolerance (due to the requirements of therapy and
adjustment to the patient), but also maintaining the required properties (material, mechan-
ical, sometimes contradictory) throughout the entire life cycle of the product. Therefore,
the production process must be closely monitored, and technical control must be carried
out at every stage of the product life cycle. Multi-stage mass production of personalized
products is possible under the Industry 4.0 paradigm, especially with additive printing
methods (3D printing). This approach makes it easier to obtain advanced, dedicated mate-
rial properties, which are easy to personalize within the product family [1–3]. To facilitate
this, it is necessary not only to process data obtained from the Internet of Things sensor
network in real time, but also to simulate, infer, and predict from such obtained data using
artificial intelligence methods and techniques [4,5], including virtual twins [6]. In a broader
context, this allows not only material optimization [6], but also cost, time efficiency, and
product quality optimization [7]. In times characterized by an energy crisis, increases in
raw material prices, and the simultaneous need for sustainable development, intelligent
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training optimization, including data-driven approaches (such as machine learning—ML),
becomes of particular importance, both economically and socially [8].

The Industry 4.0 paradigm introduced robotization, automation, and computerization,
among other things, so that the modeling and simulation of production processes in
real time or close to real time would allow the most efficient and cost-effective methods
of testing, selecting, and using (preferably waste-free, with recycling) technologically
advanced materials as part of the modern production processes [9]. A production plant that
uses, for example, advanced reverse engineering processes (3D scanning—adaptation—3D
printing) should therefore provide massively personalized products with a controlled high
quality [10,11].

In a broad context, it should be emphasized that our research goes beyond computer
science, mechanical engineering, and materials engineering, influencing medical sciences
and health sciences (physiotherapy, rehabilitation), as well as humanities and social sciences
(e.g., psychology). It is important not only scientifically, but also economically and socially,
and our results may have a multidirectional impact.

The analysis of the current state of the research field showed that there is a research
gap in the area of the selection of material and technological parameters for the needs of
individually tailored 3D-printed exoskeletons [12,13]. In order to determine the state of
the art, we performed a literature review of five major bibliographic databases based on
specified keywords in English: artificial intelligence, Industrial Internet of Things (IIoT),
process monitoring, production optimization, 3D printing, medical device, and related
items. For the above-mentioned keyword chain, we did not find any publications, so we
consider our article to be pioneering. In contrast, of the above-mentioned keywords, the
majority of papers included the combination of the keywords ‘artificial intelligence’ and
‘industrial internet of things’, a total of 1230. The results of the review form the starting
point of this article.

The aim of this publication is to present a novel concept of support by artificial
intelligence (AI) for the quality control of additive manufacturing of medical devices made
of polymeric materials, based on the example of our own elbow exoskeleton.

While the work to date mainly concerns semi-serialized 3D printing of products, our
research concerns 3D printing of personalized medical devices (exoskeletons). In our case,
the differences between successive products are much greater, as each product involves
individual (patient-specific) modification of the overall design. The amount of modification
varies according to the dimensions and personal functional capabilities of each patient.
Hence, our case represents a rarity and a novelty, capable of becoming the beginning of the
field of research on personalized medical devices that comply with the Medical Devices
Regulations and the ISO 13485 standard.

The comparison between the current situation and the proposed solution covered by
this study is shown in Figure 1. The proposed concept includes not only an increase in the
use of AI for the selection of materials and exoskeleton fabrication technology, but also a
comprehensive technical control and product life cycle analysis (LCA).

The novel approach to manufacturing the elbow exoskeleton (based on AI within the
Industry 4.0 paradigm) introduces several key elements to increase control and efficiency
throughout the process:

• Three-dimensional scans of the upper limb allowing the personalization of the product
and a better fit to the patient’s current condition.

• Digital templates of the exoskeleton in 3D, making it easier to process and speeding
up the preparation of the finished prototype.

