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Abstract: In this paper, a novel randomized Fisher discriminant analysis (RFDA) based bearing fault
diagnosis method is proposed. First, several representative time-domain features are extracted from
the raw vibration signals. Second, linear Fisher discriminant analysis (FDA) is extended to nonlinear
FDA named RFDA by introducing the random feature map to deal with the non-linearity issue.
Specifically, the extracted time-domain features data are mapped onto a high-dimensional space
using the random feature map function rather than kernel functions. Third, the time-domain features
are fed into the built RFDA model to extract the discriminant features for diagnosis. Moreover, a
Bayesian inference is employed to identify the class of the collected vibration signals to diagnose the
bearing status. The proposed method uses random Fourier features to approximate the kernel matrix
in the kernel Fisher discriminant analysis. Through employing randomized Fisher discriminant
analysis, the nonlinearity issue is dealt with, and the computational burden is remarkably reduced
compared to the kernel Fisher discriminant analysis (KFDA). To illustrate the superior performance of
the proposed RFDA-based bearing fault diagnosis method, comparative experiments are conducted
on two widely used datasets, the Case Western Reserve University (CWRU) bearing dataset and the
Paderborn University (PU) bearing dataset. For the CWRU dataset, the computation time of RFDA
is much shorter than KFDA, while the accuracy rate reaches the same level of KFDA. For the PU
dataset, the accuracy rate of RFDA is slightly higher than KFDA, and the computation time is only
44.14% of KFDA.

Keywords: bearing; fault diagnosis; random Fourier feature; Fisher discriminant analysis

1. Introduction

Bearings are an essential and key part that is widely used in modern rotating ma-
chinery. As a vital component, the occurrence of bearing faults will result in significant
breakdown time, increasing maintenance costs, and even jeopardizing casualties. There-
fore, it is critical to precisely and quickly diagnose the bearing status [1–3]. To explore
the bearing status, a variety of signals are collected and used, such as acoustic signals [4],
vibration signals [5], and current signals [6]. Among them, the vibration signals contain
abundant fault energy information, and the data acquisition of bearing vibration signals
does not require complex equipment and professionals.

Therefore, the vibration signal is popularly used to monitor the bearing status. Bear-
ing fault diagnosis techniques via vibration signals can be generally categorized into
two classes, including signal-analysis-based and data-driven methods. Regarding the
signal-analysis-based method, the raw vibration signals are firstly analyzed using signal
processing methods such as time-domain analysis [7,8], frequency-domain analysis [9]
and time–frequency-domain analysis [10]. Afterward, the bearing status is determined by
features extracted from different domains using expert knowledge.
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Data-driven methods depend only on the vibration signals, as opposed to signal
analysis-based methods. In data-driven methods, the bearing fault diagnosis becomes a
pattern recognition problem. To deal with the pattern recognition of high-dimensional
data in bearing fault diagnosis, dimensionality reduction techniques have been widely
employed, such as principal component analysis (PCA) [11], locality preserving projection
(LPP) [12], and recurrence analysis (RA) [13,14]. Moreover, t-distributed stochastic neighbor
embedding (t-SNE) is an efficient dimensionality reduction tool. t-SNE identifies close
similarities between samples through the relative location of points in the mapped feature
space. For t-SNE, the number of features in the reduced space is not restricted by the num-
ber of output dimensions [15]. In [15], t-SNE is combined with the multiscale distribution
entropy method to extract the low-dimensional nonlinear complexity features from the
vibration signals of rolling bearing. Similarly, uniform manifold approximation and projec-
tion (UMAP) uses graph layout algorithms to arrange data in a low-dimensional space [16].
In [16], UMAP is combined with feature selection techniques to improve the performance
of latent space visualization for chemical process data. As a popular unsupervised learning
method, autoencoder (AE) can learn effective features with unlabeled data by minimizing
the error between original input and reconstructed input. Deep autoencoder (DAE) has
been widely used to extract hierarchical features for bearing fault diagnosis from vibration
signal [17]. Variational autoencoder (VAE) generates a latent representation of the data
through imposing a distribution over the latent variables [18]. In [18], a semi-supervised
learning scheme using variational autoencoder (VAE)-based deep generative models was
proposed to deal with the small labeled data problem in the bearing fault diagnosis.

