
Citation: Zhang, Z.; Mi, W.; Du, J.;

Wang, Z.; Wei, W.; Zhang, Y.; Yang, Y.;

Ren, Y. Design and Implementation

of a Modular UUV Simulation

Platform. Sensors 2022, 22, 8043.

https://doi.org/10.3390/s22208043

Academic Editor: Carlos Tavares

Calafate

Received: 27 August 2022

Accepted: 18 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Implementation of a Modular UUV
Simulation Platform
Zekai Zhang 1,†, Weishi Mi 1,†, Jun Du 2,*, Ziyuan Wang 2, Wei Wei 1, Yuang Zhang 3, Yutong Yang 2 and Yong Ren 2

1 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
3 Department of Automation, Tsinghua University, Beijing 100084, China
* Correspondence: jundu@tsinghua.edu.cn
† These authors contributed equally to this work.

Abstract: The complex and time-varying marine environment puts forward demanding requirements
for the structural design and algorithm development of unmanned underwater vehicles (UUVs).
It is inevitable to repeatedly evaluate the feasibility of autonomy schemes to enhance the intelli-
gence and security of the UUV before putting it into use. Considering the high cost of the UUV
hardware platform and the high risk of underwater experiments, this study aims to evaluate and
optimize autonomy schemes in the manner of software-in-loop (SIL) simulation efficiently. Therefore,
a self-feedback development framework is proposed and a multi-interface, programmable modular
simulation platform for UUV based on a robotic operating system (ROS) is designed. The platform
integrates the 3D marine environment, UUV models, sensor plugins, motion control plugins in a
modular manner, and reserves programming interfaces for users to test various algorithms. Subse-
quently, we demonstrate the simulation details with cases, such as single UUV path planning, task
scheduling, and multi-UUV formation control, and construct underwater experiments to confirm the
feasibility of the simulation platform. Finally, the extensibility of the simulation platform and the
related performance analysis are discussed.

Keywords: unmanned underwater vehicle (UUV); self-feedback development framework; modular
simulation platform; robotic operating system (ROS); multi-UUV formation control

1. Introduction

With the booming development of the “blue industry”, traditional marine operation
methods can no longer keep up with the demand. Thanks to its intelligence and mobility,
unmanned underwater vehicles (UUVs) have been widely used in environmental obser-
vation, resource exploration, biological survey, disaster prediction, auxiliary positioning,
and other underwater tasks [1–3]. What is more, UUV-assisted marine information net-
works and related variants are emerging in an endless stream, such as the maritime giant
cellular network [4] and age of information (AoI) [5] inspired underwater information
networks [6,7]. Unfortunately, the variable current environment leads to poor robustness
of UUVs in environmental perception, motion control, cluster collaboration, etc., which
greatly hinders the rapid advancement of marine science [8].

Path planning and formation control are two core concepts in UUVs [9]. On the one
hand, as the most basic and critical part of UUVs, path planning directly determines the
accuracy and efficiency of the UUV’s mission execution. The challenge of path planning is to
plan a collision-free, smooth, shortest path from the starting point to the target point, while
considering the unknown environment and its own energy consumption limitations at the
same time [10]. Recently, techniques, such as artificial potential field, deep neural networks,
and reinforcement learning, have been introduced into the path planning of unmanned
underwater vehicles with good results [11–15]. On the other hand, with the diversification
and complexity of underwater observation missions, UUV group cooperation has become

Sensors 2022, 22, 8043. https://doi.org/10.3390/s22208043 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22208043
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208043?type=check_update&version=1

Sensors 2022, 22, 8043 2 of 20

an inevitable trend, and formation control has gradually become a challenging topic. The
representative methods for UUV formation control include virtual structure, behavior
structure, artificial potential field, neural networks, etc. [16–20]. Previously, path-planning
methods and formation control strategies applied in UUVs were mainly migrated from
ground unmanned vehicles and low-altitude unmanned aerial vehicles (UAVs), and it
is difficult to ensure the success rate and efficiency of UUVs in the process of mission
execution and may even lead to safety hazards due to the lack of analysis of the time-
varying underwater environment. Thus, the autonomy schemes must be subjected to
repeated underwater experiments before application.

