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Abstract: An objective stereo video quality assessment (SVQA) strives to be consistent with human
visual perception while ensuring a low time and labor cost of evaluation. The temporal–spatial
characteristics of video make the data processing volume of quality evaluation surge, making an
SVQA more challenging. Aiming at the effect of distortion on the stereoscopic temporal domain, a
stereo video quality assessment method based on the temporal–spatial relation is proposed in this
paper. Specifically, a temporal adaptive model (TAM) for a video is established to describe the space–
time domain of the video from both local and global levels. This model can be easily embedded into
any 2D CNN backbone network. Compared with the improved model based on 3D CNN, this model
has obvious advantages in operating efficiency. Experimental results on NAMA3DS1-COSPAD1
database, WaterlooIVC 3D Video Phase I database, QI-SVQA database and SIAT depth quality
database show that the model has excellent performance.

Keywords: stereoscopic video quality assessment; temporal adaptive module; local and global

1. Introduction

With the gradual maturity of stereoscopic display technology, video has moved
from plane to stereoscopic, and stereoscopic multimedia has entered the daily life of
consumers [1]. According to the imaging principle, stereoscopic display technology can be
divided into three types, including binocular 3D display, true 3D display and holographic
display. At present, polarization 3D projection display technology, namely binocular 3D
display technology, is widely used in real scenes such as stereoscopic film projection. In
principle, most 3D videos are collected from two groups of videos with slightly different
horizontal angles at the source end and transmitted to the audience’s left eye and right eye,
respectively, so as to generate 3D in the visual system of audiences. Stereo display has a
wide range of related research fields, including stereo image acquisition, stereo positioning,
stereo view matching and 3D information reconstruction. The development of these fields
provides important support for the deployment of stereo-image/video-related technologies
in reality.

Stereoscopic display technology not only enables the audience to enjoy the impact and
immersion brought by vision, but also puts forward higher requirements for content and
picture quality. At present, 3D video is mainly PGC. In the process of 3D image acquisition,
professionals control the quality of video shooting professionally and strictly [2]. However,
due to the limitations of hardware equipment and technical level, video has varying degrees
of distortion in storage, transmission, display and other links, which makes the viewing
experience of users decline. For 3D video, a low-quality content presentation can easily
destroy the stereoscopic sense of human eyes, and even cause physiological discomfort to
users [3]. Therefore, effective stereo video quality assessment methods are needed to control
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its quality. In terms of stereo video quality assessment, domestic and foreign scholars have
conducted a certain amount of research and achieved certain results in [4]. However, due
to the inherent system limitations of the quality evaluation, the existing studies are in a
bottleneck and the algorithm performance improves slowly. As mentioned above, the
development of visual perception theory provides a new development impetus for stereo
video quality evaluation research, driven by a visual perception model, and has become
the new research key.

The application scenarios of three-dimensional video are rich and play an irreplaceable
role in the industrial field. At present, the research on stereoscopic video quality assessment
(SVQA) is gradually emerging, which has attracted the attention of many scholars [5].
Compared with plane video quality evaluation, the factors affecting stereo video quality are
more complex, including depth information, binocular competition, binocular suppression
and binocular suppression. In early studies, there were few public stereo video quality
assessment databases, which had a certain impact on the study of objective evaluation
algorithms. In recent years, according to different research purposes and needs, researchers
have established a number of stereo video datasets to provide the basis for the objective
evaluation of stereo video quality [3,6,7].

In this field, Yang et al. [8] used three processed differential video blocks as input
to 3D convolutional neural networks (3D CNN), which could effectively capture local
space–time features and describe global time information, and then established a scoring
fusion strategy according to global time clues, so as to achieve an accurate evaluation of
3D videos. Imani et al. [9] improved the 3D CNN model by extracting features from three
aspects, space, motion and depth, and then the three-dimensional features were connected
together through the full connection layer to obtain the quality score of the stereo video.
Feng et al. [10] proposed a multilayer binocular fusion convolutional neural network with
three branches. Specifically, branch 1 was a multiscale cross-dimensional attention unit to
capture key semantic information; branch 2 was a binocular fusion unit to adaptively fuse
left and right video branches; and branch 3 was a parallax compensation unit including a
reinforcement module to provide parallax feature, which resulted in a network with a high
accuracy.

It can be seen from the above content that the research on stereo video quality assess-
ment has developed rapidly in the past decade, and the algorithms have also developed
from artificial feature extraction to automatic learning of the quality perception mapping
relationship using deep learning models. However, the traditional machine-learning-driven
method is still the focus of research, because of the huge capacity of stereo video and the
huge consumption of processing time and computing resources.

We propose an NR-SVQA model in this paper, which extracts the time-varying charac-
teristics of stereo video frames in the frequency domain while maintaining the original size
of stereo frames. The significant contributions are organized as follows:

• Temporal modeling is the key to capture spatiotemporal distortion in video. Affected
by camera motion, speed changes and other factors, video data have extremely com-
plex dynamics in the time dimension. In order to effectively capture such diverse
motion patterns, a temporal adaptive module (TAM) is proposed, which generates a
video-specific kernel based on its own feature mapping. The TAM can learn and obtain
short-term information from the local time window. This information is generated
from the global view, and it pays more attention to long-term goals.

• The framework describes video frames from two parts: local short-term relation and
global relation. This model can be flexibly embedded into any 2D CNN framework
and can still use the pretrained backbone network parameters without significantly
increasing the complexity of the model.

