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Abstract: Human gait analysis presents an opportunity to study complex spatiotemporal data
transpiring as co-movement patterns of multiple moving objects (i.e., human joints). Such patterns
are acknowledged as movement signatures specific to an individual, offering the possibility to
identify each individual based on unique gait patterns. We present a spatiotemporal deep learning
model, dubbed ST-DeepGait, to featurize spatiotemporal co-movement patterns of human joints, and
accordingly classify such patterns to enable human gait recognition. To this end, the ST-DeepGait
model architecture is designed according to the spatiotemporal human skeletal graph in order to
impose learning the salient local spatial dynamics of gait as they occur over time. Moreover, we
employ a multi-layer RNN architecture to induce a sequential notion of gait cycles in the model.
Our experimental results show that ST-DeepGait can achieve recognition accuracy rates over 90%.
Furthermore, we qualitatively evaluate the model with the class embeddings to show interpretable
separability of the features in geometric latent space. Finally, to evaluate the generalizability of our
proposed model, we perform a zero-shot detection on 10 classes of data completely unseen during
training and achieve a recognition accuracy rate of 88% overall. With this paper, we also contribute
our gait dataset captured with an RGB-D sensor containing approximately 30 video samples of each
subject for 100 subjects totaling 3087 samples. While we use human gait analysis as a motivating
application to evaluate ST-DeepGait, we believe that this model can be simply adopted and adapted
to study co-movement patterns of multiple moving objects in other applications such as in sports
analytics and traffic pattern analysis.

Keywords: deep learning; gait recognition; spatiotemporal sequence data analysis

1. Introduction

Human gait encompasses a complex set of biomechanical dynamics that are orches-
trated by the central nervous system and happen completely at the unconscious level.
Research findings from neurophysiology and psychology [1,2] support that gait uniquely
captures the discriminative and identifying attributes of the way in which an individual
walks. Interestingly, humans can have this experience of seeing a person of familiarity
walking at a distance possibly in the opposing direction, and yet have the remarkable
ability to recognize who that person is due to the person’s individual gait characteristics.
Identifying these gait feature patterns, although easy for humans, still poses a significant
research problem for the field of gait analytics. The quantified and interpretated individual
gait patterns have significant potential to be used as biometric markers for verification [3],
as identification for security or forensic purposes, for analyzing and diagnosing gait anoma-
lies arising from mobility disorders such as neurodegenerative disease [4], or as part of a
gait-monitoring system for rehabilitation for stroke patients or fall detection [5,6].

Gait recognition, a method to extract and authenticate signature gait patterns, con-
tinues to be a difficult problem. In particular, gait authentication faces the difficulty of
measuring time-varying dynamics co-occurring with multivariate spatial relationships that
must consider a feature space representation that will embed the measurements of one
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person with a smaller margin than the measurements of all other subjects. Gait analysis
and classification techniques can be, in general, categorized by the modality for capturing
the data and its associated representation along with the methods used to process and
extract the periodic features to ensure optimal class embeddings. Often, existing solutions
place implicit emphasis on a specific domain regarding the spatiotemporal structure of gait
parameters used for measurement. For example, RGB video data can be represented as
a 2D binary silhouette-based image, often referred to as a Gait Energy Image (GEI) [7,8],
where the temporal domain is averaged over all the frames to produce a single image.
Although succinct in its representation, GEI maintains the spatial domain, albeit from
one viewpoint, but is subject to spatial artifacts such as a coat occluding partial motion of
the legs [9]. On the other hand, marker-based and RGB-D solutions look to capture the
multivariate positional data of joints over time and often capture the spatial domain by
hand-engineering features such as calculating mean anthropometric measurements per
person or dynamic gait features such as stride length [10,11].

The framework we have developed to extract features starts by modeling the rich
multivariate gait dynamics into a spatiotemporal graph. Since gait can be reduced to a
periodic function of symmetry [12] (i.e., right double support (both feet touch the ground,
right leg in front), right midstance (legs are positioned closest together, right foot touches
the ground), left double support (both feet touch the ground, left leg in front), and left
midstance (legs are positioned closest together, left foot touches the ground)), we can
encode the co-movement patterns of limb joints directly into the model by giving symmetric
moving objects (joints) shared parameter access in the model. After the joint inputs are
semantically defined in the graph, a multi-layer Recurrent Neural Network (RNN) is
generated to featurize the data. Recurrent Neural Networks (RNNs) [13] are computational
graph networks that process sequential data with a recurrent activation at each time-step
and have shown powerful capability in many end-to-end tasks. Previous works [14,15]
have shown promise in specific use cases such as activity recognition and driver maneuver
and human motion forecasting. We propose to use the spatiotemporal RNN architecture
to extract the feature embedding space of individual gait signatures for classification.
We evaluate our gait recognition framework on two classifiers and consistently achieve
over 90% accuracy. Moreover, our extensive experiments demonstrate that by capturing
both spatial and temporal physics of the movement patterns in human gait, our physics-
based spatiotemporal deep learning model can significantly outperform other existing gait
recognition models.

The remainder of the paper is organized as follows. In Section 2, we discuss the related
work. Section 3 provides the problem definition and our solution. In Section 4, we describe
the model ST-DeepGait in detail. Then, we provide the technical implementation and
describe the experimental study, evaluation metrics, and report on the results in Section 5.
Finally, we provide our concluding remarks and discuss future directions in Section 6.

2. Related Work

Previous research efforts have applied and developed techniques from image process-
ing, data mining, and machine learning to capture the time-varying dynamics of human
gait co-occurring in multivariate dimensional space. The difficulty of identifying and
recognizing patterns of gait lies in the complexity of data representation and the high
dimensionality of the spatiotemporal feature space associated with modeling human mo-
tion. In this section, we review the related work according to the data modalities and
featurization methods implemented to capture the gait dynamics.

2.1. RGB-Based Methods

RGB video-based methods for person identification have been driven by an implicit
focus on the spatial domain and are often plagued with problematic feature representations
of the 2D imagery due to variations in illumination, point of view, and invariance among
same class subjects [9,16]. These traditional approaches are based on extracting handcrafted
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features from image frames. Most existing work follows a background subtraction method
using a binary silhouette as a means for abstracting the walking subject and deriving
measurements from its shape. As the subject moves in each frame, the foreground pixels
provide movement in subsequent frames as the background pixels are subtracted off.

As noted in Section 1, previously with gait data, Gait Energy Images (GEIs) attempt to
integrate the binary silhouette image processing technique with temporal information by
averaging the silhouette across all frames of the video [17]. Much work has been conducted
in the development and application of GEIs, including metric learning frameworks such as
siamese networks [18,19], to help with class invariance with differing viewpoints. Other
handcrafted feature methods from 2D look to extract human body parts or skeletal informa-
tion using distance function approximations as a mean [20]. In this work, the authors show
that their skeletal method places greater emphasis on how the body moves, rather than
on outside covariate factors as the silhouette-based methods tend to do. As mentioned,
silhouette-based methods tend to suffer from artifacts not relevant to body shape and gait
patterns such as articles of clothing. For example, a jacket or bag may occlude the actual
shape information used for inference especially when sensing from a side viewpoint.