Compared to unsupervised dimensionality reduction techniques, the supervised
method, Fisher discriminant analysis (FDA), aims to find the low-dimensional represen-
tation from the high-dimensional data to simultaneously maximize the distance between
different classes and minimize the distance within the same class. FDA was also named
linear discriminant analysis (LDA). More importantly, FDA can fully utilize the labeled
information to directly offer the classification results. Therefore, FDA has gained consider-
able attention to achieving the task of bearing fault diagnosis in recent years. Due to its
simplicity and efficiency, FDA has proved its superiority in fault diagnosis.

Jin et al. [19] developed trace ratio linear discriminant analysis (TR-LDA) to address
the non-Gaussian data by solving the trace ratio problem. Zhou et al. [20] employed LDA
to reduce the dimensionality of 10 statistical features of the raw vibration signals and its
transient component using transient-extracting transform (TET) for improving the fault
diagnosis performance. To address the nonlinearity issue contained in vibration signals,
variants of nonlinear fisher discriminant analysis have been proposed. One of the most
frequent extensions is kernel Fisher discriminant analysis (KFDA) [21]. The idea behind
KFDA is to map the original data onto a high-dimensional feature space in which linearly
separable feature space is expected for further classification. Van et al. [22] presented a
wavelet kernel-based local Fisher discriminant analysis (WKLFDA) to extract the nonlinear
features from original vibration signals for bearing fault diagnosis. Jiang et al. [23] proposed
a semi-supervised kernel marginal Fisher analysis (SSKMFA) method to investigate the
inherent manifold structure embedded in data, and simultaneously took the intra-class
compactness and the inter-class separability into account. Tao et al. [24] developed a
semi-supervised kernel local Fisher discriminant analysis (SSKLFDA) through introducing
the regularization term with pseudo labels by utilizing unlabeled data for the supervised
dimensionality reduction.

However, a large number of features extracted from kernel methods will increase
the computation burden and may lead to poor fault diagnosis performance, due to all
training data being involved in the calculation of the kernel matrix. To lessen the computing
complexity of KFDA, Li et al. [25] presented a feature vector selection (FVS) approach by
using a subset of the samples to present all of the data under the geometrical consideration.
Liu et al. [26] combined the kernel feature selection method and KFDA technique to reduce
the computation burden and alleviate the impact of irrelevant features in fault diagnosis.
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Recently, random feature map was widely studied in large-scale kernel machines [27,28].
Rahimi and Recht suggested a random Fourier feature mapping approach for approxi-
mating non-linear kernels by mapping the input data to randomized low-dimensional
feature space [27]. Fisher discriminant analysis using random Fourier feature mapping was
developed to accelerate kernel Fisher discriminant analysis in [29,30]. In [30], a random
feature map was introduced to map the input data to a finite dimension to accelerate
FDA and kernel FDA. Moreover, a theoretical guarantee was offered to prove that the
FDA algorithms using random projection can derive good generalization ability. In [29],
the randomized solution to linear discriminant analysis was developed for processing hy-
perspectral images to overcome the dimensionality problem. To the best of our knowledge,
there is little investigation of Fisher discriminant analysis using random feature map in
bearing fault diagnostics.

Motivated by the above discussions, a new bearing fault diagnosis method is proposed
by using randomized Fisher discriminant analysis (RFDA). Specifically, 12 time-domain
features are first extracted from original vibration signals. Then, an RFDA model is built
by using the extracted 12 time-domain features for fault diagnosis. In RFDA, the high-
dimensional data are mapped to a low-dimensional features space using random feature
mapping, then the projection matrix with Fisher discriminant analysis is calculated. To iden-
tify the state of bearings, a Bayesian inference is employed. The main contributions of this
paper lie on the following aspects:

• RFDA, a nonlinear variant of FDA, is utilized for bearing fault diagnosis. The RFDA-
based method can achieve similar performance to the KFDA-based method, while the
computational burden is remarkably reduced.