Considering the high cost of hardware platform and the high risk of physical tests,
robot simulation technology has gradually become a feasible solution for algorithm ver-
ification [21]. For example, Ojeda et al. [22] proposed a simulation framework based on
GADEN and Unity Engine to integrate simulated olfaction and simulated vision into
multi-sensor mobile robots. In [23], the authors developed a simulator to support the
navigation activities of unmanned ground vehicles (UGV) based on ROS and Gazebo. For
UAV autopilot systems, Dai et al. [24] developed RFlySim, an FPGA-based simulation
platform using hardware-in-loop simulation. Xiao et al. [25] proposed a customizable
multi-rotor UAV simulation platform based on ROS, Gazebo, and PX4 called XTDrone,
which integrates visualized 3D scenes and sensor models and supports users to test al-
gorithms. Chen et al. [26] designed an end-to-end UAV simulation platform for SLAM,
navigation research, and applications, including detailed simulator setup, out-of-the-box
positioning, mapping, and navigation systems. In [27], based on ROS and Gazebo, the
authors proposed an integrated vision system for unmanned aerial vehicles landing on the
targeted moving UGV platform and tested target detection and tracking strategies on it.
However, the simulation simulators introduced above are mainly designed for air-based
or land-based robots, while the field of underwater robots lacks high-quality simulators
to support scientific research. The most representative is the UUV simulator introduced
in [28], which is an extension of Gazebo for underwater scenarios and integrates related
plugins to simulate underwater hydrostatic and hydrodynamic effects, thrusters, sensors,
and external disturbances; the simulator is mainly used to simulate multiple underwater
vehicles and intervention tasks using robotic manipulators. Based on the simulation archi-
tecture of the UUV simulator, the simulation of hybrid autonomous underwater vehicle
was realized in [29], and the control strategy based on PID was verified. Nie et al. [30]
adopted the strategy of combining fluid mechanics software and Unity3D to assist in the
construction of a virtual ocean environment to simulate the working state and process
of the UUV under different conditions; this simulation platform will be abbreviated as
MVSPU in the following. In [31], a simulation platform for an intervention autonomous
underwater vehicle (I-AUV) was proposed, characterized by providing advanced fluid
dynamics based on actual geometry, a simulation of underwater sensors and actuators,
and a realistic rendering of the underwater environment and ocean surface. In addition,
the UUV simulation platforms implemented by hardware-in-loop simulation also have
considerable application prospects [32,33].

The main indicators to evaluate the simulation platform are simulation accuracy,
development difficulty, and practicability. However, most of the existing UUV simulation
platforms have poor universality due to low accuracy of environment modeling, difficulty
in secondary development, and transitioning to hardware platforms [28–33]. To overcome
the above shortcomings, this study designs and implements a modular UUV simulation
platform to test the autonomy schemes of UUVs. The main highlights are as follows:

(1). An efficient self-feedback development framework is proposed, and the role of the
simulation platform in it is introduced.

(2). The simulation platform, including high-precision simulation scenarios, multi-source
sensors, control plugins, and UUV models, is made in a modular manner.

Sensors 2022, 22, 8043 3 of 20

(3). In this work, the robustness of the programming interfaces and the reliability of
the simulation platform have been verified by constructing simulation tasks and
underwater experiments.

The rest of this article is organized as follows. In Section 2, the self-feedback devel-
opment framework and the implementation of the simulation platform are introduced.
In Section 3, the co-simulation based on ROS and Matlab is presented. In Section 4, the
proposed formation control strategy is verified in the simulation platform, and underwater
experiments are conducted for comparison. In Section 5, the extensibility and superiority of
the simulation platform are discussed. Finally, the conclusions and future work are given
in Section 6.

2. Framework Design and Platform Implementation
2.1. Self-Feedback Development Framework for UUV

Thanks to the role of the simulation platform, the self-feedback development frame-
work in Figure 1 organically links theory, simulation, and the experiment together, which
improves the development efficiency of the UUV and avoids unexpected risks to a great ex-
tent. The recommended development process of this framework and software architecture
of the simulation platform are introduced as follows:

• Development Process: The outer arrows in Figure 1 form a closed-loop development
line where the researchers can design schemes according to task requirements, in-
cluding UUV models (structure, controller, etc.) and autonomous algorithms (path
planning, formation control, etc.), which are imported into the simulation platform
for verification and optimization through relevant programming interfaces (Matlab,
Python, VScode, Solidworks, Tsinghua University, Beijing). After obtaining satisfac-
tory simulation results, the verified algorithms will be transferred to the control unit of
the hardware platform to conduct experiments. In fact, simulation is not a substitution
for experiments. If the experimental results are still unsatisfactory, debugging and
even redesigning should be carried out by stepwise upward feedback.