• Faster fitting and adjustments.
• Faster implementation of observations from the physiotherapy process and from the

practical use of the exoskeleton in the activities of daily living (ADL) laboratory.
• Technical control at each stage of design and production (analysis of the accuracy of

manufacture and achievement of the required functional properties of the product),
both on the basis of data from design software and 3D printers and from additional
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sensors and surveys (e.g., satisfaction surveys of the patient and the physiotherapist
who treats him or her), while keeping in mind that a product such as an exoskeleton
serves the patient and must be perceived by the patient as useful and increasing
his/her health-related quality of life (HRQoL).

• LCA based on data from the design, production (including waste reuse), and the pro-
cess of tracking the fate of each exoskeleton component (replaced, repaired, recycled)
to achieve maximum material utilization.

• Collecting and using data from previous similar products to aggregate into the knowl-
edge on the most cost-effective, energy-efficient, and sustainable design and produc-
tion methods.
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We must take into account that cost accounting or production profit alone will not
be the only indicator of the profitability of production in the coming decade, and that
environmental or other factors falling within the EU’s horizontal policies will be among
the important values. For the aforementioned reasons, all processes will be subject to the
proposed modifications, and non-economic factors will play an increasingly important
role (e.g., the role of fishing in the emergence of the Great Pacific Garbage Patch and the
proposed ways to reduce it until it is completely eradicated). For the aforementioned
reasons, the work is pioneering a huge market for medical devices, assessed at USD
488 billion in 2021, with a compound annual growth rate (CAGR) of 5.5% until 2029.
The growing number of medical devices used and their packaging necessitate a wider
implementation of the proposed approach in the coming years.

2. Materials and Methods

The methodology of the above-mentioned inspection process differs depending on
the intended application of 3D printing, 3D scanning, or reverse engineering.

The novelty of the proposed approach and the associated research project lies in the
application of AI to optimize the fabrication of a personalized medical device (exoskeleton),
filling an observed research gap, and the results provide evidence of the validity of our pro-
totype approach, not previously encountered in the literature. The computational solutions
used, including in an environment such as MATLAB, were developed for the prototype
and will be replaced in the target solution by more advanced target solutions, perhaps
specifically designed for such applications. The creative application of AI-optimized 3D
printing is still in its infancy but is an important area of Industry 4.0 supervised using
the IIoT.

2.1. Materials

The described invention develops medical technologies in non-invasive therapy and
rehabilitation and care in the form of an exoskeleton, a device placed on the upper limb,
supporting the user’s movement in a passive way (facilitating movement through partial
relief and supporting movement with rubber bands, springs) or in an active manner
(facilitating movement by means of actuators, etc.). The elbow joint is the most complex
human joint. The occurrence of a functional deficit, weakness, or fatigue in the upper limbs,
particularly the elbow joint, is a global problem: annually, in Poland alone, it has reached
400–800,000 from strokes, which are one of the causes of deficits of this type. In addition, a
significant group of patients may be elderly people (6–10 million Poles), who experience a
similar negative deterioration in the function of the upper limb due to neurodegenerative
changes in the aging process. With the above reasons, any deficit in this area reduces the
health-related quality of life, and for the above-mentioned elbow joint deficits, there are no
other alternative solutions apart from the proposed exoskeleton.

The solution implements the concept of personalized therapy, combining mass pro-
duction on the basis of a template and matching product features to the requirements of
the therapy of a specific patient, which is in line with the Industry 4.0 paradigm. Three-
dimensional scanning allows one to record the characteristics of the structure of the upper
limb in the form of digital files, and the combination of 3D scanning technology and 3D
printing in the form of reverse engineering allows the creation of a relatively cheap (with
adaptation to a specific user) digital design of an exoskeleton with a complex internal and
external structure based on a physical counterpart (including anatomical—measurements
made in the patient). Three-dimensional printing allows one to create an exoskeleton from
digital files, with parameters selected individually for each user (dimensions, strength,
flexibility, weight, support force, etc.). It also reduces the number of necessary patient visits
and reduces the waiting time for the finished exoskeleton.