• Rich performance verification experiments are performed. From the results, the
prediction of this model is in good agreement with the subjective quality. More-
over, compared with existing methods, the proposed method has a higher visual
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quality perception prediction accuracy in both symmetric and asymmetric distortion
databases.

2. Related Works

According to the research route and theoretical basis of their algorithms, the existing
stereo video objective quality evaluation models can be divided into two categories, one
is the plane extension model, the other is the stereo knowledge model [7,11]. In the early
stages, the expansion from image quality evaluation or video quality evaluation to stereo
video was the plane expansion. In order to quantify the impact of compressed artifacts
on stereo video quality, Hewage et al. [12] used the image quality evaluation algorithms
PSNR, SSIM and video quality model (VQM) to predict the video quality scores of the
left and right eyes, and then took the weighted average of the scores of the two videos to
obtain the objective quality of the stereo video [13]. From the results, it can be concluded
that the performance of VQM was much better than that of PSNR and SSIM. Meanwhile,
Chen et al. [14] also extended PSNR and MS-SSIM to SVQA. From the experimental results,
it could be found that MS-SSIM performed better than PSNR. Further, Wang et al. found
that when the image quality assessment (IQA) method was directly used to predict the
quality of asymmetric distortion stereo video, there was a serious systematic deviation.
Therefore, the authors applied the binocular competitive incentive model to predict the
systematic bias, and the proposed FR SVQA model performance improved significantly.
Specifically, the authors used the variance of local space to create local energy maps, and the
local energy ratio of left and right videos could effectively provide binocular competition
information, thus establishing a weight strategy for the left and right videos and correcting
for systematic bias. In this way, the model could effectively predict asymmetric video
with mixed distortion [6]. Fang et al. proposed a binocular competitive weighting method,
which was based on the spatial frequency and temporal motion of the primary visual
cortex, and the performance of the SVQA model was improved. Specifically, in the first
stage, the spatial distortion of the video was captured using the image quality evaluation
method, and the temporal distortion was estimated by the motion difference between the
source video and the distorted video. In the second stage, the structural strength (SS) and
motion energy were obtained by the gradient and frame difference (ME). By simulating the
binocular competition between SS and ME, a new weighting strategy was established and
the spatiotemporal distortion estimation of the first stage was carried out, so as to obtain
the objective score of the stereo video and correct the system deviation [15].

The stereo perceptual knowledge model does not rely on the existing image/video
quality assessment methods, and focuses on constructing the stereo video quality assess-
ment model directly. Jin et al. proposed a method based on block matching. Specifically,
similar blocks in the left and right video frames were found and combined into 3D video
blocks. When correcting PSNR, the mean squared error within the 3D discrete cosine change
was used to measure the distorted video quality. Regarding the defects in accuracy and
robustness of the planar extension method, Galkandage et al. [16] completed the evaluation
of the accurate stereo video quality by measuring the quality using the extended binocular
energy, which was based on two visual phenomena occurring in complex cells, namely
binocular suppression and repetitive excitation. Appina et al. used the SSIM average
between consecutive video frames to evaluate the overall motion of each video. The video
motion and spatial quality were modeled, and the unsupervised image quality evaluation
method was used to predict the spatial quality. Inspired by GGD, the author established
the statistical dependence between the motion of the stereo video and the disparity sub-
band coefficient of the space as a binary GGD (obeying a bivariate generalized Gaussian
distribution, BGGD) model, and used the multivariate Gaussian to model (MVG) it [17].
Inspired by free energy principles and binocular vision mechanisms, Chen et al. proposed
a depth video quality evaluation model closely related to stereo perception. Specifically,
the model included two parts: autoregressive prediction-based disparity entropy (ARDE)
and energy-weighted content measurement, in which the natural scene statistics of the
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two stereo channels were combined with ARDE to verify the sensitivity of video texture
and frame difference to quality. In stereo video processing of video coding (HEVC), this
method is widely used and performs well. Experiments have shown that the method still
maintains good performance and in the case of other types of distortion [18]. Hou et al.
used oriented local gravitational force (OLGF) statistics to extract local gravity responses
from monocular maps, product images and frame difference maps and mapped the gravity
response statistics to the quality score of stereo video [2] using SVR.

3. Method of SVQA

According to the importance of spatiotemporal characteristics to stereo video, a time-
adaptive stereo video quality assessment model is proposed. The algorithm framework
is shown in Figure 1. The monocular image which conforms to the characteristics of
human stereo perception was synthesized from the left and right video frames and input
into the backbone network embedded in the time-adaptive model to perceive the stereo
video quality.

Figure 1. The overall framework of TAM.