2.2. Depth-Based Methods

Many previous works have had the insight to use 3D skeletal data to provide kinematic
details out of raw gait data [11,21,22]. The authors in [11] extracted joint-angle trajectories
of the lower limbs from the 2D GEI as a way to extend the silhouette-based method to
include the kinematic features of joints. Current gait classification research stemming from
inexpensive depth sensors such as Microsoft Kinect include [5,10,23–25]. Depth sensors,
e.g., Microsoft Kinect, provide 3D skeletal tracking technology with high accuracy.

The authors in [10] use statistical methods that involve handcrafting features and
random sampling to infer whether the features are relevant to a particular sample. For
example, they calculate the mean and standard deviation during a gait cycle for step length
as the maximum distance between two ankles, and the stride length as two steps. They also
handcraft, for one gait cycle, the mean and standard deviation for the length of bones and
the height as the sum of bone lengths from head to foot. Other approaches use Dynamic
Time Warping (DTW) as a measure to compare distances between joint signals [25]. For
example, in [10], the authors calculate joint pair distances over a gait cycle as a way to
interpret relative movements of gait. The authors propose that the relative joint pair
distances effectively extract the gait pattern. In addition, the authors calculate the joint
relative angles between 3D points by defining a reference point. Their main objective is to
encode the relative movement patterns between joints. Then, they perform DTW to align the
data series collected from joints. Handcrafted features can inject domain-specific skewness.
For example, the practitioners in [10,11] only consider calculating the dynamic features
from the angles at the hips, knees, and ankles as they follow a five-link biped model [26].
Without the existence of a standard skeletal data set for classification, the machine learning
models are often trained with a small number of samples per class. Unfortunately, this
can cause significant bias in the model and is not likely to generalize well to new data sets.
Although these depth-based methods move toward considering the dynamic behavior of
gait and are human-interpretable, these ad hoc approaches to featurizing data are highly
reliant on the training data the model sees, the sample of selected features, and even the
value of k for nearest neighbors classification, leading to instability during inference. We
show in Section 5 that our method for embedding features leads to a generalizable method
by testing inference on new classes of data that are completely unseen during training.

2.3. Spatiotemporal Deep Learning Methods

Convolutional Neural Networks (CNNs) [27] have been extensively employed for 2D
image recognition tasks and are extended toward video recognition tasks such as video-
based gait recognition. The authors in [28] argue that many deep learning architectures for
video recognition often rely on the early layers to implicitly capture motion dependencies.
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As mentioned in Section 1, some solutions place inherent emphasis on a particular domain,
and as [28] reasons, CNNs tend to place it on the spatial domain. Interestingly, the authors
in [29], propose a Convolutional Autoencoder (CAE) to explicitly formulate the temporal
domain of the manifold for skeletal human motion modeling by convolving over the time
domain. In this CNN-based approach, the joint positions are flattened into a 1D array per
each time step, thereby removing the multivariate spatial features of the joint movements.
While this model ignores any spatial representation, the authors claim the explicit encoding
of the temporal aspect of motion result in equal performance as compared with capturing
the pose subspace. In [30], the authors employ IMU sensors placed at five joint positions to
capture spatial and temporal patterns of movement. In this work, the authors employ a
2D CNN to model the data represented in the frequency domain (rather original domain);
hence, ignoring many important data features. Moreover, this approach requires extensive
model calibration and adjustment per subject due to known limitations of IMU sensors.
In [14,15,31,32], in various motion prediction and driver maneuver forecasting applications,
the spatiotemporal dependencies are considered to model the data for specific tasks. We use
spatiotemporal graphs (ST-graph) to encode the spatial relationships that also determine
the wiring of the neural network architecture to allow for a rich spatial and temporal
representation. We also recognize the periodicity and bilateral symmetry of the human gait
data by predefining the co-movement behavior in the ST-graph to guide the training of the
neural network based on the physics of the task; hence, introducing a physics-based neural
network [33] for human gait recognition.

3. Proposed Method

In this section, we formally define the problem and provide the general details of
our gait recognition model as illustrated in Figure 1. Given the various subjects’ raw gait
input from the RGB-D sensor, for example, in Figure 1, we aim to identify who the person
is by predicting the actual corresponding Subject Identification (SID) label. Thus, our
overall objective is to extract, transform, and embed the features from the multivariate
spatiotemporal data captured from the depth sensor to perform classification.

3.1. Problem Definition

We consider the gait classification problem as a three-part process: (1) data representa-
tion, (2) model training for featurization, and finally, (3) inference.

First, we represent the data as a series of multivariate joint rotations. The orientation
data captured as a quaternion are translated by an exponential map for which we formally
define a unit vector ω in R3, which specifies the direction of rotation and θ in R represents
the angle of rotation in radians. The quaternion q is normalized as q̂ = q

|q| and is a 4D vector

~q = [qx qy qz qw]T , and specifically, the axis vector ω is defined by vx = qx√
1.0−q2

w
; vy =

qy√
1.0−q2

w
; vz =

qz√
1.0−q2

w
and where θ = 2cos−1(qw).

For each X(i), we consider a series of tensors of rank r ≥ 0 and a dimensionality d,
where d > 1 denotes a multivariate series and d = 1 a univariate series, all of length T.
Then, X(i), is a RT×r×d tensor such that Xt,k,l is the k, lth component for r > 0, otherwise
the lth component of the mth series at time t. However, T can vary or remain static for
all series in X(i); to reiterate, there is not a constraint on variable length series for input
X. In our case, the gait data aree represented in axis-angle rotations in 3 dimensions. The
rank of the input tensor will depend on the number of joints related to the predefined
ST-Graph. For example, an arm node could contain the shoulder, elbow, wrist, and hand
joints. We would consider this a tensor of rank 1 given the 4 features with dimension d = 3.
Additionally, each time series is of variable length to account for the natural stocahsticity of
human movement, so T will depend on the number of frames per sample. In this example,
we have one arm input defined as a series RT×4×3.
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Figure 1. This is a summary of the gait recognition model we have developed. (a). The raw video is
collected from an RGB-D sensor. The skeletal joint rotations are provided by the sensor’s technology
from which we preprocess and define in the ST-Graph. (b). The deep learning model is constructed
according to the arrangement ST-Graph. (c). The model outputs at each layer the feature maps of size
(T, 128), (T, 256), and (T, 512). (d). At inference, the model makes the class prediction according to
the Maximum Likelihood Estimation (MLE) of the model after training.
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Figure 1. This is a summary of the gait recognition model we developed. (a). The raw video is
collected from an RGB-D sensor. The skeletal joint rotations are provided by the sensor’s technology,
which we preprocess and define in the ST-Graph. (b). The deep learning model is constructed
according to the arrangement ST-Graph. (c). For each layer, the model outputs the feature maps of
size (T, 128), (T, 256), and (T, 512). (d). At inference, the model makes the class prediction according
to the Maximum Likelihood Estimation (MLE) of the model after training.