Advantages over competitive solutions include the following.

1. Quality advantages:

• Individual adjustment and execution using 3D scanning and 3D printing methods;
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• Supporting the functions of the elbow joint;
• Immediate improvement of functions (reaching, interaction with objects); and
• Shaping the improvement of function over a longer period of time.

2. Technological advantages:

• Possibility of everyday use at home; and
• Gradual adaptation (including through the replacement of elements) to changes

in health.

3. Ecological advantages:

• Solution that changes with the patient (with adjustable or replaceable elements,
ecological advantage—no need to replace the entire device);

• Three-dimensional printing from organic and recycled materials; and
• The ability to only replace individual parts as the degree and type of deficit

changes (including healing, worsening).

4. Cost advantages:

• Domestic production; and
• Lower costs, service, and helpdesk.

5. Price advantage: on-site availability (including testing and scanning).

The described invention develops medical technologies in non-invasive therapy, re-
habilitation, and care. The primary goal is to support the patient’s rehabilitation and
independent functioning in normal home conditions. The aim is also to introduce a new
product to the market that offers a new functionality on a national scale: a passive ex-
oskeleton (support based on elastic elements) and an active exoskeleton (support based on
actuators) for people with a function deficit and/or weakened muscle strength in the area of
the elbow joint (Figure 2). The therapeutic effect is immediate, but achieving full proficiency
in the use of the above-mentioned exoskeleton by the user requires functional training com-
bined with fine-tuning of the exoskeleton mechanism. The supply of an exoskeleton may
apply to one or both upper limbs, and their functional deficits and the degree of support
offered by the exoskeleton may not be the same. The solution also takes into account that
the functional capacity of the hand is subject to changes during the process of self-healing
and rehabilitation stimulated by rehabilitation. The safety of the elbow exoskeleton is a key
value, so the results of strength testing are important for the entire design and production
cycle (Figure 3). ‘Exoskeleton for the elbow joint’ is the subject of a pre-implementation
grant in the years 2021–2022 as part of the ‘Innovation Incubator 4.0’ project. The target
group includes patients with a functional deficit in the hand area (congenital, traumatic,
neurodegenerative, etc.). The market is massive (global), as the occurrence of a functional
deficit, weakness, or fatigue in the upper limbs, particularly the elbow joint, is not subject
to geographical divisions.
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2.2. Methods

A tensile strength test was performed using a universal machine strength LABTest
6.100 (LaborTech, Opava, Czech Republic, machine 1 accuracy class, Figure 4), using the
following test conditions and parameters:

• Test temperature: 21 ◦C;
• Test speed: 5 mm per min; and
• The samples were mounted on the machine each time using twisted jaws.
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A compression test was performed using the same machine using the following conditions:

• Test temperature 23.4 ◦C; and
• Compression speed: 2 mm per min.
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2.3. Statistical Analysis

The MS Excel/Office 365 spreadsheet (Microsoft Corporation, Redmond, WA, USA)
was used for data archiving. Design data sets from a 3D printer, material properties, and
calculation/simulation results were statistically analyzed using Statistica 13 (manufacturer:
StatSoft Inc., Tulsa, OK, USA). Where possible, we have represented the results using
statistics: for data with a normal distribution, using the mean and standard deviation
(SD); for data with a distribution different from the normal distribution, using the median,
minimum, and maximum values, and the lower and upper quartiles. We checked the
normality of the distribution using the Shapiro–Wilk test.

2.4. Computational Analysis

The data for computational analyses were taken from the elbow exoskeleton design,
printer software, and selected according to the experience and knowledge of the system
designers. All simulations were carried out with the use of MATLAB software + toolboxes
Neural Networks (MathWorks, Natick, MA, USA).