• Two widely used bearing datasets are employed to validate the effectiveness of the
proposed RFDA-based bearing fault diagnosis method. Results show the superior
performance of the proposed method over other related methods.

The remainder of this paper is structured as follows. In Section 2, a brief review of
Fisher discriminant analysis and random Fourier feature map is given. In Section 3, details
of the proposed RFDA based fault diagnosis method are described. In Section 4, two exper-
imental datasets of bearings are used to assess the performance of the proposed method
comparing with other related methods. Conclusions are drawn in the final Section 5.

2. Related Works
2.1. Fisher Discriminant Analysis

The aim of the FDA is to find a linear transformation matrix to separate the projections
in the low-dimensional space as much as possible. For this purpose, FDA measures the
compactness of each class with the within-class scatter matrix and the distance between
classes with the between-class scatter matrix. Through maximizing the ratio of between-
class to within-class scatter matrices, the optimal transformation matrix is calculated.

Denote the training dataset as D,

D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

where the sample xi ∈ Rm is the m-dimensional vector. yi represents the category of xi. N
samples are contained in the training dataset D.

Assumed that there are k types in D. Define nj(j = 1, 2, . . . , c) as the number of
samples of type yj, and Xj(j = 1, 2, . . . , c) as the set of all samples which belong to type yj.
Then, the between-class scatter matrix Sb is defined as

Sb =
c

∑
j=1

nj
(
µj − µ

)(
µj − µ

)T (1)

where µj(j = 1, 2, . . . , c) is the mean vector of the type yj, and µ is the mean vector of
all samples.
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The within-class scatter matrix Sw is defined as,

Sw =
c

∑
j=1

∑
x∈Xj

(
x− µj

)(
x− µj

)T (2)

To find the optimal projection matrix W, the optimization problem of FDA is defined as,

arg max
W

JFDA =
Tr
(
WTSbW

)
Tr(WTSwW)

(3)

where Tr(·) is the trace operator.
Assumed that Sw is non-singular, the solution of the optimization problem (3) can be

feasibly obtained by using generalized eigenvalue decomposition [31],

Sbwj = ρjSwwj (4)

where wj ∈ Rm is the eigenvector and the corresponding eigenvalue is ρj. Generally,
the eigenvectors which are corresponding to the largest d eigenvalues are retained for
the purpose of dimensionality reduction. Thus, the projection matrix W̄ is constructed as
W̄ =

[
w1 w2 · · · wd

]
∈ Rm×d.

Using the derived projection matrix W̄, the low-dimensional projection vector zi ∈ Rd

of the original data xi is,
zi = xT

i W̄ (5)

2.2. Random Fourier Feature Map

To address the issue of nonlinearity, kernel methods are usually employed to extend
the linear dimensionality reduction methods to their nonlinear variants. According to
Cover’s theorem, the original input data x ∈ Rm is mapped to a high-dimensional, even
an infinite, reproducing kernel Hilbert space (RKHS) ∈ RF by a given nonlinear mapping
function φ.

Define the mapping function as,

φ(x) : Rm → RF (6)

Since the nonlinear features φ(x) are created from the implicit mapping function,
the core of the kernel methods relies on the implicit lifting through the kernel trick. Using
the kernel trick, the nonlinear features are generated by calculating the inner product
between pairs of input points.

The inner product between lifted data points φ(xi) and φ(xj) is defined as,

k(xi, xj) = 〈φ(xi), φ(xj)〉 (7)

where 〈·〉 represents the inner product operator.
In the kernel method, the kernel matrix can be constructed for N training samples

{x1, x2, . . . , xN } as,
K = [k(xi, xj)]i,j=1,2,··· ,N

To generate the features for a testing data point, the kernel matrix K should be eval-
uated. As displayed in the kernel matrix K, all training data are involved. As a result,
the disadvantage of the kernel method is that there are large computational and storage
costs while facing large training sets.
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For addressing this issue, the shift-invariant kernels k(xi, xj) are related to random non-
linear features with the help of Bochner’s theorem [32]. Defining βω(x) = exp(−jωT(x)),
the inner product k(xi, xk) can be expressed as,

k(xi, xk) =
∫
Rd

p(ω)exp(−jωT(xi − xk))dω

= Eω

[
βω(xi)βω(xk)