We can consider each target y(i) ∈ Y denoting the true label, for i = (1, 2, . . . , m) where
m is the number of samples. Each y(i) is the annotation for a corresponding X(i). To learn
the best parameterization that characterizes the multivariate classification given the training
set X and targets Y, an optimization update given by the cost function J(X(i), y(i), Θ), for
i = (1, 2, . . . , m) where m is the number of samples. J(X(i), y(i), Θ̂) must be minimized to
select the best approximation of Θ until convergence. Thus, misclassification errors are
distributed through backpropagation, which employs taking the derivative of the cost
function J with respect to the parameters Θ̂. Thus, the classification function fΘ̂(x) will
predict the correct label y(i) given an input X(i), such that:

fΘ̂ = RT×r×d 7→ Y. (1)

4. ST-DeepGait

An important aspect of our approach for identifying signature spatiotemporal patterns
of gait is the explicit definitions of the spatial and temporal relationships applied directly
within the model. To enforce network understanding of the spatiotemporal dynamics,
the two domains are intertwined by defining the spatial adjacency, spatial symmetry,
temporal frame differences, and parameter sharing concurrently within the multi-layer
network modules and connections between layers. The routing, and thus, updates during
optimization, are dependent on the higher-level semantic understanding of spatiotemporal
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dependencies of gait. Furthermore, the deep learning environment is capable of making
optimal featurization decisions without needing to reduce the dimensionality of the data.
Interestingly, this will lead to inferences made on the subtleties of gait features in higher
dimensional space without the injection of biophysical domain knowledge.

4.1. Spatial Representation

After raw data collection and preprocessing, we model the relations between the joint
inputs to the network with an ST-graph. As referenced in Section 1, the dynamics of gait
involve a symmetric cycle of multivariate movement patterns and our objective is to model
the spatiotemporal structure of gait movement explicitly within the network model. This
ST structure allows us to integrate RNNs specific to each graph factor, such as a given
node or edge, into the multilayer network architecture. The proposed model captures the
spatial structure of joint relations through both the hierarchy of joint rotational relativity
and through how information is passed and updated according to higher-level semantics
throughout the model. We model the co-movement patterns between parallel limbs with
the same graph coloring between nodes and edges. For example, we introduce parameter
sharing between alike limbs. Parameter sharing in deep learning models provides a method
for compressing the model size leading to network efficiency. Additionally, the model
updates the parameters via gradients from both limbs further imposing the spatial structure
of gait based on the ST-graph definition in Section 4.4.

4.2. Temporal Representation

The temporal domain is captured through the hidden layer of the RNN through LSTM
(Long Short-Term Memory) cells. LSTMs [34] maintain a context vector with the output
vector at each time step. The context vector has a gating mechanism that affects the cell
memory, and thus, the output information of the hidden nodes. At each time step, the
LSTM can read from, write to, or reset the cell memory. In addition, RNNs allow for
variable length sequences as input into the model, so no additional time-scale processing is
needed on the raw video data such as zero-padding or linear interpolation.

4.3. Inference

After training, the baseline model is able to produce a posterior probability distribution
over each class label to infer which label best describes the input given the parameterized
Θ̂ and input x(j), where j = (1, . . . , N) and N is the number of test samples. Inference can
be made directly by the same softmax activation Equation (2) outputs; additionally, the
model can return the final latent layer, or the embeddings provided by the network, as
the learned representation that encodes the geometric embedded features of each class as
a continuous vector in lower dimensional space. Our final goal is to construct a feature
extractor that can be used to authenticate a test case’s gait. To this end, the model can
simply make an inference by the argmax of the posterior probability distribution given
by the softmax activation on the logits, or by maintaining the class embeddings to map
input x(j) to a point in d-dimensional embedded space such that similar gait inputs are
close to one another. From here, a simple (k-Nearest Neighbors) kNN classification can be
conducted to verify that the person is recognizable by test input x(j).

4.4. Formalization

To decompose the spatial and temporal components, we assume an ST-graph
G = {V, Es, Et} to structure the semantic factors for all m input series X(i). An edge e ∈ Es
denotes the spatial relationship between a pair of vertices in V, where es = (u, v). Then, it
follows that an edge e ∈ Et denotes the temporal relationship occurring at consecutive time
steps for some vertex v ∈ V where et = (u, u).

Each node and edge has a corresponding feature tensor with the objective to parame-
terize them to learn the output zt at each time step in the series. Overall, the parameters are
learned to achieve the best approximation of the main objective function in Equation (1).
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Here, factors can be grouped in such a way that semantically similar vertices can choose
to also share factors. This allowance introduces performing parameter sharing over those
feature tensors exhibiting equivariance. If we choose to partition vertices on their corre-
sponding semantic meaning, then we can have a distinct set of AV = (V1, . . . , VP) where Vp
denotes a vertex or a set of equivariant vertices and ΦVp denotes the shared factor function.
Then, AE = (E1, . . . , EM) make up an edge or the set of edges partitioned such that Em is
a set of edges whose pair of vertices belong to some Vp ∈ AV . An example is shown in
Figure 2.
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Figure 2. ST-graph example of skeletal joint data. As shown in the figure, a total of 13 nodes are
considered to capture the joint movements, where each joint contains an (x, y, z)-position in camera
coordinate space and an (x, y, z, w)-quaternion. The colors of the skeleton on the left are shown
according to the colors of the nodes on the graph. The spine connects to both arms and both legs and
this structure will be represented in the design of the model architecture. Each node is designated a
temporal edge represented as a self loop, and the arms and legs have spatial adjacency edges to the
spine, and spatial symmetry edges to each other. The diagram also shows the joints are collapsed
around a specific node as defined by the human body. For example, Shoulder Center and Hip Center
are both defined to be a part of the spine node. This is specific to our own implementation for
computational efficiency. However, the graph is general and can be applied to whatever resolution
may be prescribed.
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Figure 2. ST-graph example of skeletal joint data. The colors of the skeleton on the left are shown
according to the colors of the nodes on the graph. The spine connects to both arms and both legs and
this structure will be represented in the design of the model architecture. Each node is designated
a temporal edge represented as a self loop, and the arms and legs have spatial adjacency edges to
the spine, and spatial symmetry edges to each other. The diagram also shows that the joints are
collapsed around a specific node as defined by the human body. For example, Shoulder Center and Hip
Center are both defined to be a part of the spine node. This is specific to our own implementation for
computational efficiency. However, the graph is general and can be applied to whatever resolution
may be prescribed.

After partitioning the distinct Φ factors of the ST-graph, we give each Φ factor its own
RNN module. ΦVp for p = (1, . . . , P) in set AV will be represented as nodeRNNVp , and ΦEm

will be represented as edgeRNNEm for m = (1, . . . , M) in set AE. Since AE make up the set of
edges incident to pairs of vertices in AV , we provide a direct mapping in our computational
graph model between the incident edges and vertices with their corresponding edgeRNNs
and nodeRNN, respectively. For example, let us consider an edge Em in AE that is incident
to V1 and V2 in AV such that Em = (v1, v2). Thus, the edgeRNNEm feature tensor Z will be
parameterized and then routed to V1 and V2.