The proposed structure of the artificial neural network is a traditional MLP, i.e., a
multi-layer perceptron network (Figure 5).

Sensors 2022, 22, x FOR PEER REVIEW 8 of 16 
 

 

designing process from Figure 1b. LCA assessment was calculated using a simple tool 
(OpenLCA, https://www.openlca.org, accessed on 15 June 2022), but many diverse tools 
may be used here, beginning with LCA Calculator, Eco Indicator 99, Eco Scan 3.0, or Eco-
IT through OpenLCA to advanced SimaPro, GaBior Umberto analysis. OpenLCA has 
been used in many studies thus far (https://www.openlca.org/openlca-publications-re-
search/ (accessed on 15 June 2022)). 

(a) 
 

. 

. 

. 

Input layer 
x neurons 

Hidden layer 
n neurons 

Output layer 
y neurons 

X1 

X7 

. 

. 

. 

Y1 

Y3 

. 

. 

. 

. 

. 

. 

 
(b) 

 Output layer 
            

 

            
           VAL (Quality) 
       LIFE (Prognosed life) 
       REC (Percentage of recycling) 
        
 

 
 

 

 
Hidden  
layer 

Input layer 
 

   TEM (Kind of template used) 
   DEG (Degree of support/load) 
   MAT (Kind of material used) 
   TRY (Result of try-ons) 
   TEST (Result of test) 
   OPER (Result of operation test) 
   TECH (Mean of technical control)  
   LCA (LCA Assessment)         

 

Figure 5. Traditional ANN structure used in the study: (a) general structure, (b) inputs and out-
puts. 

3. Results 
The use of artificial intelligence in the form of traditional or deep neural networks 

increases the versatility of this process, allowing it to be adapted to specific needs. This 
brings not only innovative scientific and technological solutions, but also a significant eco-
nomic and social impact through faster operation, greater efficiency, and cost savings. 

Optimization of parameters related to the 3D printing process is a key problem that 
these AI methods solve. In order to ascertain the quality of the optimization, we assisted 
it by a genetic algorithm (GA). In this case, with the approach to control material selection 
and component quality, the use of an ANN in combination with a genetic algorithm is 
innovative and allows us, for example, to maximize material strength with given materi-
als. 

3.1. Results of the Experimental Research 
We conducted experimental research to explore values of TEM, DEG, and MAT pa-

rameters for AI. Selected samples of the exoskeleton were tested toward the measurement 
of compression forces and tensile forces (Figure 6). 

Figure 5. Traditional ANN structure used in the study: (a) general structure, (b) inputs and outputs.

The MLP network was chosen based on the authors’ knowledge, previous research,
and experience. The MLP network has a three-layer structure: an input layer, a hidden
layer, and an output layer (Figure 5). Eight neurons were placed in the input layer, each
corresponding to one parameter value from Figure 1b. Three neurons were placed in the
output layer, each of which corresponded to one of the three parameters corresponding
to product quality, predicted durability, and recyclability. The number of neurons in the
hidden layer was first estimated based on the authors’ previous knowledge and experience,
followed by an experimental analysis of the most likely MLP network structures. The
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MSE values, the transition functions, and the results for the most probable MLP networks
are presented in Section 3–Results. It follows, as discussed later in the paper, that the
best results were achieved with an MLP 8-10-3 network, which is an MLP network with
8 neurons in the input layer, 10 neurons in the hidden layer, and 3 neurons in the output
layer. Values of TEM, DEG, and MAT were assessed by the experiment described later
in this article. Values of TRY, TEST, OPER, and TECH were submitted by sensors or
human action (e.g., manually by physiotherapist) after finishing subsequent phases of the
designing process from Figure 1b. LCA assessment was calculated using a simple tool
(OpenLCA, https://www.openlca.org, accessed on 15 June 2022), but many diverse tools
may be used here, beginning with LCA Calculator, Eco Indicator 99, Eco Scan 3.0, or Eco-IT
through OpenLCA to advanced SimaPro, GaBior Umberto analysis. OpenLCA has been
used in many studies thus far (https://www.openlca.org/openlca-publications-research/
(accessed on 15 June 2022)).