3.1. Stereoscopic Formation

The perception of binocular competition is not independent of the complete stimulus
intensity of each perspective but related to the relative stimulus intensity of both. When
the weighting coefficient is positively correlated with the stimulus intensity, this can
be explained by a model based on biology. In this process, the left and right image
stimuli are measured by the local energy of the response of a group of Gabor filters.
Binocular competition is a local multiscale phenomenon, so the method of broadening the
horizontal model is a common method to simulate the synthesis of look-around images.
The stereoscopic view synthesized as a look-around image is parallax-compensated, and the
view image is illuminated to the spatial coordinate system of the left view image. Therefore,
the linear model is used to synthesize the panoramic image, which is expressed as:

C(i, j) = WL(i, j)× IL(i, j) + WR((i + d), j)× IR((i + d), j) (1)

where C is the look-around image, which is the simulated image, IL is the image on the left
and IR is the image on the right; d is the parallax index of the IL pixels corresponding to
IR. The WL and WR weights are calculated from the amplitude response of the normalized
Gabor filter:

WL(i, j) =
GL(i, j)

GL(i, j) + GR((i + d), j)
(2)

WR(i + d, y) =
GR(i + d, j)

GL(i, j) + GR((i + d), j)
(3)

where GL is the sum of the convolution responses of the left image to the Gabor filter, and
GR is the sum of the right image. Due to the normalization of (6), when there is binocular
competition, if the Gabor energy of the left stimulus increases, the right energy decreases,
and vice versa.
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3.2. Temporal Adaptive Module

Three-dimensional convolution is a generalization of 2D convolution. In 3D convolu-
tion, the 3D filter can be moved in all three directions (height, width, and channel) to output
3D data. At present, 3D convolution is widely used in the field of video understanding
to extract temporal and spatial features in video. Although this simple expansion reflects
a certain usefulness, it also lacks a comprehensive consideration of the temporal charac-
teristics of video data, and the cost of computing is high. The video data show complex
temporal dynamic properties such as camera motion and speed change. Different from the
shared convolution kernel in 3D CNN, a time-adaptive module with a video-specific kernel
is introduced to solve this problem. The TAM can generate a dynamic time core flexibly
and effectively based on video features, so that the time information can be aggregated
adaptively according to motion content [19]. The TAM can be easily embedded into an
existing 2D CNN such as ResNet to generate a network architecture that can process video
data. Figure 2 shows the process.

Figure 2. Two parts of temporal adaptive module.

Specifically, for the feature map X ∈ RC×T×H×W , where C is the channel of features
and T represents its temporal dimensions, H and W represent its spatial representation. A
2D convolution is used to capture spatial patterns, while the TAM is only used for temporal
modeling. First, we use the global spatial average pool to compress the feature map:

X̂c,t = φ(X)c,t =
1

H ×W ∑ Xc,t,j,i (4)

where c is the channel, t is the time, j is the height and i is the width index; X̂ ∈ RC×T stands
for aggregated spatial information. For convenience, φ is used to represent a function of
aggregate spatial information, and the TAM is built based on 1D temporal features. The
TAM is composed of a local part and global part, and Figure 3 shows the overall framework
of the TAM, which enhances the salient features of the video by learning the position-
sensitive feature graph; the position-invariant weights are generated and the time domain
information is aggregated by convolution. The TAM is defined as:

Y = G(X̂)⊗ (L(X̂)� X) (5)

where ⊗ and � are convolution operation and element multiplication, respectively. The
output size of the global branch G is K × C and the output size of the local branch L is
T × C× H ×W. Both branches run on compressed feature image X̂. It should be noted
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that the time information of the G and L parts is different. The L part uses time convolution
to obtain short-term information, while the G branch leads the long-term time structure to
the adaptive time aggregation full connection layer.

Figure 3. The concrete structure of the TAM module. On the left is an ordinary ResNet block and on
the right is the TAM block with local and global feature description.

The short-term characteristics of video vary with time, so it is necessary to obtain a
position sensitivity image to describe the local time structure. Specifically, local branches
are constructed by using ReLU nonlinear time-convolution layer sequences:

S = L(X̂) = Si(Conv1D(δ(Conv1D(X̂, K,
C
β
), 1, C))) (6)

where S is an important mapping, Si means the sigmoid function, C is the number of
channels of the input tensor and δ is the ReLU function. Conv1D represents a temporal
convolution, parameterized by the input, kernel size and the number of output channels.
Since local branches are used to capture short-term goals, the size of kernel K is set to
3 and importance mapping is learned based only on local time windows. In order to
speed up the convergence of the network, BN is applied after the first Conv1D, thereby
reducing the channel from C to C

β . Then, the following Conv1D is followed by the sigmoid

activation to generate the weight S ∈ RC×T . In order to match the size of X, we readjust S
to Ŝ ∈ RC×T×H×W by copying in the spatial dimension:

Ŝ ∈ RC×T×H×W = S ∈ RC×T (7)

where c is the channel, t is the time, j is the height and i is the width. The time-incentive
mode is expressed as:

Z = Ŝ� X = L(X̂)� X (8)

where Z ∈ RC×T×H×W is the activation graph and � represents element multiplication.
The focus of global branching is to generate an adaptive kernel that combines global

context information into the TAM based on long-term relationships and captures aggregated
location-sharing weights. A dynamic kernel is generated for each video frame in the global
branch and time information is aggregated by convolution. In order to generate dynamic
kernel efficiently, an adaptive kernel is learned at the channel level. The adaptive kernel
that expects model learning only considers time-relation modeling and ignores channel
correlation. Therefore, while maintaining the number of input channels, the adaptive kernel
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learned by TAM convolves the input feature map in a channel-level manner. The learning
adaptive kernel for a specific channel is as follows:

θc = G(Ŝ)c = so f tmax(F(W2, δ(F(W1, Ŝc)))) (9)

where θc ∈ RK is the adaptive kernel of channel c and F is a full connection (fc). Similar to
the local part, the global part learns the adaptive kernel based on the compressed feature
map Ŝc ∈ RT . However, unlike the local branch, the global part uses long-term information
through the full connection layer to make the adaptive kernel learn. The two f c layers
are stacked to improve the modeling capability of the global branches, and the positive
aggregation weights are normalized from the learned cores using softmax functions. The
learned aggregation weight θ = {θ1, θ2, · · · , θC} is deployed in a convolution mode to
obtain the time interaction between features.