For spatial representation of V ∈ G, we create a Multi-Layer Perceptron (MLP) for
each Vp ∈ AV such that, given an input xT×r×d ∈ X, and parameter Θ(Wr×d × h, bh),
where W denotes the weight matrix, and b the bias vector, the vertex feature tensors are
parameterized by a linear combination of the form hl(x) = Wx + b and hl+1 = h (hl) for
l = (1, . . . , L), where L is the number of fully-connected hidden layers. Here, an activation
function α can be used to introduce non-linearity into the network via linear function h,
such that hl+1 = α(h (hl)) for l = (1, . . . , L).

For each edgeRNN, we build an RNN with LSTM cell such that given an input x(i), a
hidden vector H = (h1, . . . , hT) is operated on by a composite LSTM function [34], such
that LSTM(Wxhxt + Whhht−1 + bh) gives the output tensor Z = (z1, . . . , zT), such that
zt = Whzht + bz.

For each nodeRNN, we concatenate the spatial output feature map from the MLP
activation of Vp with each edge factor from edgeRNN feature tensor Z that is incident to
Vp. At this point in the network, each nodeRNN contains all relational feature maps from
the space and time domains defined by the ST-Graph G and output of a single LSTM layer
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as input. Thus, a second LSTM layer within each nodeRNN receives the feature maps of
es ∈ Es and et ∈ Et that have been defined as jointly interacting with the incident Vp.

A final nodeRNN concatenates the feature maps from all nodeRNNs represented by
the partitioning of AV leading to a third and final LSTM layer. The final nodeRNN receives
a softmax activation such that on the output tensor Z,

ŷ(i) = so f tmax(z1, . . . , zC)i =
ezc

∑C
k=1 ezk

∀ c ∈ C, (2)

and C is the number of classes. The softmax activation squashes the values to non-negative
numbers that sum to 1, generating what can be interpreted as a probability distribution over
C classes. During training, optimization occurs with the Maximum Likelihood Estimation
(MLE) of the posterior probability distribution given by softmax minimizing the objective
function, which we formulate as the cross-entropy error function such that the distance
between the true distribution and the softmax distribution is defined as:

LCE = −
C

∑
i=1

yi log ŷi. (3)

4.5. Model Architecture

The mapping of the model, as outlined in Section 4.1, is implemented within the
framework of the multi-layer RNN architecture. The model network framework is in
Figure 3. As shown in Figure 2, the nodes of the graph represent the left and right arm, left
and right leg, and the trunk or spine of the body; the edges model pairwise relationships
between interacting nodes. For example, in Figure 2, the hip center joint, considered a part
of the spine, is connected by a spatial edge to both the hip left and hip right, as defined
as the left and right leg, respectively. The model is designed within its inherent structure
and routing to learn the relative movements occurring among these joint rotations with
the intent to distinguish the variations of these relative movements between classes. For
additional model compression and computational efficiency, we collapsed the joints into a
single vertex based on correlated movement within the general trajectory of joint rotation
occurring in one cycle. This representation reduces the number of RNNs needed at each
layer as defined by the nodeRNN and edgeRNN in Section 4.1. Furthermore, as shown in
Figure 3, the second layer of the architecture shows three nodes to represent all joint inputs.

At the base of the model, the MLP and edgeRNNs receive the spatial and temporal
inputs as defined by the edges connected to each vertex in Vp. For example, as shown in
Figure 4, the node in the ST-graph defining legs contains the features from three spatial
edgeRNN modules and one temporal edgeRNN module as they occur unrolled over time.
In Figure 5, the dotted lines show how information flows from each layer unrolled over
two time steps. Thus, the leg nodeRNN receives a rich ST representation from the base
layer routing through its own temporal edgeRNN, a sum of features edgeRNN, and a
spatial edge feature extraction occurring in both an edgeRNN and an MLP network. This
process is replicated for all vertices in AV as defined by the ST-graph G. Additionally,
edgeRNNs can be shared across nodeRNNs; edgeRNN sharing not only adds context to
the spatiotemporal relationships occurring in the biomechanics of gait but also makes the
network more compact. As the network routes through each nodeRNN, in particular, for
the spine, legs, and arms, each nodeRNN in Vp routes the transformed sequential feature
maps through a second LSTM layer. The outputs Z from each edgeRNN are concatenated
to form a final sequential feature representation to be processed in a final nodeRNN and a
third LSTM layer. In Figure 6, a simplified featurization is shown to illustrate the learned
features of the LSTMs at each layer. After the specified recurrent routing ends per series
x(j), the last ouptut zT generated by the final LSTM encodes the logit value, or class score,
produced during the feedforward pass defined in Section 3. The logit layer can be used
with the softmax activation (see Equation (2)) for optimizing the network during training
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(see Equation (3)), or for after training during inference. Alternatively, after training, the
final layer can also be extracted from the model to produce class embeddings.

Figure 3. RNN model architecture at time step t. The first layer receives the inputs as defined in the
spatiotemporal graph in Figure 2. The first layer RNNs characterize the semantic relations between
nodes as edges. This includes the spatial structure, as in adjacency, but also in symmetry through
parameter sharing in the network. Each color denotes a factor function and the edgeRNNs are colored
according to the graph in Figure 2. The parameter sharing is denoted by those edgeRNN modules
highlighted within the yellow box. The edges are defined in the network as edgeRNNs in the base
layer and are routed to the incident nodes of the ST-Graph. The three colored nodes of the ST-Graph
(Figure 2) manifests in the network as three nodeRNNs in the second layer of the model. See Figure 4
for a detailed view of a nodeRNN. Finally, the output from the nodeRNNs are concatenated as input
to the last layer’s nodeRNN. Each layer contains an RNN module meaning that at each frame the
previous modules context is considered in the next frame allowing for a rich understanding of the
spatiotemporal dynamics of gait.
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Figure 4. Leg nodeRNN implementation details. This example shows how the input is represented
for the leg node of the graph. The edges are defined in edgeRNNs as spatial and temporal information
based on the semantics of the ST-Graph in Figure 2. (The model architecture and ST-Graph shown is
greyed-out to zoom in on the the leg.) The three edgeRNN modules in the yellow denote parameter
sharing occurring in the network between the left and right leg. For example, the spatial edge legs’
RNN will have one set of weights for both the left and right leg inputs. This introduces spatial
awareness to the network while also compressing the size of the network.
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Figure 5. The model unrolled through time. The dotted lines show how the context from the
previous LSTMs are passed among the edgeRNNs in the first layer and the nodeRNNs in the second
layer and the final nodeRNN in the last layer. At each time step, the spatiotemporal semantics are
introduced through the inputs according to the graph but also according to the sequential patterns
emerging as it updates via backpropagation through time.
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The data collection was conducted under the approved Colorado Institutional Review 334
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asked each volunteer to repeat this process 30 times; this generates approximately 45 to 60 339