3. Results

The use of artificial intelligence in the form of traditional or deep neural networks
increases the versatility of this process, allowing it to be adapted to specific needs. This
brings not only innovative scientific and technological solutions, but also a significant
economic and social impact through faster operation, greater efficiency, and cost savings.

Optimization of parameters related to the 3D printing process is a key problem that
these AI methods solve. In order to ascertain the quality of the optimization, we assisted it
by a genetic algorithm (GA). In this case, with the approach to control material selection
and component quality, the use of an ANN in combination with a genetic algorithm is
innovative and allows us, for example, to maximize material strength with given materials.

3.1. Results of the Experimental Research

We conducted experimental research to explore values of TEM, DEG, and MAT pa-
rameters for AI. Selected samples of the exoskeleton were tested toward the measurement
of compression forces and tensile forces (Figure 6).
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its safe use and durability (life span). The analysis of the above-mentioned parameters
in different cases allows the material and the features of the manufacturing process to be
appropriately selected (optimized) at the planning stage, and then reflected in the form of a
simple virtual twin (the digital equivalent of the product or its parts), which is gradually
extended. Also crucial for further analysis is the fact that we gain access to continuous
characteristics and not just single parameter values.

Table 1. Strength test results.

Sample
(Part of Exoskeleton) Unit Mean ± SD 1

Compression test

Lever
(MPa) 3.00 ± 0.2

(N) 9602.5 ± 557.74

Cap (N) 9877.4 ± 462.58

Tensile strength test

Lever (N) 316.99 ± 9.62

Cap (N) 437.13 ± 13.22
1 SD—standard deviation.

3.2. Results of the Computational Analysis

The best ANN for this task was MLP 8-10-13 with sigmoid transfer functions (Table 2).
Other transfer functions tested (threshold, linear, Gaussian) and their combinations gave
worse results.

Table 2. ANN network model.

NS AH AO

ANN Sigmoid Sigmoid

Scores achieved by MLP 8-10-13 were the best in terms of quality (learning) 0.9452,
quality (testing) 0.9767 (Table 3), and MSE 0.01 (Table 4, Figure 8). We carefully checked
almost 100 different network configurations, and in the following tables, we give the results
for only the best of them.

Table 3. Quality assessment of selected ANNs.

Network Name Quality (Learning)
(Mean ± SD)

Quality (Testing)
(Mean ± SD)

MLP 8-8-3 0.8755 ± 0.002 0.8947 ± 0.002
MLP 8-9-3 0.9051 ± 0.001 0.9423 ± 0.002
MLP 8-10-3 0.9452 ± 0.001 0.9767 ± 0.001
MLP 8-12-3 0.9122 ± 0.001 0.9324 ± 0.001
MLP 8-15-3 0.8754 ± 0.002 0.9021 ± 0.001

Table 4. MSE values for used ANNs.

Network Name MSE (Mean ± SD)

MLP 8-8-3 0.04 ± 0.01
MLP 8-9-3 0.02 ± 0.005

MLP 8-10-3 0.001 ± 0.0002
MLP 8-12-3 0.02 ± 0.005
MLP 8-15-3 0.04 ± 0.01
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Figure 7. Selected tensile strength test results: (a) lever, (b) cap, (c) tensile strength of the cap—
comparison of results for individual samples.
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The change in MSE for the aforementioned neural network structure is shown in Figure 8.
To increase reproducibility, we have shown the settings of the artificial neural network

parameters and the learning algorithm (Table 5).

Table 5. Optimal parameter settings of the artificial neural network and the learning algorithm
(MLP 8-10-3).