3.3. Objective Quality Score Estimation

In the quality assessment task, we adopted ResNet50 as the backbone and added the
TAM module. The TAM was embedded in the first Conv2D of the ResNet block. This
embedding method did not change the topology of the network excessively, so that the
ResNet block could be converted into a TA block efficiently and conveniently, and the
weight of the ResNet block could be reused. The T frame was sampled as input, and
the score of the T frame after f c was generated through average pool aggregation and a
clip-level score. Time downsampling was not performed before the f c layer. It is worth
noting that the trunk network had fewer restrictions on the insertion position and the
number of TA blocks. Suppose the input nodes are X1, X2... Xn, the final quality score was
expressed as:

S = W1 ∗ X1 + W2 ∗ X2 + ...Wn ∗ Xn + b (10)

where S is the quality score, W is the weight coefficient, n is the number of nodes and b is
the offset coefficient.

4. Experiments

In this section, a large number of validation experiments are reported to demonstrate
the excellent performance of the proposed method. The four databases involved in the
experiment and several indexes used to measure the prediction performance are introduced
in detail. A comparison with existing methods on the whole database is provided. Finally,
the performance of this method on different distortion types is verified, and the effectiveness
of each module of the model is proved.

4.1. Databases and Indicators

The experiment was carried out on some public international stereo video databases,
including the QI-SVQA database [20], NAMA-3DS1-COSPAD1 database [21], WaterlooIVC
3D Video Phase I database [22] and SIAT depth quality database [23]. The QI-SVQA
database contains 9 original stereo videos in YUV 4:2:0 format with 25 fps and 450 corre-
sponding asymmetric distortion samples, of which the number of H.264 distorted videos
and Gaussian blur distorted video with multiresolution is 255. The distortion samples in
the NAMA3DS1-COSPAD1 database were generated by encoding 10 original stereo videos
with different scenes and distortion degrees, with a total of 100 samples with 25 fps and a
resolution of 1920× 1080. The types of distortion include H.264/AVC, JPEG2000, reduced
resolution, sharpening and downsampling with sharpening. The WaterlooIVC 3D Video
Phase I database has 4 undistorted stereo videos in YUV 4:2:0 format and 176 distortion
samples with a 1024× 768 resolution, using the HEVC encoder to pair the videos, which
was quantified with QP = {25, 35, 40, 45, 50}. In addition, the views QP = {35, 40, 45, 50}
were processed by four degrees (σ = {0, 3.5, 7.5, 11.5}) of Gaussian low-pass filters. It
contains symmetric distortion and asymmetric distortion samples. The SIAT depth quality
database is a supplementary database of NAMA3DS1-COSPAD1, which provides depth
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quality scores. The database has a total of 160 distorted stereo videos, including 10 refer-
ence videos, 90 symmetrical distorted videos and 70 asymmetrical distorted videos. The
distortion type is the same as that of the NAMA3DS1-COSPAD1 database. Each video in
the dataset has its corresponding subjective score. The subjective scores of each dataset
were scored by volunteers under strict rules [24].

The Pearson linear correlation coefficient (PLCC), Spearman rank correlation coeffi-
cient (SROCC) and root-mean-square error (RMSE) were used to measure the relationship
between the objective prediction results and subjective evaluation scores, and then to verify
the effectiveness of this method. The prediction accuracy and monotonicity of the predic-
tion sample [25] were measured by the PLCC and SROCC, respectively. Higher values
indicated a better performance of this method. The RMSE indicated the consistency of
prediction, and [26] was referenced. Compared with the PLCC and SROCC, a smaller RMSE
indicated a high performance. Before training the network model, 60% of the samples in
the database were randomly selected to be used as the training set, 20% of the samples
were used as the verification set, and the remaining 20% of nonoverlapping samples were
used as the test set. To ensure the effectiveness of the algorithm model and eliminate the
impact of individual differences on the overall performance, we repeated the algorithm
50 times, resegmented the data set each time, and finally took the average of the results of
the 50 repeats as the final algorithm performance index. It is worth noting that standardized
quality scores were used in training and testing. This section describes the experimental
setup and implementation details in detail. The hardware used to perform the experiment
was mainly based on an Intel (R) Xeon (R) CPU e5-2620 V4 and an NVIDIA GTX Titan XP
GPU. Our proposed algorithm was based on the Pytorch deep learning framework. The
network used the Adam optimizer, and the initial learning rate of the network was 103 .
The mean squared error (MSE) was used to quantify losses.