analog noise-inherent cycles per class. Since the objective of our hypothesis is to classify 340
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Each joint contains an (x, y, z)-position in camera coordinate space and an (x, y, z, 346

w)-quaternion. The joint quaternions follow a kinematic tree representation for which we 347

convert each joint by an exponential map as defined in Section 3.1 in the coordinate frame 348

of its parent joint. The resulting joint representation allows for three degrees of freedom at 349

each joint in the form of axis-angle. In biomechanics, the determination of the body’s center 350

of mass is important for defining measurements of movements accurately [15]. Thus, the 351

base reference starts at the hip center joint and is sometimes referred to as spine base; this 352

is aptly defined by the sensor’s technology as this joint is likely to have the least amount, 353

if any, rotation during walking [15]. The end joints (i.e., thumb or foot) do not contain 354

orientation data as they occur at the end of the kinematic chain and are defined by the 355

parent, so these are not included in the inputs. We drop the (x, y, z)-positional data due 356

to being absolute in tracking space and for possible scale variation issues as the person 357

moves toward the sensor. The data is preprocessed by an exponential smoothing filter 358

[39] to reduce the jitter acquired from the sensor while tracking. Formally the filter is 359

Figure 5. The model unrolled through time. The dotted lines show how the context from the previous
LSTMs is passed among the edgeRNNs in the first layer and the nodeRNNs in the second layer and
the final nodeRNN in the last layer. At each time step, the spatiotemporal semantics are introduced
through the inputs according to the graph but also according to the sequential patterns emerging as it
updates via backpropagation through time.
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Figure 6. ST-DeepGait model featurization example occurring at each layer. The LSTM feature
output at each layer is shown for illustration. The first layer EdgeRNNs have a feature output of
the entire sequence length by the number of hidden neurons. The second layer NodeRNNs have
a feature output of the entire sequence length by the number of hidden neurons. The final layer
is a concatenation of all nodeRNNs for an output of sequence length by the number of hidden
neurons. The final LSTM featurization is then used to produce the embeddings or make a softmax
distribution. The features are not human-interpretable, but show the network is learning oscillating
feature patterns.
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to solving pattern recognition on multivariate spatial data co-occurring with time-varying 376
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Figure 6. ST-DeepGait model featurization example occurring at each layer. The LSTM feature out-
put at each layer is shown for illustration. The first layer EdgeRNNs have a feature output of the
entire sequence length by the number of hidden neurons. The second layer NodeRNNs have a
feature output of the entire sequence length by the number of hidden neurons. The final layer is a
concatenation of all nodeRNNs for an output of sequence length by the number of hidden neurons.
The final LSTM featurization is then used to produce the embeddings or make a softmax distribu-
tion. The features are not human-interpretable, but show that the network is learning oscillating
feature patterns.

5. Experimental Study
5.1. Dataset

Our method uses our own data set composed of the raw input produced by the RGB-D
Microsoft Kinect sensor and Software Development Kit (SDK) from which we collect the
skeletal gait data based on 20 joints per frame at 30 Hz. The Kinect sensor has an RGB
camera with a 1920 × 1080 pixel resolution and a depth camera based on Time-of-Flight
(ToF) sensing via infrared (IR) with a depth resolution of 512 × 424 pixels. To capture data,
the sensor does not require careful considerations such as calibration, synchronization of
several sensors, or body markers.

The data collection was conducted under the approved Colorado Institutional Review
Board (IRB) protocol 18-2563 entirely on the University of Colorado Denver campus.
Volunteers were recruited to walk forward, moving in the direction toward the sensor
(see Figure 1: Input Data). The sensor can accurately track the skeleton approximately at
a distance of 3 meters, which captures about 1.5 to 2 gait cycles. Due to this restriction,
we asked each volunteer to repeat this process 30 times; this generates approximately 45
to 60 analog noise-inherent cycles per class. Since the objective of our hypothesis is to
classify signature spatiotemporal gait patterns, we collected data from 100 individuals
under these same conditions to induce robustness in the evaluation of the model. We
did not collect any metadata about the person and anonymized each volunteer’s data by
annotating the data with a random SID. All data were reviewed in a 3D visualization as
part of the data cleaning.
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Each joint contains an (x, y, z)-position in camera coordinate space and an (x, y, z,
w)-quaternion. The joint quaternions follow a kinematic tree representation for which we
convert each joint by an exponential map as defined in Section 3.1 in the coordinate frame
of its parent joint. The resulting joint representation allows for three degrees of freedom at
each joint in the form of axis-angle. In biomechanics, the determination of the body’s center
of mass is important for defining measurements of movements accurately [12]. Thus, the
base reference starts at the hip center joint and is sometimes referred to as spine base; this
is aptly defined by the sensor’s technology as this joint is likely to have the least amount,
if any, rotation during walking [12]. The end joints (i.e., thumb or foot) do not contain
orientation data as they occur at the end of the kinematic chain and are defined by the
parent, so these are not included in the inputs. We drop the (x, y, z)-positional data due to
being absolute in tracking space and for possible scale variation issues as the person moves
toward the sensor. The data are preprocessed by an exponential smoothing filter [35] to
reduce the jitter acquired from the sensor while tracking. Formally, the filter is defined
as St = α yt−1 + (1 − α) St−1, where α is the smoothing constant. The constant α was
determined by visualizing the 3D reconstructed skeletal data before and after filtering.

Limitations of the data include the tracking range of the sensor. The lack of a standard
database for gait data, especially for the case of machine learning methods, might be due
to the difficulty of collecting the large amounts of data required to build a high quality
machine learning model that will generalize well to test data. For our study, we had each
volunteer walk in front of the sensor 30 times in an attempt to accumulate enough data
for a deep learning model to generalize well. Additionally, the sensor is subject to error
when not in tracking range, or, for example, if one of the joints is not in the field of view.
We cleaned the data by ensuring poor estimates of tracked skeletons were not included in
the data set.

Our classification problem is about extracting and matching spatiotemporal patterns
particular to an individual’s gait. Skeletal parameters such as bone lengths and height
certainly could be particular to an individual but are scalar values that could be used to
classify by maintaining a lookup table. However, this solution does not capture the spirit
of matching dynamic spatiotemporal patterns. We constrain the solution as such to adhere
to solving pattern recognition on multivariate spatial data co-occurring with time-varying
dynamics. Therefore, our training and inference are made solely on the relative joint
rotational data derived from the (x, y, z, w)-quaternion data that make up a gait cycle.

As a research contribution, we release our data set containing around 30 gait videos
per 100 subjects totaling 3087 gait video samples. Each frame maintains the raw joint data
in both the absolute (x, y, z)-positions and relative (x, y, z, w)-quaternions. In addition, we
preprocessed the data with an exponential smoothing filter and converted the quaternions
to R3 space in the form of axis-angle representation. The data set will both remain in raw
and filtered form and in the binary files we used for our own experiments for researchers
to reproduce or develop new work with which is available on our lab’s website [36]. All
source codes will also be released online with a link to our Git repository upon publication.