∗] (8)

where p(ω) is the inverse Fourier transform of k. ω is sampled from the distribution p(ω).
Eω [·] is the expectation operator. βω(xk)

∗ is the complex conjugate of the inverse Fourier
transform of βω(xk). βω(xi)βω(xk)

∗ can be considered an unbiased estimate of k(xi, xk).
Furthermore, the kernel k(xi, xk) is approximated as below,

k(xi, xk) =
∫
Rd

p(ω)exp(−jωT(xi − xk))dω

= Eω

[
βω(xi)βω(xk)

∗]
≈
D
∑
j=1

1
D exp(−jωT

j xi)exp(−jωT
j xk)

(9)

where D � N.
According to Euler’s formula, it obtains

exp(−jωTx) = cos(ωx) + jsin(ωx) (10)

To obtain a real-value random feature for k, the distribution p(ω) and kernel k should
be real. Thus, only the real part of the exponential would remain in Equation (11). By re-
placing exp(−jωT(xi − xk)) with cos(ωT(xi − xk)) [27], then

k(xi, xk) ≈
D
∑
j=1

1
D exp(−jωT

j xi)exp(−jωT
j xk)

=

〈
1√
D

z(xi),
1√
D

z(xk)

〉 (11)

Based on Equation (11), the original data are explicitly projected onto a low-dimensional
Euclidean inner product space through randomized feature map in [27], instead of implic-
itly mapping function φ. Following this idea, the inner product k(xi, xj) is approximated by
defining an explicit random feature map function z(x) : Rm → RD , where

k(xi, xj) = 〈φ(xi), φ(xj)〉 ≈ z(xi)
Tz(xj) (12)

where zω(x) =
√

2cos(ωTx + b) with b is drawn from uniform distribution U [0, 2π]. It
is noted that the parameters b are used to make the expectation of the inner product of
zω(x) close to the shift-invariant kernel. For further explanation of the parameters b, refer
to [27,33].

Thus, the inner product zω(xi)
Tzω(xk) is expressed as zω(xi)

Tzω(xk) =
1
D ∑Dj=1 zωj(xi)

zωj(xk) where D samples of zωj are randomly chosen. Define D-dimensional vector zω(x)

zω(x) =

√
2
D


cos(ωT

1 x + b1)
cos(ωT

2 x + b2)
...

cos(ωT
Dx + bD)

 (13)
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Based on the random feature map z, aD-dimensional feature is obtained from the orig-
inal data x. Then, linear FDA is conducted in the D-dimensional feature space. The details
of Fisher discriminant analysis with random feature map are elaborated in the next section.

Remark 1. The bound error between the kernel matrix Ki,k = k(xi, xk) and K̄i,k = z(xi)
Tz(xk)

was discovered in spectral norm as in [28],

E‖K− K̄‖ ≤
√

3N2 log N
D +

2N log N
D (14)

Obviously, the error becomes small as the dimensionality D is selected as a large number.
Yet, the computational cost will also increase. To balance the computational burden and the error,
the dimensionality D of random features can be determined by cross-validation in the offline
training phase.

3. RFDA-Based Fault Diagnosis

The RFDA-based fault diagnosis is developed in this section. First, the time-domain
features are extracted from the collected raw vibration signals. Then, an RFDA model
is trained using these time-domain features. To identify the class of vibration signals,
a Bayesian inference is employed.

3.1. Time-Domain Feature Extraction

Time-domain statistical features, such as the impulsive factor, kurtosis, skewness,
peak factor, and root mean square, are usually employed to detect and identify the bearing
damage. In this study, 12 time-domain features are computed from each signal to exhibit
different distribution characteristics of the raw vibration signals. Table 1 lists the detailed
descriptions of the adopted time-domain features.