4.2. Overall Performance

First, in order to prove the progressiveness of our method, we compared six models on
the QI-SVQA database. PSNR, SSIM [27], MS-SSIM [28] and BRISQUE [29] are 2D models.
Their principle is to process each frame of a stereo video, and then use the weighted
average value of a single frame’s quality score to get the final prediction. SJND-SVA [30]
and BSVQE [31] were implemented based on 3D-SVQA. Table 1 shows the results of the
experiment. It can be seen from the table that the four quality evaluation indexes of BSVQE
and the proposed method were good, indicating that they had a good prediction ability. In
addition, for asymmetric distorted stereo videos, due to the different degree of distortion
of the stereo pairs, the prediction results obtained by extending the 2D quality prediction
model to the 3D model in the form of a weighted average of video frame quality scores
had a certain systematic deviation. It could be proved that the performance of the model
on an asymmetric distortion database was worse than that on a symmetric distortion
database. Combined with the experimental results on the NAMA3DS1-COSPAD1 database
to be introduced next, it can be seen that the sample size of the QI-SVQA database was
4.5 times that of the NAMA3DS1-COSPAD1 database. A large sample size is conducive
to fully training the prediction model and obtaining relatively accurate prediction results.
Therefore, the experimental results on the QI-SVQA database were better than those on the
NAMA3DS1-COSPAD1 database. In addition, we also conducted performance comparison
experiments between the SIAT depth quality database and various methods, and the
results are shown in Table 2. Compared with other methods, our method showed a better
performance in all aspects.



Sensors 2022, 22, 8084 9 of 13

Table 1. Performance comparison of various methods on the QI-SVQA database. The best results are
in bold.

Category FR NR

Method PSNR SSIM MS-SSIM SJND-SVA BRISQUE BSVQE Ours

H.264
PLCC 0.6595 0.8371 0.8401 - 0.8704 0.9371 0.9450

SROCC 0.8437 0.8566 0.8546 - 0.8446 0.9379 0.9334
RMSE 0.74381 0.5413 0.5368 - 0.4791 - 0.3133

Blur
PLCC 0.6933 0.8342 0.8576 - 0.8493 0.9568 0.9666

SROCC 0.8417 0.8420 0.8607 - 0.8306 0.9505 0.9563
RMSE 0.7186 0.5498 0.5129 - 0.5202 - 0.2483

Overall
PLCC 0.7223 0.8346 0.8472 0.8415 0.8525 0.9394 0.9520

SROCC 0.8361 0.8476 0.5567 0.8379 0.8448 0.9387 0.9458
RMSE 0.6878 0.5478 0.5284 0.5372 0.5210 - 0.2994

Table 2. Performance comparison of various methods on the SIAT database. The best results are
in bold.

Category NR

Method PSNR SSIM DPDI BSVQE Ours

H.264
PLCC 0.7043 0.6932 0.6862 0.8898 0.8914

SROCC 0.6228 0.6656 0.5982 0.8225 0.8310
RMSE 0.5721 0.5807 0.5659 0.3537 0.3523

JPEG2000
PLCC 0.3900 0.5018 0.4311 0.6523 0.7611

SROCC 0.3156 0.2141 0.3196 0.5503 0.6611
RMSE 0.3789 0.3559 0.3467 0.2888 0.2626

Overall
PLCC 0.6414 0.6097 0.5660 0.8810 0.8862

SROCC 0.5197 0.5146 0.4858 0.8208 0.8271
RMSE 0.5145 0.5315 0.5355 0.3074 0.3051

To further prove that this method was also applicable and performed well in stereo
video quality prediction, we carried out performance comparison experiments on three
databases. In particular, on the NAMA3DS1-COSPAD1 database, nine most advanced meth-
ods including six FR methods and three NR methods were used. DeMo_3D(MS-SSIM) [32],
StSD [33] and MNSVQM [34] were implemented based on 3D-SVQA. Tables 3 and 4 show
the relevant experimental results. From the overall performance of these algorithms, it can
be concluded that the proposed method was the most advanced algorithm. BSVQE based
on binocular theory, and DeMo3D(MS-SSIM) based on spatiotemporal characteristics also
had a strong competitiveness. The results showed that the results of three-dimensional
models were generally better than those of two-dimensional models, which indicated that
the binocular phenomenon and stereoscopic parallax had a greater impact on quality per-
ception.

We compared seven methods on the WaterlooIVC 3D video phase I database, and the
results are displayed in Table 5. It can be seen that although the results of the proposed
method and BSVQE were good, compared with the first two databases, the experimental
results of each method on the database generally declined. We infer that symmetric
distortion and asymmetric distortion were included in the WaterlooIVC 3D video phase
I database. The composition of this database was more complex than other databases,
so the quality prediction was more difficult. In addition, some algorithm codes used for
comparison were not public. Not all algorithms could be implemented on all databases.
Therefore, the comparison methods on each database were slightly different.
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Table 3. Performance comparison of FR methods on QI-SVQA database. The best results are in bold.

Category FR

Method PSNR SSIM MS-SSIM SJND-SVA StSD
DeMo_3D

Ours(MS-SSIM)

H.264
PLCC 0.5758 0.7365 0.7885 0.5834 0.8020 0.9161 0.9541

SROCC 0.5425 0.7172 0.6673 0.6810 0.7575 0.9009 0.9441
RMSE 0.9463 0.7953 0.6955 0.6672 - 0.4654 0.2523

JPEG2000
PLCC 0.8073 0.9290 0.9439 0.8062 0.8433 0.9505 0.9666

SROCC 0.7651 0.8879 0.9299 0.6901 0.8494 0.9326 0.9611
RMSE 0.7362 0.4611 0.4327 0.8629 - 0.4074 0.1426

Overall
PLCC 0.6667 0.7981 0.8506 0.6503 0.7978 0.9242 0.9562

SROCC 0.6230 0.7565 0.8534 0.6229 0.8162 0.9187 0.9471
RMSE 0.8809 0.7121 0.5512 0.8629 - 0.4651 0.3151

Table 4. Performance comparison of NR methods on QI-SVQA database. The best results are in bold.