5.2. Implementation

We implemented ST-DeepGait using the TensorFlow 1.12 Deep Learning (DL) frame-
work. TensorFlow provides efficient automatic differentiation and we did not make mod-
ifications to its existing tools. We made use of TensorFlow’s variable_reuse structure to
perform parameter sharing between limbs in ST-DeepGait. TensorFlow also allows for
saving Θ̂ after training via model checkpointing. The model is then restored, with Θ̂ frozen, to
produce the class embeddings on the X input. This is completed entirely online as a single
process. Our system implementation was written in Python 3.6 from the data collection
and preprocessing to the evaluation and results. All of our experiments were run on a
multi-core cluster containing 16 compute nodes each containing 2 × Intel Xeon E5-2650v4
Broadwell-EP 2.20 GHz Twelve Cores with 128 GB of RAM and 1 GPU node containing 4
Nvidia Tesla P100s. We chose to run the ST-DeepGait model on the compute nodes as it
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does not contain any convolutional layers and the differences in runtimes were negligible.
The bottleneck in runtime mostly stems from the sequential dependency between LSTM
layers. The approximate time for training 100 subjects on ST-DeepGait takes about 12–16 h
depending on the data split. Inference for the same split takes 5 min.

5.3. Model Hyperparameters

The model architecture detailed at each time step is shown in Figure 3. The hidden
layers in the base of the model’s edgeRNNs (i.e., LSTM and MLP) each contain 128 neurons.
The second layer of nodeRNNs each contains 256 neurons in the hidden layer of the LSTM
layer and fully-connected layer. At the final layer, the last LSTM contains 512 neurons. All
layers contain a Rectified Linear Unit (ReLU) activation, except that the last layer before the
softmax activation has a hyperbolic tangent (tanh) nonlinearity. To obtain class embeddings,
we return the hidden layer vector of dimensionality d = 128 before the tanh or softmax
activation. The network has an Adam optimizer [37] with the learning rate set to 3 × 10−5

and updates with Stochastic Gradient Descent (SGD). Since the number of frames never
exceed 185 and average around 100, we choose not to truncate unrolling through time. At
each epoch, the training data are shuffled so the model is not fed a false pattern within the
input queue.

5.4. Experimental Methodology

The evaluation of the ST-DeepGait model is two-fold: (1) to consider and evaluate
the model quality in terms of stability, generality, and consistency, on the featurization of
the spatiotemporal gait data with the class embeddings, and (2) to perform a behavioral
analysis of the model.

The objective of the experiments was to learn an optimal Θ̂ such that the correct
label predictions could be made on unseen test examples. To this end, the data X and
corresponding y label were split into a training set and test set. We tested the model on two
separate splits: (1) 80% training and 20% test, (2) 60% training and 40% test. Each sample
contains a series of variable length T due to the natural variation between data recordings,
and a multivariate feature matrix for the 20 joints each in the axis-angle representation
in R3. However, the dimension of 20 reduces to the number of joints required to define
the input for each edgeRNN such that spine and leg inputs are a RT×3×3 tensor, and arm
inputs are a RT×4×3 tensor.

5.5. Featurization Evaluation

We evaluated the model on its approximation of geometric properties in latent space
and the separability of gait patterns between different classes. The model returns the last
hidden layer of dimensionality d = 128 from the model after training from which we
produce the class embeddings. Thus, the embedding layer learns to organize the gait
data in the d = 128 embedded space that optimizes the objective function of classification.
Specifically, the embedding will map the X data such that similar gaits are placed near each
other in latent space.

We compared the embeddings of the class features returned from the trained model
to a Convolutional-Autoencoder (CAE) [38] and to a handcrafted features method. The
CAE was inspired by the approach in Section 2 from the work in [29]. The CAE had the
convolutional specifications: Input(100x7x3)-CNN(30x1@25)-tanh-CNN(15x17@20)-tanh-
Dense(100)-Softmax. CNNs require a static input size and a scaling for variable length
inputs. The input was time-scaled by linear interpolation to a length of 100. Some videos
were more than 100 frames and some less; so inputs were downsampled or upsampled,
respectively. The CNN also employs a 2 × 1 average pooling and batch normalization.
The CAE learns a latent feature vector of dimensionality d = 128 on all of the gait data for
training. Furthermore, the CAE formulates the series, as in [29], explicitly accounting for
the temporal domain by performing a 1D convolution over all joints. However, we tried to
add a spatial component by convolving over the first axis T in a RT×r tensor, where T = 100
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and r = 1 for each x, y, and z dimension of the axis-angle representation independently
represented as 3 channels. The latent layer was used to output the class embeddings during
inference just as the ST-DeepGait model embedding layer does. The handcrafted features
method was based on [11] and we performed a 50-fold random subspace sampling over
the anthropometric and dynamic gait features, which were calculated from the absolute
(x, y, z)-positional data and not the relative rotational data, but the data are considered
relative as the distance measurements are static features specific to a SID’s skeleton. For all
handcrafted measurements, we also calculated the mean and standard deviation across all
frames per measurement for each sample. We removed the samples that were over two
standard deviations away from the mean.

We evaluated the latent space properties with Principal Component Analysis (PCA) in
Figures 7a,b and 8a,b. Figure 7a,b represent 10 random SIDs in latent space produced by an
80–20% train–test split. ST-DeepGait showed clear separation and intra-class cluster density
on the first two principal components, especially when compared to the Convolutional-
Autoencoder. We evaluated the clustering quality with silhouette score [39] shown in Table
1 on the same SIDs in Figure 7a,b. Furthermore, the PCA plots in Figure 7a,b represent a
different 10 random SIDs on a 60–40% train–test split. Again, ST-DeepGait showed clear
class separation on the first three principal components when compared with the first three
principal components of the CAE. We produced an L2 Distance Matrix on all samples and
show a subsample of all data to show the granularity of distances between class samples for
visualization purposes in Figure 9. The Distance Matrix is ordered by SID and thus shows
the approximate 30 samples of each subject with a near-zero distance for intra-class samples.
We also include a classifier evaluation by showing the kNN classification accuracy for k = 5,
11, and 30 of the embedded space. Classification results are shown for the 80–20% train–test
split in Figure 10 and for a 60–40% train–test split in Figure 11. The model maintained a
stable accuracy even at k values of 30 on both train–test splits, whereas the Convolutional-
Autoencoder and Handcrafted Features method showed a steady degradation in quality
with higher values of k.