Table 1. The 12 time-domain features.

Features Equations

Peak xp = max(x)

Peak-to-peak xpp = max(x)−min(x)

Mean x̄ = ∑n
i=1 xi
n

Absolute mean amplitude ¯|x|∑
n
i=1 |xi |

n

Square root amplitude xsra =

(√
∑n

i=1 |xi |
n

)2

Variance xv = ∑n
i=1(xi−x̄)

n

Standard deviation xstd =
√

∑n
i=1(xi−x̄)2

n

Root mean square xrms =

√
∑n

i=1 x2
i

n

Kurtosis xk = ∑n
i=1(xi−x̄)4

(n−1)x4
std

Skewness xske =
∑n

i=1(xi−x̄)3

(n−1)x3
std

Peak factor xp f =
xp

xrms

Impulsive factor xi f =
xp
¯|x|

where x = {x1, x2, . . . , xn} denotes the row signal series of each sample, n is the corresponding length of the
vibration signal. In this study, the sample of vibration signals contains 1024 data points.

From Table 1, the time-domain features of the raw vibration signals x = {x1, x2, . . . , xn}
are extracted and denoted as h = f (x) = {xp, xpp, x̄, ¯|x|, xsra, xv, xstd, xrms, xk, xske, xp f , xi f }T

∈ R12 for the RFDA modeling, where f (·) is the function of the time-domain feature extraction.
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3.2. RFDA Model Training

Assumed that Nall samples are collected from fault-free and c− 1 faulty classes, where
each sample has n data points, then Nall h are computed according to Table 1.

For the purpose of training the RFDA model, the extracted time-domain features h
are normalized,

ĥ =
h− hmean

hstd
(15)

where hmean and hstd are the mean and standard variance of the time-domain features h
extracted from normal data, respectively.

To address the issue of nonlinearity in data, the random Fourier feature of h is extracted
using random feature map,

z(ĥ) =

√
2
m


cos
(

ωT
1 ĥ + b1

)
...

cos
(

ωT
mĥ + bm

)
 ∈ Rm (16)

where m is the dimension of random features.
In kernel-based fault diagnosis, the Gaussian radial basis function (RBF) kernel is

usually employed due to its generalization ability. The RBF kernel is defined as,

K(δ) = exp(−‖δ‖
2
2

s
) (17)

where s is the kernel width of RBF kernel. Corresponding to the selected RBF ker-
nel, the parameter ω of random Fourier features z(ĥ) is sampled from the following
Gaussian distribution,

ω ∼ N (0, 2I/s) (18)

where I is the identity matrix with appropriate dimension.
Then, using Equations (15)–(17) random Fourier features, the between-class scatter

matrix (Shb) and within-class scatter matrix (Shw) are formed,

Shb =
c

∑
j=1

Nj

(
ẑhm,j − ẑhm

)(
ẑhm,j − ẑhm

)T
(19)

where ẑhm,j is the mean of random Fourier features, which belong to the j = 1, . . . , cth class.
ẑhm is the mean of all extracted features.

Shw =
c

∑
j=1

Shwj =
c

∑
j=1

∑
ẑh∈Ĥj

(
ẑh − ẑhm,j

)(
ẑh − ẑhm,j

)T
(20)

where Ĥj represents the domain of the jth class.
Similar to Equation (4), to seek the projection matrix Wh that maximizes the distance

between samples that belong to different classes and minimize the distance between
samples that belong to the same classes, the following generalized eigenvalue problem is
to be solved:

Shbwhi = λiShwwhi (21)

where λi is the eigenvalue corresponding to the eigenvector whi.
Using eigenvalue decomposition, the solution of Equation (20) can be derived. To re-

duce the dimensionality, only eigenvectors corresponding to large eigenvalues are retained.
Thus, the projection matrix W̄h is formed as W̄h =

[
wh1 wh2 · · · whd

]
∈ Rm×d, where

d is the number of retained latent variables.
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Remark 2. The selection of the number of retained latent variables d can be determined by minimiz-
ing the information criterion similar to Akaike’s information criterion (AIC) [34]. In discriminant
analysis, the number of retained latent variables d is usually set as c− 1, where c is the number of
sample classes.