Category NR

Method MNSVQM BRISQUE BSVQE Ours

H.264
PLCC 0.8850 0.9329 0.9168 0.9541

SROCC 0.7714 0.8697 0.8857 0.9441
RMSE 0.4675 0.3722 - 0.2523

JPEG2000
PLCC 0.9706 0.9055 0.8953 0.9666

SROCC 0.8982 0.8503 0.8383 0.9611
RMSE 0.2769 0.4904 - 0.1426

Overall
PLCC 0.8611 0.8897 0.9239 0.9562

SROCC 0.8394 0.8490 0.9086 0.9471
RMSE 0.5634 0.5236 - 0.3151

Table 5. Eight methods for overall and individual distortion performance on WaterlooIVC 3D Video
Phase I. The best results are in bold.

WaterlooIVC 3D Video Phase I

Category Method PLCC SROCC RMSE

FR

PSNR 0.7085 0.5336 15.4507
SSIM 0.3964 0.2872 20.1010

MS-SSIM 0.4072 0.2969 19.9978
StSD 0.7880 0.7543 -

DeMo3D(MS-SSIM) 0.8943 0.8806 9.4853

NR
BRISQUE 0.8711 0.8416 10.3788

BSVQE 0.9343 0.8883 7.7882
Ours 0.9347 0.9027 7.4165

4.3. Experiments under Different Distortion Types

To comprehensively analyze the sensitivity of the proposed method to the quality
degradation of different distortion types in stereo video, we designed experiments to test
the prediction performance of different distortion types. In brief, 60% of a single distorted
sample was used for training, 20% for the verification set and the remaining 20% for testing,
which was the same as for the whole database. The relevant results are displayed in Tables 3
and 1. From the results, it can be seen that compared with the existing comparison methods,
the proposed method had a strong ability to deal with H.264 distortion. Meanwhile, BSVQE,
BRISQUE and DeMo3D(MS-SSIM) had a significant prediction ability for H.264 distortion.
In addition, we also observed that the FR method had a good evaluation performance for



Sensors 2022, 22, 8084 11 of 13

the distortion of JPEG2000. In addition to the proposed method, BSVQE also showed a
good ability to identify the degree of fuzzy distortion. Since the WaterlooIVC 3D video
phase I database only contained HEVC distortion types, there was no need to analyze the
HEVC distortion types.

4.4. Ablation Experiment

It is important to explore the overall functionality of the proposed approach, and the
performance of each of its components is valuable. Since the impact of the TAM structure
and the local and global parts of the TAM on the video quality perception of the model
is unknown, in order to verify the sensitivity of the TAM model and TAM components
to stereoscopic video quality, ablation experiments were designed, and the experimental
results are shown in Table 6. “Ours w/o TAM”, “Ours w/o global” and “Ours w/o local”
strategies were designed. By comparing the above three groups of strategies, it can be
concluded that the TAM model and its components played an important role in improving
the algorithm performance. At the same time, since the performance of “Ours w/o TAM”
was the lowest, it can be shown that the two parts of the TAM did not interfere with each
other. In addition, the experimental results showed that the time-domain characteristics
were highly sensitive to the quality of the stereo video, which was suitable for quality
assessment tasks.

Table 6. Ablation experiments on three databases.

Component Ours w/o TAM Ours w/o Global Ours w/o Local Ours

NAMA3DS1-
COSPAD1

PLCC 0.8765 0.9046 0.9482 0.9562
SROCC 0.8481 0.8807 0.9213 0.9471
RMSE 0.4908 0.4343 0.3252 0.3171

QI-SVQA
PLCC 0.9180 0.9265 0.9392 0.9520

SROCC 0.90251 0.9177 0.9311 0.9458
RMSE 0.3549 0.3678 0.3366 0.2994

WaterlooIVC
Phase I

PLCC 0.9051 0.9198 0.9159 0.9347
SROCC 0.8732 0.8891 0.8870 0.9027
RMSE 8.8049 8.2847 8.4354 7.4165

5. Conclusions

This paper presented an objective evaluation method of stereo video quality based
on the time domain. In view of the difficulty in obtaining video time-domain features and
the low computational efficiency of models specially proposed by 3D CNNs, this paper
introduced a time-adaptive model in the field of video quality evaluation for the first time,
to establish the correlation between stereo video frames, so as to realize the time-domain
connection between frames. The model was composed of local and global parts and could
extract the time-domain characteristics of video comprehensively. In addition, the model
could be easily embedded into an existing 2D CNN backbone network without significantly
increasing the network parameters. From the experimental results on the NAMA3DS1-
COSPAD1 database, WaterlooIVC 3D video phase I database, QI-SVQA database and SIAT
database, the prediction results of this model were very close and similar to the subjective
evaluation quality score. Furthermore, we will develop representative sequences in the
future and further tap its potential.