(a) (b)
Figure 7. PCA of first 2 principal components for 10 SIDs; 80–20 train–test split. (a) ST-DeepGait
PCA for the same random 10 SIDs shown by the silhouette score in Table 1 for visualization.
(b) Convolutional-Autoencoder PCA for the same random 10 SIDs shown by the silhouette score in
Table 1 for visualization.
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(a) (b)
Figure 8. PCA on the first 3 principal components for 10 SIDs 60–40 train–test split. (a) ST-DeepGait
PCA for a different random 10 SIDs on a 60–40 train-test split for visualization on the first 3 PCs.
(b) Convolutional-Autoencoder PCA for a different random 10 SIDs on a 60–40 train–test split for
visualization on the first 3 PCs.
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Figure 9. L2 Distance Matrix for first 1200 Examples

Table 1. Silhouette Score for Class Embeddings on a random set of 10 SIDs

SID ST-DeepGait CAE

14723 0.6036 −0.0034

17175 0.5657 0.0876

17839 0.4162 0.0709

24761 0.8215 0.2288

28584 0.4494 −0.0018

31033 0.5893 0.1659

38547 0.3969 0.1579

41472 0.7017 0.0865

48646 0.4435 0.0990

50153 0.3876 0.0737

Figure 9. L2 Distance Matrix for first 1200 examples.
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Figure 7. kNN classification accuracy for k = 5, 11, and 30 on a 80/20 train/test split

Figure 8. kNN classification accuracy fork = 5, 11, and 30 on a 60/40 train/test split

Figure 10. kNN classification accuracy for k = 5, 11, and 30 on a 80/20 train/test split.
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Figure 7. kNN classification accuracy for k = 5, 11, and 30 on a 80/20 train/test split

Figure 8. kNN classification accuracy fork = 5, 11, and 30 on a 60/40 train/test split
Figure 11. kNN classification accuracy for k = 5, 11, and 30 on a 60/40 train/test split.
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Table 1. Silhouette score for class embeddings on a random set of 10 SIDs.

SID ST-DeepGait CAE

14723 0.6036 −0.0034

17175 0.5657 0.0876

17839 0.4162 0.0709

24761 0.8215 0.2288

28584 0.4494 −0.0018

31033 0.5893 0.1659

38547 0.3969 0.1579

41472 0.7017 0.0865

48646 0.4435 0.0990

50153 0.3876 0.0737

5.6. Behavioral Study

In this section, we provide the comparative results with deep learning models that do
not consider both the spatial and temporal domain concurrently. Since the data set is novel,
we evaluate the model against a 3-channel CNN and a baseline single-layer LSTM. The
specifications for the CNN are identical to the Convolutional-Autoencoder in Section 5.5.
The specifications for the LSTM network are: Input(Tx15)-LSTM(128)-tanh-Dense(100)-
tanh-Softmax. Both the CNN and LSTM use the scale-invariant axis-angle joint data except
the CNN once again requires a time-scaling via linear interpolation to 100 frames. We chose
these models for evaluation to find if a quantitative difference for recognition occurs or if
a qualitative boost from the ST-Graph and LSTM occurs when compared with a spatial-
invariant CNN without temporal structure or with a sequence-oriented LSTM without
spatial structure. We run each model, including ST-DeepGait, for 30 epochs each with a
softmax classifier.

Classification rates were based on the unseen test examples according to the train-test
split ratio. Since we collected the data for learning features, the data set has a class balance
between all SIDs, and, for example, for a 60% train and 40% test split, the models were
trained on approximately 18 examples per SID. During inference testing, this yielded a set
of approximately 12 unseen samples per SID. Looking at the base performance in accuracy,
the model performed well strictly in terms of classifying ST gait input with the appropriate
label, even at 100 class labels. Furthermore, the model appeared to be impervious to false
positives and false negatives at the same rate given the metrics in the Confusion Matrix,
Precision, Recall, F1, EER, and CMC. The Confusion Matrix carried much of the information
for classification and is shown in Figure 12. Furthermore, the training and test accuracy
values showed less overfitting than the other models meaning that the model generalizes
the patterns learned for the objective of classifying gait patterns relatively well, as shown
in Tables 2 and 3.
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Figure 12. Confusion matrix 80–20 train–test split. The Number of predictions is evaluated on the
test set. An 80–20 split yields approximately 6 test examples.

Table 2. Summary of results for classification with Softmax 80–20 train-test split.

Classifier Train Accuracy Test Accuracy Precision Recall F1-Score EER CMC (k = 5)

ST-DeepGait 98.8% 91.7% 91.5% 91.6% 91.36 0.0034 0.956

LSTM(128)-Dense(100) 99.3% 82.8% 85.5% 83.7% 83.1% 0.0322 0.957

3-Channel CNN 98.6% 76.0% 81.4% 76.0% 76.2% 0.017 0.891

Table 3. Summary of results for classification with Softmax 60–40 train–test split.

Classifier Train Accuracy Test Accuracy Precision Recall F1-Score EER CMC (k = 5)

ST-DeepGait 98.1% 87.8% 88.1% 87.22% 86.9% 0.005 0.96

LSTM(128)-Dense(100) 98.2% 77.4% 79.2% 78.5% 78.2% 0.377 0.94

3-Channel CNN 98.6% 69.1% 72.4% 69.1% 69.1% 0.0386 0.8855

To test consistency and stability of the model behavior we evaluated the model feature
embeddings on a subspace sampling of the embeddings in latent space. We performed this
iteratively to find any brittleness or sensitivity of the selected features in latent space. After
randomly selecting a subspace, we performed kNN classification to evaluate the stability of
the embedded space. After iteratively producing classification F1 scores, the model never
really showed degradation until a random subsample of 11 features or less occurred. We
produced a Scree Plot of the embedding space on the 60–40% train–test split, as shown in
Figure 8a,b. The Scree Plot shows the explained variance ratio based on the eigenvalues
according to PCA in Figure 13 and agrees with the subsampling stability.
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To test the generality of the model on learning an optimal latent space for classifying
gait patterns, we evaluated the ST-DeepGait model on completely unseen classes of data
during training for which we call zero-shot detection. We wanted to know if the model
can embed gait data samples belonging to the same SID with a smaller margin than those
of a different SID with left-out, unobserved classes of data during training. To perform
this evaluation, we randomly selected 10, 15, and 20 SIDs to leave out of the training of
the network on both train–test splits: 80% train-20% test and 60% train-40% test. Figure 14
illustrates how the evaluation was performed on the unobserved test data. Although, as
expected, the class separation was not as clear as with training examples, some separation
is still convincing in Figure 15a,b. We continually tested the embedded environment on
several random left-out SIDs, including 10, 15, and 20 SIDs. The PCA plots are shown for
the first three principal components in Figures 15–17. The kNN accuracy also degraded
as expected, but was relatively high considering the model never considered the left-out
SIDs’ individual features. Figure 18a,b shows how the titration of unseen classes affects the
learned latent space overall, specifically for kNN classification. The classification degraded
as more unseen classes were added but surprisingly remained in the 84-87% accuracy
range for a 90% observed and 10% unobserved class mixture as shown. Additionally, in
Figure 19a,b, for an 85% observed and 15% unobserved, the learned latent space remained
consistent with the previous random split of 90% observed 10% unobserved while also
maintaining a 84–89% accuracy range overall. Consequently, we believe the ST-DeepGait
model makes inference convincingly by classifying the general ST feature patterns that it
learned were important for the task of gait recognition.
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Figure 19. Scree Plot The Scree Plot shows the stability of ST-DeepGait’s featurization in embedded
space by showing the explained variance ratio according the first principal components from the
PCA plot in Fig. 12a. Interestingly, the ST-DeepGait model appears to have compressed the complex
multivariate spatiotemporal joint feature patterns for gait into approximately the first 15 PCs.
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Figure 13. Scree Plot The Scree Plot shows the stability of ST-DeepGait’s featurization in embedded
space by showing the explained variance ratio according to the first principal components from the
PCA plot in Figure 8a. Interestingly, the ST-DeepGait model appears to have compressed the complex
multivariate spatiotemporal joint feature patterns for gait into approximately the first 15 PCs.
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Figure 13. Zero-Shot data split versus traditional data split. For zero-shot detection, the data is split
along the class SIDs where a portion are not included or observed during the training of the model.
The remaining observed portion still undergoes the traditional train-test split ratio.