3.3. RFDA-Based Bearing Fault Diagnosis Scheme

Through the projection matrix W̄h derived from the RFDA model, the projection dht
of a new vibration sample xt can be calculated as,

dht = W̄T
h z( f (xt)) (22)

Based on the established RFDA model, k-nearest neighbors (kNN) and Bayesian infer-
ence are often adopted to classify the class of the new samples. Due to its simplicity and low
computational burden, Bayesian inference is used in this study. Bayesian inference is based
on the posterior probability to determine the class of new data samples. Assuming that the
projections dht are Gaussian distributed, then the class membership can be determined by
the Fisher discriminant function, which is defined as [35],

gj(dht) =−
1
2
[(dht − dm,j)

T(
1

nj − 1
WT

n Shw,jWh)
−1(dht − dm,j)

− ln[det(
1

nj − 1
WT

h Shw,jWb)]]

(23)

where dm,j = WT
b ĥm,j.

In accordance with the Fisher discriminant function, the class of the test data sample
xt is classified to the class, where the value of the Fisher discriminant function is the largest:

C(xt) = arg max
1≤j≤c

gj(W̄T
h z( f (xt))) (24)

The flowchart of the proposed RFDA-based bearing diagnosis is depicted in Figure 1.

Figure 1. Flowchart of the proposed RFDA-based bearing diagnosis.
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4. Experiments and Results

In this section, to demonstrate the applicability and effectiveness of the proposed
RFDA-based fault diagnosis method, experiments on two popular bearing benchmark
datasets are conducted. For comparison study, FDA and KFDA [36] are used. The simu-
lation environment is Intel Core i7-8750h CPU@2.20 GHz CPU and 24 GB RAM running
under Windows 10 with MATLAB R2020b.

4.1. Case 1: CWRU Dataset

As a commonly and widely used bearing dataset for the evaluation of fault diagnosis
performance, the CWRU datasets were collected and provided by the Case Western Reserve
University bearing data center on the experimental facility shown in Figure 2.

Figure 2. The experimental test rig of CWRU dataset.

In the CWRU dataset, the data with the acquisition frequency of 12 K are selected,
and several single-point faults are introduced on the outer ring, the inner ring, and rolling
element, with fault diameters of 0.007 for each position. For each scenario, 50 samples are
collected. A sample is composed of 1024-point vibration sequences without overlap. The
number of training and testing datasets and the descriptions of fault scenarios are shown
in Table 2.

Table 2. The number of training and testing datasets and the descriptions of fault scenarios:
CWRU dataset.

Bearing State Fault Location Train Number Test Number Characteristic
Frequency (Hz)

Health / 50 188 29.95
Fault 1 inner ring 50 68 162.1852
Fault 2 rolling element 50 69 141.0907667
Fault 3 outer ring 50 69 107.305

All the vibration signals were collected under the same motor loads at 1797 rpm and 0 HP.

To assess the fault diagnosis performance quantitatively, the widely used index (i.e.,
accuracy rate) is adopted in this work. The definition of accuracy rate is

Acc =
TN + TP

TN + FN + FP + TP
(25)

where TN, FN, FP and TP denote the number of true negative, false negative, false positive,
and true positive outcomes, respectively.

To determine the kernel width of KFDA, the cross-validation method is used. Figure 3
shows the fault classification results of the KFDA model with different kernel widths.
From Figure 3, the optimal kernel width is selected as 700. The computation time is kept
stable (i.e., 0.24 s). To make the comparison fair, the same kernel width s is used for RFDA.
Since the selection of dimension m not only affects the performance of approximation
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of kernel matrix, but also requires different computational burdens in RFDA-based fault
diagnosis method. To obtain optimal parameters of RFDA, the accuracy rates with different
parameters are plotted in Figure 4. We can set s = 700, m = 50 from Figure 4. The number
of maintained latent variables is selected as 3 for all methods.