• Software Architecture: According to the concept of modular design, the software
packages of the simulation platform can be divided into two groups based on Gazebo
and ROS, which both support secondary development. In Gazebo, UUV models,
sensor plugins, and world plugins are stored to support simulation. In ROS, users
can control and communicate with entities in Gazebo through control plugins and
feature packages. It is worth mentioning that ROS is connected to Gazebo through
ROS Bridges; thus, the related programming interfaces can subscribe messages and
publish commands through corresponding topics.

2.2. Construction of Virtual Ocean Environment

The fidelity of the virtual ocean environment directly affects the accuracy of the simu-
lation, and the key is to accurately depict the seabed, whether it is to support bathymetry
missions or just to make the scene look more realistic. With several realistic Gazebo worlds
already available in the UUV simulator, this work chooses the Ocean Waves World [28] with
wave shaders for secondary development, focusing on accurate modeling of the seabed
based on real ocean environment data.

In our work, the commonly used S-57 file is selected as the main data source of
the marine environmental data, and the seabed is modeled according to the real data
provided. The S-57 file with a 0.000 extension is a type of electronic navigational chart
(ENC) standardized by the International Hydrographic Organisation (IHO) that contains
vector format data based on the S-57 object model [34]. It contains navigational information,
such as sea depth, soundings, contours, and other information. All this data is available
inside the file in a vector format and is totally independent of how it is displayed by S-57
readers. The S-57 files can be opened using applications, such as ESRI ArcGIS, OpenCPN,
and APIs, such as GDAL. The modeling process of the seabed based on the hydrological
data in the S-57 file is as follows: firstly, the Anaconda ogr2ogr library is used to view the

Sensors 2022, 22, 8043 4 of 20

hierarchical information of the S-57 file (0.000 file) and carry out non-visual processing
operations, including format transformation. Then, the vector data in the S-57 file is
transformed into raster data by Quantum GIS (QGIS), and the terrain file (.tif file) is
obtained by interpolation of blank areas. After that, the Global Mapper software is used to
convert it into a digital elevation model file (.dem file). Finally, the Python3-gdal library is
used in the ROS-Gazebo environment to convert the dem file into the world file and display
it in the Gazebo simulation environment; the corresponding visualization process is shown
in steps 1 to 4 in Figure 2. In addition, QGIS is an open-source GIS desktop software that
provides basic functionality and add-ons (Python or C++, Tsinghua University, Beijing)
that allow users to browse, manage, edit, and analyze data and maps [35,36].

Sensors 2022, 22, x FOR PEER REVIEW 4 of 21

Figure 1. Illustration of the self-feedback development framework.

2.2. Construction of Virtual Ocean Environment
The fidelity of the virtual ocean environment directly affects the accuracy of the sim-

ulation, and the key is to accurately depict the seabed, whether it is to support bathymetry
missions or just to make the scene look more realistic. With several realistic Gazebo worlds
already available in the UUV simulator, this work chooses the Ocean Waves World [28]
with wave shaders for secondary development, focusing on accurate modeling of the sea-
bed based on real ocean environment data.

In our work, the commonly used S-57 file is selected as the main data source of the
marine environmental data, and the seabed is modeled according to the real data pro-
vided. The S-57 file with a 0.000 extension is a type of electronic navigational chart (ENC)
standardized by the International Hydrographic Organisation (IHO) that contains vector
format data based on the S-57 object model [34]. It contains navigational information, such
as sea depth, soundings, contours, and other information. All this data is available inside
the file in a vector format and is totally independent of how it is displayed by S-57 readers.
The S-57 files can be opened using applications, such as ESRI ArcGIS, OpenCPN, and APIs,
such as GDAL. The modeling process of the seabed based on the hydrological data in the
S-57 file is as follows: firstly, the Anaconda ogr2ogr library is used to view the hierarchical
information of the S-57 file (0.000 file) and carry out non-visual processing operations,
including format transformation. Then, the vector data in the S-57 file is transformed into
raster data by Quantum GIS (QGIS), and the terrain file (.tif file) is obtained by interpola-
tion of blank areas. After that, the Global Mapper software is used to convert it into a
digital elevation model file (.dem file). Finally, the Python3-gdal library is used in the
ROS-Gazebo environment to convert the dem file into the world file and display it in the
Gazebo simulation environment; the corresponding visualization process is shown in
steps 1 to 4 in Figure 2. In addition, QGIS is an open-source GIS desktop software that
provides basic functionality and add-ons (Python or C++, Tsinghua University, Beijing)
that allow users to browse, manage, edit, and analyze data and maps [35,36].