(a) First two principal components on 80-20 Train-
Test split for 10 unseen class SIDs

(b) First two principal components on 60-40 Train-
Test split for 10 unseen class SIDs.

Figure 14. Evaluation of ST-DeepGait model on zero-shot detection on 10% of the class SIDs (not
seen by the model during training)in the learned feature space of 90% seen SIDs during training
using kNN classification. Unseen class SIDs are titrated into the embedded space to check for overall
generality of the model. PCA charts show the results for 10 unseen class embeddings in latent space.

(a) First three principal components on 80-20
Train-Test split for 15 unseen class SIDs

(b) First three principal components on 60-40
Train-Test split for 15 unseen class SIDs.

Figure 15. Evaluation of ST-DeepGait model on zero-shot detection on 15% of the class SIDs (not seen
by the model during training)in the learned feature space of 85% seen SIDs during training using
kNN classification.

Figure 14. Zero-Shot data split versus traditional data split. For zero-shot detection, the data is split
along the class SIDs where a portion are not included or observed during the training of the model.
The remaining observed portion still undergoes the traditional train–test split ratio.

(a) (b)
Figure 15. Evaluation of ST-DeepGait model on zero-shot detection on 10% of the class SIDs (not
seen by the model during training) in the learned feature space of 90% seen SIDs during training
using kNN classification. Unseen class SIDs are titrated into the embedded space to check for overall
generality of the model. PCA charts show the results for 10 unseen class embeddings in latent space.
(a) First two principal components on 80–20 train–test split for 10 unseen class SIDs. (b) First two
principal components on 60–40 train–test split for 10 unseen class SIDs.

Figure 16. Evaluation of ST-DeepGait model on zero-shot detection on 15% of the class SIDs (not
seen by the model during training) in the learned feature space of 85% seen SIDs during training
using kNN classification. (a) First three principal components on 80–20 train–test split for 15 unseen
class SIDs. (b) First three principal components on 60–40 train–test split for 15 unseen class SIDs.
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Figure 17. Evaluation of ST-DeepGait model on zero-shot detection on 20% of the class SIDs (not
seen by the model during training) in the learned feature space of 85% seen SIDs during training
using kNN classification. (a) First three principal components on 80–20 train–test split for 20 unseen
class SIDs. (b) First three principal components on 60–40 train–test split for 20 unseen class SIDs.

(a) (b)
Figure 18. Evaluation of ST-DeepGait model on zero-shot detection on 10% of the class SIDs com-
pletely unseen by the model during training in the embedded feature space of 90 seen (during
training) SIDs using kNN classification. Unseen class SIDs are titrated into the embedded space to
check for overall generality of the model. (a) The 80–20 train–test split for all data seen and unseen
class SIDs; (b) 60–40 train–test split for all data seen and unseen class SIDs.

(a) (b)
Figure 19. Evaluation of ST-DeepGait model on zero-shot detection on 15% of the class SIDs com-
pletely unseen by the model during training in the embedded feature space of 85 seen (during
training) SIDs using kNN classification. Unseen class SIDs are titrated into the embedded space to
check for overall generality of the model. (a) The 80–20 train–test split for all data seen and unseen
class SIDs; (b) 60–40 train–test split for all data seen and unseen class SIDs.
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5.7. Summary of Results

In summary, the experiments run on the class embeddings show that the model
learned an optimal latent space for featurization. The PCA plots in Figures 7a and 8a
illustrate a clear separation of the class embeddings. The performance is highlighted when
compared to the PCA plot in Figures 7b and 8b produced from the latent space of the CAE.
For further measurement, we checked the class embedding silhouette scores in Table 1 and
showed a notable difference between the cluster ratios of the ST-DeepGait model and the
CAE. We also calculated a distance matrix of the embedded space to illustrate how well
the class embeddings separated over 32 classes shown by the distance matrix in Figure 9.
Interestingly, a kNN classifier was run on the embeddings produced by the model and
a marginal increase in accuracy occurred over the baseline softmax posterior probability
distribution. The ST-DeepGait model outperformed the CAE and handcrafted features
for k = 5, 11, and 30. The CAE and handcrafted features also show a steady degradation
on kNN classification as the model starts considering a majority vote with a higher value
of k. ST-DeepGait remains at the same accuracy only strengthening its ability to separate
class features with stability. To compare the stability of classification with the random
subsampling technique that was applied to the handcrafted features, we performed a
random subsampling on the 128-dimensional embedding vector and the results repeatedly
remained in an 86–94% accuracy range. The accuracy generally did not decrease until a
random subsample of an 11-dimensional embedding or less occurred.

6. Conclusions and Future Work

Gait recognition remains an interesting and difficult problem for the complex nature
of its data. Many approaches have been made in gait analytics tasked with the difficulty
of capturing and representing the multivariate spatiotemporal quality such that patterns
emerge for various tasks such as classification. Many works have moved away from
anthropometric and human-interpretable features and toward modeling the kinematic
spatiotemporal features in abstract space with machine learning techniques. We also moved
in this direction and demonstrated a robust solution for separating and classifying signature
gait patterns with a maximum classification accuracy of 93% and an average classification
accuracy of 90% by employing an ST-graph to represent the inputs to a deep learning model.
Moreover, we showed the model’s ability to embed the spatiotemporal gait features into
geometric latent space in a 128-dimensional feature vector by evaluating the embeddings
for class separability. For the task of gait recognition, class embeddings provide a compact
representation for storage while naturally maintaining security. If a bad actor were to
steal the database of 128 × n gait embeddings, where n is the number of people, it would
be difficult to reverse the model used to embed those features in latent space to gain the
identity of each person. The embedded feature space also allows for the ease to apply or
compare additional machine learning techniques that we did not cover in this work. Deep
metric learning, transfer learning, meta-learning, and other statistical methods could be
conducted offline, or more interestingly, integrated into the learning of this model as a
way to improve performance or generality. For future work, we would continue testing
the environment for performing and generating online machine learning methods for not
only improving the accuracy rate, but also for performing in various conditions such as
the zero-shot detection test. Generating clusters of the embedded space, or producing
other statisitical properties even at each layer, could provide insightful information for the
practitioner or the network optimizer to update on, and lead to new ways for learning.
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