Figure 3. Accuracy rate and computation time vs. kernel width of RBF: CWRU dataset.

Figure 4. Computation time and accuracy rate vs. kernel width of RBF and dimensionality of random
Fourier feature: CWRU dataset.

To visualize the features vividly, the extracted features are displayed in Figure 5.
From Figure 5, it can be observed that the distances between different clusters correspond-
ing to specific scenarios are large. Compared to FDA, RFDA and KFDA can provide more
efficient discriminant performance, since the distance between the data of the same category
is smaller.

The accuracy rates and computation times of FDA, KFDA, and RFDA using the testing
dataset are given in Table 3. In Table 3, the accuracy rate and computation time are the
average results of 100 experiments. From the data in Table 3, the accuracy rates of FDA,
RFDA, and KFDA can achieve 100%. The reason is that the magnitudes of the faults are
large in the CWRU data, making them easily classified. On the other hand, the average
computation time of RFDA is 0.1232 s, which is at the same level as FDA. However,
the computation time of KFDA is almost two times that of RFDA. Thus, the computation
burden of the calculation of kernel matrix is hugely reduced in RFDA through the adoption
of the random Fourier feature.



Sensors 2022, 22, 8093 11 of 17

(a) FDA (b) RFDA

(c) KFDA

Figure 5. Visualization of dimensionality reduction: CWRU dataset.

Table 3. Computation times and accuracy rates using FDA, KFDA and RFDA: CWRU.

Method Mean Acc Mean Time (s)

FDA 100% 0.1146
KFDA 100% 0.2647
RFDA 100% 0.1232

4.2. Case 2: PU Dataset

PU dataset is another popular bearing dataset provided by the Paderborn University
Bearing Data Center for comparing the fault diagnosis performance [37]. The test rig of PU
datasets is displayed in Figure 6.

Figure 6. The experimental test rig of PU dataset test rig.

There are 14 types of real failure data in PU dataset. For details of the working
conditions, refer to [37]. In this study, the vibration data were collected under the work-
ing conditions of rotating speed 1500 rpm, load torque 0.7 nm, and radial force 1000 N.
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The sampling frequency of the vibration data is 64 KHz, and the sampling time is 4 s. In the
training dataset, 100 samples are included in each class, whereas 150 samples are included
in the test dataset for each class. A sample is composed of 1024-point vibration sequences
without overlap.

In this study, 8 different types of real failure data, as well as health data, were se-
lected for experiments. The details of used data and descriptions of faults are shown in
Tables 4 and 5, respectively.

Table 4. The number of training and testing datasets and the descriptions of fault scenarios:
PU dataset.

Bearing State Bearing Code Train Number Test Number

Health K004 100 150
Fault 1 KA04 100 150
Fault 2 KA16 100 150
Fault 3 KA22 100 150
Fault 4 KA30 100 150
Fault 5 KB23 100 150
Fault 6 KB24 100 150
Fault 7 KB27 100 150
Fault 8 KI16 100 150

Table 5. Detailed description of PU datasets.

Bearing State Bearing Code Fault Position Description

Health K004 Healthy Run-in period 5 h
Fault 1 KA04 Outer ring (SP, S, Level 1) Caused by fatigue and pitting
Fault 2 KA16 Outer ring (SP, R, Level 2) Caused by fatigue and pitting
Fault 3 KA22 Outer ring (SP, S, Level 1) Caused by fatigue and pitting
Fault 4 KA30 Outer ring (D, R, Level 1) Caused by plastic deform and indentation
Fault 5 KB23 Outer ring and inner ring (SP, M, Level 2) Caused by fatigue and pitting
Fault 6 KB24 Outer ring and inner ring (D, M, Level 3) Caused by fatigue and pitting
Fault 7 KB27 Outer ring and inner ring (D, M, Level 1) Caused by plastic deform and indentation
Fault 8 KI16 Inner ring (SP, S, Level 1) Caused by fatigue and pitting

SP—single point fault; S—single damage; D—distributed fault; R—repetitive damage; M—multiple damage.