Figure 1. Illustration of the self-feedback development framework.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 21

Figure 2. Visualization of the entire ocean environment and the modeling process of the seabed.

2.3. Design of 3D Model, Sensor Plugin, and Control Plugin for UUV
After the construction of the virtual ocean environment, it is necessary to create a

UUV simulation entity with sensors and the control plugin.
The process of creating the UUV model in Gazebo is as follows: firstly, SolidWorks

is used to model the size, material, and shape of the underwater vehicle body, and then,
the layout (installation position, connection angle, and rotation direction) of the relevant
actuators is carried out. The obtained CAD model can be imported to ANSYS simulation
software to calculate its mass, volume, moment of inertia, and other physical parameters.
After that, the CAD model is exported into stl and dae files and based on which the xacro
file is written. Finally, this UUV model can be created in Gazebo by converting the xacro
file to URDF (unified robot description format) file. Figure 3 shows the UUV model used
in the simulation platform, designed as a six-propeller structure, which can complete the
omnidirectional movement in the horizontal plane and the up and down operation in the
depth direction. In terms of power, the robot uses the PWM wave to control the power
output of the propeller. The positive thrust of a single propeller is 7.5 kgf, and the reverse
thrust is 5 kgf. As for size, its weight is about 9.7 kg, and its appearance size is 378 mm ×
302 mm × 234 mm. In addition, the robot has been adjusted to zero buoyancy where grav-
ity and buoyancy are equal.

(a) (b)

Figure 3. CAD model of UUV with six thrusters. (a) Front view. (b) Top view.

To sense the environment and measure the attitude, position, and velocity of the
UUV in the simulation, corresponding sensors need to be established to simulate various
required signals. Open-source sensor models or self-designed models can be used as Ga-
zebo plugins to connect to the UUV model, and the sensors (underwater camera, inertial
measurement unit, laser, sonar sensor, ground truth plugin, etc.) already carried by this
simulation platform are derived from the UUV simulator [28] and hector quadrotor [37]

Figure 2. Visualization of the entire ocean environment and the modeling process of the seabed.

Sensors 2022, 22, 8043 5 of 20

2.3. Design of 3D Model, Sensor Plugin, and Control Plugin for UUV

After the construction of the virtual ocean environment, it is necessary to create a UUV
simulation entity with sensors and the control plugin.

The process of creating the UUV model in Gazebo is as follows: firstly, SolidWorks
is used to model the size, material, and shape of the underwater vehicle body, and then,
the layout (installation position, connection angle, and rotation direction) of the relevant
actuators is carried out. The obtained CAD model can be imported to ANSYS simulation
software to calculate its mass, volume, moment of inertia, and other physical parameters.
After that, the CAD model is exported into stl and dae files and based on which the xacro
file is written. Finally, this UUV model can be created in Gazebo by converting the xacro
file to URDF (unified robot description format) file. Figure 3 shows the UUV model used
in the simulation platform, designed as a six-propeller structure, which can complete
the omnidirectional movement in the horizontal plane and the up and down operation
in the depth direction. In terms of power, the robot uses the PWM wave to control the
power output of the propeller. The positive thrust of a single propeller is 7.5 kgf, and the
reverse thrust is 5 kgf. As for size, its weight is about 9.7 kg, and its appearance size is
378 mm × 302 mm × 234 mm. In addition, the robot has been adjusted to zero buoyancy
where gravity and buoyancy are equal.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 21

Figure 2. Visualization of the entire ocean environment and the modeling process of the seabed.

2.3. Design of 3D Model, Sensor Plugin, and Control Plugin for UUV
After the construction of the virtual ocean environment, it is necessary to create a

UUV simulation entity with sensors and the control plugin.
The process of creating the UUV model in Gazebo is as follows: firstly, SolidWorks

is used to model the size, material, and shape of the underwater vehicle body, and then,
the layout (installation position, connection angle, and rotation direction) of the relevant
actuators is carried out. The obtained CAD model can be imported to ANSYS simulation
software to calculate its mass, volume, moment of inertia, and other physical parameters.
After that, the CAD model is exported into stl and dae files and based on which the xacro
file is written. Finally, this UUV model can be created in Gazebo by converting the xacro
file to URDF (unified robot description format) file. Figure 3 shows the UUV model used
in the simulation platform, designed as a six-propeller structure, which can complete the
omnidirectional movement in the horizontal plane and the up and down operation in the
depth direction. In terms of power, the robot uses the PWM wave to control the power
output of the propeller. The positive thrust of a single propeller is 7.5 kgf, and the reverse
thrust is 5 kgf. As for size, its weight is about 9.7 kg, and its appearance size is 378 mm ×
302 mm × 234 mm. In addition, the robot has been adjusted to zero buoyancy where grav-
ity and buoyancy are equal.