Author Contributions: F.G. and Z.Z. jointly wrote and revised this paper. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2022, 22, 8084 12 of 13

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank all those who have contributed to the work of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, N.; Fang, X.; Li, W.; An, Y. Perception-based Asymmetric Video Coding for 3D Video. In Proceedings of the 2020 IEEE 2nd

International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14–16 October 2020.
2. Hou, Y.; Liu, L.; Zhang, Y.; Sang, Q. Stereoscopic Video Quality Assessment Using Oriented Local Gravitational Force Statistics.

IEEE Access 2020, 8, 212442–212455. [CrossRef]
3. Jin, Y.; Chen, M.; Goodall, T.; Patney, A.; Bovik, A.C. Subjective and Objective Quality Assessment of 2D and 3D Foveated Video

Compression in Virtual Reality. IEEE Trans. Image Process. 2021, 30, 5905–5919. [CrossRef] [PubMed]
4. Feng, Y.; Li, S.; Chang, Y. Multi-Scale Feature-Guided Stereoscopic Video Quality Assessment Based on 3d Convolutional Neural

Network. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Toronto, ON, Canada, 6–11 June 2021. [CrossRef]

5. Appina, B.; Sharma, M.; Kumar, S.; Kara, P.A.; Simon, A.; Guindy, M. Latent Factor Modeling of Perceived Quality for Stereoscopic
3D Video Recommendation. In Proceedings of the 2021 International Conference on 3D Immersion (IC3D), Brussels, Belgium,
8 December 2021. [CrossRef]

6. Wang, J.; Wang, S.; Wang, Z. Asymmetrically Compressed Stereoscopic 3D Videos: Quality Assessment and Rate-Distortion
Performance Evaluation. IEEE Trans. Image Process. 2017, 26, 1330–1343. [CrossRef] [PubMed]

7. Wan, W.; Huang, D.; Shang, B.; Wei, S.; Wu, H.R.; Wu, J.; Shi, G. Depth Perception Assessment of 3D Videos Based on Stereoscopic
and Spatial Orientation Structural Features. IEEE Trans. Circuits Syst. Video Technol. 2022. [CrossRef]

8. Yang, J.; Zhu, Y.; Ma, C.; Lu, W.; Meng, Q. Stereoscopic video quality assessment based on 3D convolutional neural networks.
Neurocomputing 2018, 309, 83–93. [CrossRef]

9. Imani, H.; Islam, M.B.; Arica, N. Three-Stream 3D deep CNN for no-Reference stereoscopic video quality assessment. Intell. Syst.
Appl. 2022, 13, 200059. [CrossRef]

10. Feng, Y.; Li, S. Stereoscopic Video Quality Assessment with Multi-level Binocular Fusion Network Considering Disparity and
Multi-scale Information. In Proceedings of the 2021 International Conference on Visual Communications and Image Processing
(VCIP), Munich, Germany, 5–8 December 2021. [CrossRef]

11. Li, Y.; Yang, J.; Zhang, Z.; Wen, J.; Kumar, P. Healthcare Data Quality Assessment for Cybersecurity Intelligence. IEEE Trans. Ind.
Inform. 2022. [CrossRef]

12. Pinson, M.; Wolf, S. A New Standardized Method for Objectively Measuring Video Quality. IEEE Trans. Broadcast. 2004,
50, 312–322. [CrossRef]

13. Hewage, C.; Worrall, S.; Dogan, S.; Kondoz, A. Prediction of stereoscopic video quality using objective quality models of 2-D
video. Electron. Lett. 2008, 44, 963. [CrossRef]

14. Chen, M.J.; Kwon, D.K.; Bovik, A.C. Study of subject agreement on stereoscopic video quality. In Proceedings of the 2012 IEEE
Southwest Symposium on Image Analysis and Interpretation, Santa Fe, NM, USA, 22–24 April 2012. [CrossRef]

15. Fang, Y.; Sui, X.; Wang, J.; Yan, J.; Lei, J.; Callet, P.L. Perceptual Quality Assessment for Asymmetrically Distorted Stereoscopic
Video by Temporal Binocular Rivalry. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3010–3024. [CrossRef]

16. Galkandage, C.; Calic, J.; Dogan, S.; Guillemaut, J.Y. Stereoscopic Video Quality Assessment Using Binocular Energy. IEEE J. Sel.
Top. Signal Process. 2017, 11, 102–112. [CrossRef]

17. Appina, B.; Dendi, S.V.R.; Manasa, K.; Channappayya, S.S.; Bovik, A.C. Study of Subjective Quality and Objective Blind Quality
Prediction of Stereoscopic Videos. IEEE Trans. Image Process. 2019, 28, 5027–5040. [CrossRef]

18. Jin, L.; Boev, A.; Gotchev, A.; Egiazarian, K. 3D-DCT based perceptual quality assessment of stereo video. In Proceedings of the
2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011. [CrossRef]

19. Liu, Z.; Wang, L.; Wu, W.; Qian, C.; Lu, T. TAM: Temporal Adaptive Module for Video Recognition. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [CrossRef]

20. Qi, F.; Jiang, T.; Fan, X.; Ma, S.; Zhao, D. Stereoscopic video quality assessment based on stereo just-noticeable difference model.
In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013.
[CrossRef]

21. Urvoy, M.; Barkowsky, M.; Cousseau, R.; Koudota, Y.; Ricorde, V.; Callet, P.L.; Gutierrez, J.; Garcia, N. NAMA3DS1-COSPAD1:
Subjective video quality assessment database on coding conditions introducing freely available high quality 3D stereoscopic
sequences. In Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience, Melbourne, Australia,
5–7 July 2012. [CrossRef]