Similarly, Figure 7 depicts the fault classification results of the KFDA model with
different kernel widths. It can be found that KFDA can achieve the best performance while
the kernel width is selected as 610. For RFDA, the optimal parameters s, m are selected as
s = 450, m = 100 as displayed in Figure 8. The number of retained latent variables for all
methods is set as 8.

Figure 7. Computation time and accuracy rate vs. kernel width of RBF: PU dataset.
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Figure 8. Computation time and accuracy rate vs. kernel width of RBF and dimensionality of random
Fourier feature: PU dataset.

Figure 9 is used to display the projections onto the first three FDA loading vectors
by standard FDA, KFDA and RFDA. As plotted in Figure 9, it can be observed that the
distances between the clusters of different classes are closer. Thus, the fault diagnosis
performance will degrade. The reason is that the magnitudes of faults in the PU datasets
are smaller. The vibration signals contain more noise. However, the clusters derived by
RFDA and KFDA have larger discrepancy than FDA. Thus, higher accuracy rates can be
offered. Nevertheless, KFDA and RFDA can provide better discriminant ability than FDA.

(a) FDA (b) RFDA

(c) KFDA

Figure 9. Visualization of dimensionality reduction: PU dataset.
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Table 6 offers the accuracy rates and computation times of FDA, KFDA, and RFDA
using the testing dataset. From the data in Table 6, the accuracy rates of FDA and KFDA
are below 90%. RFDA can provide a slightly higher accuracy rate (i.e., 90.05%) than KFDA.
However, KFDA and RFDA can derive better fault diagnosis performance than FDA.
For computation time, FDA requires the lowest computation burden compared to KFDA
and RFDA. As demonstrated in the case study of PU, the computation time of RFDA is
close to that of the FDA. The average computation time of RFDA is 1.43 s. Due to the need
for calculating the kernel matrix, the average computation time of KFDA (i.e., 3.24 s) is
longer than that of FDA and RFDA.

Table 6. Computation times and accuracy rates using FDA, KFDA and RFDA: PU.

Method Mean Acc Mean Time (s)

FDA 86.72% 1.35
KFDA 89.72% 3.24
RFDA 90.05% 1.43

To investigate the performance of the proposed RFDA based fault diagnostic system
further, the confusion matrices are plotted in Figure 10. From the data in Figure 10, values
in the black squares on the diagonal indicate the classification accuracy, while values in the
other gray-white squares indicate the error rate of the corresponding sample type. Most
of the samples are correctly classified. However, it can be seen that the samples collected
under Fault 6 are misclassified as Fault 5 for all methods. Among the comparable methods,
fewer samples of Fault 6 are misclassified using RFDA. Overall, the RFDA-based method
can offer satisfying results in the field of computation time and accuracy rate.

(a) FDA

(b) RFDA

Figure 10. Cont.
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(c) KFDA

Figure 10. Confusion matrices: PU dataset.

5. Conclusions

This paper proposed a randomized Fisher discriminant analysis (RFDA) algorithm to
diagnose the bearing fault. First, 12 time-domain feature sets were constructed by extracting
the original vibration signals. Then the RFDA model was established for fault diagnosis
by introducing a random Fourier feature. To classify the class of vibration data, Bayesian
inference was applied. Experiments on the PU and CWRU datasets were conducted to
assess the performance of the RFDA-based fault diagnosis, compared with FDA and KFDA
methods. Results verified that the RFDA-based method can provide better fault diagnosis
performance using less computation time.

Despite this, there are still some studies to continue in future work. First, the perfor-
mance can be improved by the reduction of similar cases (i.e., defects for the same part)
for the PU dataset. The exploration of manifold structure in the bearing dataset would be
another alternative way to improve the RFDA methodology. Additionally, the diagnostic
performance is influenced by the magnitudes of different defects. The level of defect should
be taken into consideration. The incipient fault detection and diagnosis is another hot topic
in the bearing fault diagnosis community. There are two types of choices of random Fourier
features [33]. It would be interesting to compare and study the performance of different
forms of random Fourier features in the fault diagnosis.
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