Name of the Parameter Value

Model setup

Number of layers 3

Number of neurons in hidden layer 10

Activation function Sigmoid

Learning hyperparameters

Number of training iterations 1000

Learning rate Gradient descent

Momentum parameter 0.9

Learning algorithm Multilayer perceptron

Loss function MSE

Dropout (if used) 0.8

L1, L2 regularization (if used)
Lambda 1 0.02
Lambda 2 0.05

4. Discussion

Quality, durability, and prognosed life of the elements of the exoskeleton are key
indicators of its safety. Moreover, the percentage of recycled parts is key to provide
environmentally friendly solutions within the sustainability of healthcare products. Non-
technological parameters engaged here may be crucial for the choice of the particular
exoskeleton construction; thus, the proposed AI-based system may be a significant step in
the proper direction, and worthy of further development.

The implications of our results against the background of the research conducted
thus far can be considered broad and significant—they open up promising directions for
further research.
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There is no doubt that the fourth technological revolution related to the introduction of
robotization, computerization, and automation has already touched all areas of production,
and is even going further: the tariffs of the life cycle of products and services and the related
tasks of the organization. Our research results represent significant scientific, clinical, social,
and economic progress in the areas of:

• AI-supported decision-making processes within production and logistic support;
• Technical support for clinical practice (including eHealth and Clinic 4.0);
• Interdisciplinary research in teams combining knowledge and experience in many

fields of science and clinical practice;
• Technical support for the process of therapy and care for people with deficits in the

elbow joint; and
• Personalized therapy (patient-tailored therapy), individually tailored to the patient’s

needs and changing with their health condition, goals, and needs.

Most of the current research efforts are focused on the development of 3D-printed med-
ical systems, presenting various scenarios for installing 3D printers in industry, but also in
hospitals, rehabilitation centers, pharmacies, and even in patients’ homes. Research to date
has focused on identifying and analyzing a number of parameters/factors that need to be
considered to integrate 3D printing into the current and future healthcare system, including
telemedicine services, in the absence of a sufficient number of medical professionals. This
applies in particular to the issues of legal and ethical regulations (including the so-called
ethical AI), but also shortages of materials and drugs, and the need to ensure a sufficiently
high quality of the product. The acceptability of the above-mentioned directions of the
healthcare system development by medical specialists, patients, and their families is crucial
to include in the research spectrum of possible future scenarios for the implementation of
3D printing in healthcare and to discuss problems that must be foreseen and solved before
they even appear [9]. Budzik et al. [10] proposed a comprehensive control system for the
additive manufacturing process for Industry 4.0. The results show that the PolyJet method
is the most accurate and the MEM method is the least accurate. Metrological conclusions
are also important. The choice of materials and 3D printing technology, as well as the
selection of measurement methods, should take into account the specificity and purpose of
the model as well as the economic aspects of its implementation. It is worth considering
the complexity of the system and its required accuracy. Even in the case of medical devices,
not all products require high accuracy and durability [10]. Turek et al. [12] proposed the
application of anatomical models and surgical templates in maxillofacial surgery—it caused
an increase in accuracy with a simultaneous reduction in the time needed to develop a deci-
sion, which accelerated the patient’s rehabilitation and their return to the highest achievable
functional fitness [10]. Xiong et al. [13] proposed a 3D-printed approach to mammoplasty
that achieved personalized pre-operative design and patient education, shortening the
operation time and avoiding harmful secondary changes [13]. Our proposal goes further: it
provides individually tailored, reusable rehabilitation supplies with controlled wear, and
is technologically ground-breaking as an exoskeleton for the upper limbs. The proposed
AI-based improvement of the production process may be a significant novelty here, because
the production of these types of products was only possible on a random basis, due to the
need to repeatedly measure and adjust them, preceded by a functional diagnosis.