22. Wang, J.; Wang, S.; Wang, Z. Quality prediction of asymmetrically compressed stereoscopic videos. In Proceedings of the 2015
IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015. [CrossRef]

23. Zhang, Y.; Liu, X.; Liu, H.; Fan, C. Depth perceptual quality assessment for symmetrically and asymmetrically distorted stereoscopic
3D videos. Signal Process. Image Commun. 2019, 78, 293 – 305. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3041612
http://dx.doi.org/10.1109/TIP.2021.3087322
http://www.ncbi.nlm.nih.gov/pubmed/34125674
http://dx.doi.org/10.1109/icassp39728.2021.9414231
http://dx.doi.org/10.1109/ic3d53758.2021.9687271
http://dx.doi.org/10.1109/TIP.2017.2651387
http://www.ncbi.nlm.nih.gov/pubmed/28092547
http://dx.doi.org/10.1109/TCSVT.2022.3165970
http://dx.doi.org/10.1016/j.neucom.2018.04.072
http://dx.doi.org/10.1016/j.iswa.2021.200059
http://dx.doi.org/10.1109/vcip53242.2021.9675404
http://dx.doi.org/10.1109/TII.2022.3190405
http://dx.doi.org/10.1109/TBC.2004.834028
http://dx.doi.org/10.1049/el:20081562
http://dx.doi.org/10.1109/ssiai.2012.6202481
http://dx.doi.org/10.1109/TCSVT.2020.3035679
http://dx.doi.org/10.1109/JSTSP.2016.2632045
http://dx.doi.org/10.1109/TIP.2019.2914950
http://dx.doi.org/10.1109/icip.2011.6116175
http://dx.doi.org/10.1109/iccv48922.2021.01345
http://dx.doi.org/10.1109/icip.2013.6738008
http://dx.doi.org/10.1109/qomex.2012.6263847
http://dx.doi.org/10.1109/icip.2015.7351440
http://dx.doi.org/10.1016/j.image.2019.07.012


Sensors 2022, 22, 8084 13 of 13

24. Imani, H.; Islam, M.B.; Wong, L.K. A New Dataset and Transformer for Stereoscopic Video Super-Resolution. In Proceedings of
the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA,
19–20 June 2022; pp. 705–714. [CrossRef]

25. Galkandage, C.; Calic, J.; Dogan, S.; Guillemaut, J.Y. Full-Reference Stereoscopic Video Quality Assessment Using a Motion
Sensitive HVS Model. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 452–466. [CrossRef]

26. Liu, L.; Wang, T.; Huang, H. Pre-Attention and Spatial Dependency Driven No-Reference Image Quality Assessment. IEEE Trans.
Multimed. 2019, 21, 2305–2318. [CrossRef]

27. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

28. Wang, Z.; Simoncelli, E.; Bovik, A. Multiscale structural similarity for image quality assessment. In Proceedings of the The
Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003. [CrossRef]

29. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process.
2012, 21, 4695–4708. [CrossRef]

30. Qi, F.; Zhao, D.; Fan, X.; Jiang, T. Stereoscopic video quality assessment based on visual attention and just-noticeable difference
models. Signal, Image Video Process. 2015, 10, 737–744. [CrossRef]

31. Chen, Z.; Zhou, W.; Li, W. Blind Stereoscopic Video Quality Assessment: From Depth Perception to Overall Experience. IEEE
Trans. Image Process. 2018, 27, 721–734. [CrossRef]

32. Appina, B.; Channappayya, S.S. Full-Reference 3-D Video Quality Assessment Using Scene Component Statistical Dependencies.
IEEE Signal Process. Lett. 2018, 25, 823–827. [CrossRef]

33. Silva, V.D.; Arachchi, H.K.; Ekmekcioglu, E.; Kondoz, A. Toward an Impairment Metric for Stereoscopic Video: A Full-Reference
Video Quality Metric to Assess Compressed Stereoscopic Video. IEEE Trans. Image Process. 2013, 22, 3392–3404. [CrossRef]
[PubMed]

34. Jiang, G.; Liu, S.; Yu, M.; Shao, F.; Peng, Z.; Chen, F. No reference stereo video quality assessment based on motion feature in
tensor decomposition domain. J. Vis. Commun. Image Represent. 2018, 50, 247–262. [CrossRef]

http://dx.doi.org/10.1109/CVPRW56347.2022.00086
http://dx.doi.org/10.1109/TCSVT.2020.2981248
http://dx.doi.org/10.1109/TMM.2019.2900941
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/acssc.2003.1292216
http://dx.doi.org/10.1109/TIP.2012.2214050
http://dx.doi.org/10.1007/s11760-015-0802-4
http://dx.doi.org/10.1109/TIP.2017.2766780
http://dx.doi.org/10.1109/LSP.2018.2829107
http://dx.doi.org/10.1109/TIP.2013.2268422
http://www.ncbi.nlm.nih.gov/pubmed/23771337
http://dx.doi.org/10.1016/j.jvcir.2017.12.001

	Introduction
	Related Works
	Method of SVQA
	Stereoscopic Formation
	Temporal Adaptive Module
	Objective Quality Score Estimation

	Experiments
	Databases and Indicators
	Overall Performance
	Experiments under Different Distortion Types
	Ablation Experiment

	Conclusions
	References