4.1. Limitations of Own Research

The limitation of our research is the number of analyzed factors and their difficult
description, often expressed linguistically. The presence of imprecision and uncertainty
creates the need to enrich the computational apparatus in the future with further analytical
methods, particularly fuzzy logic and fractal analysis [14–17]. We are working on develop-
ing methodologies for automated surveys, including using the Internet of Things. Further
publications of our research results are planned.
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4.2. Directions for Further Research

Hence, the main direction of further research will be to supplement the proposed
system based on a neural network with a hierarchical fuzzy system enabling the processing
of parameters expressed linguistically and reducing the uncertainty of adjusting the result to
the expectations (including medical specialists and patients). In addition, the current system
proven under scientific conditions should be translated into a commercial solution, i.e.,
adapted to the API of specific 3D scanning and printing devices and their software (CAD,
slicer). In a broader medical context, it is possible to monitor changes in the parameters of a
given patient’s devices in terms of analyzing the trend of changes in their health condition
and predict future results, and thus, modifications necessary for gradual introduction in
a medical device (as part of the adjustment or replacement of certain parts). This will
extend the product life cycle and make it more environmentally friendly. Such replacement
of parts, depending on the patient’s health, may allow for an upgrade to a newer model
without having to replace the entire device—nowadays, this is sometimes executed in
wheelchairs. This approach should be promoted as it provides better coverage of patients’
needs at the same cost, which is of particular importance given the aging of society and the
need to provide rehabilitation equipment to a greater number of elderly people.

An additional advantage of this article is the discussed planning and production of the
exoskeleton on the elbow, which is not often found in the literature [18,19], and is unique
in the area of 3D-printed solutions. Most contemporary research focuses on monitoring
the parameters of the rehabilitation process [20–23]; thus, the methodology used is quite
different (e.g., principal component analysis (PCA)) [21].

Generally, the above approach is another step towards the Factory of the Future [24],
where complex and even conflicting customer requirements exceed the capabilities of
traditional factories. The Industrial Internet of Things (IIoT) is making it possible to
address the challenges of remote monitoring, intelligent analytics, and control of industrial
processes in a mass production environment of 3D-printed individualized products [25].
Here, IIoT combines machines on the production line with smart sensors and effectors to
optimize the approach needed for flexible manufacturing and industrial processes with
data-driven condition monitoring, based on three main layers: sensor layer, edge layer, and
centralized cloud [26].

IIoT systems produce or collect huge amounts of data with a wide range of possible
uses, and the analysis, inference, and prediction systems based on them provide a new
tool for discovering new knowledge and making decisions, but also for predicting future
knowledge and preparing scenarios for responding to it. Enhancing the capabilities offered
by technology, including from a business perspective, such as detecting trends or anomalies
and automatically responding to them, is the domain of artificial intelligence, including
data-driven machine learning solutions, i.e., traditional and deep neural networks [27,28].

When discussing future plans in relation to the status of the research and its limitations,
we must identify the following research priorities:

• In the hardware area: expanding the number and types of sensors and effectors that
can be used; and

• In the software area: expanding the system’s capabilities to include non-precision data
processing, inference, trend analysis, and prediction [29,30].

The above-mentioned approach to planning the development of the system will
allow us to adapt better and faster to market requirements and find potential customer
groups [31,32].

5. Conclusions

Modern, automatically monitored production processes are currently the key resource
supporting further logistic and marketing activities of companies. AI is a natural direction
for the development of Industry 4.0 systems. This is due not only to the use of the IIoT (and
cloud computing), but to the need to ensure the adaptability of production systems and the
necessary speed of decision making in near-real time. The accuracy of the measurement
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(and the mapping in the system or virtual twin) and the speed of reaction can also be
decisive in avoiding damage to the production system. The scope of future work includes
the development of both the hardware part (new sensors, effectors) and the software part
(use of fuzzy logic, multifractal analysis), which will result in a better match between the
proposed solutions and the needs of the growing market.
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