(a) (b)

Figure 3. CAD model of UUV with six thrusters. (a) Front view. (b) Top view.

To sense the environment and measure the attitude, position, and velocity of the
UUV in the simulation, corresponding sensors need to be established to simulate various
required signals. Open-source sensor models or self-designed models can be used as Ga-
zebo plugins to connect to the UUV model, and the sensors (underwater camera, inertial
measurement unit, laser, sonar sensor, ground truth plugin, etc.) already carried by this
simulation platform are derived from the UUV simulator [28] and hector quadrotor [37]

Figure 3. CAD model of UUV with six thrusters. (a) Front view. (b) Top view.

To sense the environment and measure the attitude, position, and velocity of the
UUV in the simulation, corresponding sensors need to be established to simulate various
required signals. Open-source sensor models or self-designed models can be used as
Gazebo plugins to connect to the UUV model, and the sensors (underwater camera, inertial
measurement unit, laser, sonar sensor, ground truth plugin, etc.) already carried by this
simulation platform are derived from the UUV simulator [28] and hector quadrotor [37]
(an open-source UAV simulation platform under ROS). For example, the sensor images of
the laser and underwater camera used in this work are shown in Figure 4. In addition, all
sensors share a common error model:

s = ŝ + n + Gs (1)

.
n = − 1

τ
+ Gb (2)

The error model is based on the first-order Gauss–Markov, and the sensing signal,
s(t), at time, t, is given by Equations (1) and (2). Where ŝ is the real signal, n is the current
bias, Gs and Gb are variables describing independent zero-mean Gaussian white noise, Gs
is the additive noise acting directly on the measurement, and Gb describes the random drift
property by the time constant, τ.

Sensors 2022, 22, 8043 6 of 20

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

(an open-source UAV simulation platform under ROS). For example, the sensor images
of the laser and underwater camera used in this work are shown in Figure 4. In addition,
all sensors share a common error model:

ˆ ss s n G= + + (1)

1
bn G

τ
= − + (2)

The error model is based on the first-order Gauss–Markov, and the sensing signal,
s(t), at time, t, is given by Equations (1)–(2). Where ŝ is the real signal, n is the current
bias, Gs and Gb are variables describing independent zero-mean Gaussian white noise, Gs
is the additive noise acting directly on the measurement, and Gb describes the random
drift property by the time constant, τ.

(a) (b)

Figure 4. Sensor images of laser and underwater camera. (a) The obstacles detected by laser. (b)
Environmental information captured by underwater camera.

The UUV can be considered as a rigid body model with six degrees of freedom, and
its motion state can be described by the total force, F, and total torque, M, acting on it:

w wP v= (3a)

1w w
bv m R F−= (3b)

1b J Mω −= (3c)

Here, Pw and vw are the position and velocity, respectively, of the center of gravity of
the rigid body in the world inertial coordinate system, ωb is the angular rate given in the
rigid body motion coordinate system, m and J are the mass and inertia of the UUV, re-
spectively, and Rbw is the rotation matrix which transfers the reference frame of the vector
from the body coordinate system to the world coordinate system. The total force vector,
F, includes propeller thrust, FT, hydrodynamic forces, and hydrostatic forces; the hydro-
dynamic forces include lift, FL, and drag, FD, and the hydrostatic forces include gravity,
FG, and buoyancy, FB. The total torque vector, M, is calculated by the above forces, and the
specific details about hydrodynamic forces are referred to in [38], which will not be de-
scribed here.

We extend the control plugins in [37] based on the above dynamic model, and its
control logic is shown in Figure 5. There are three control loops that control the linear
velocity, attitude, and angular velocity of the UUV, respectively. The control quantity is
converted into the force or torque of the corresponding axis through the cascaded PI, PD,
or PID controllers, and finally output to the attitude solver. The variables, p, v, a, θ, and

Figure 4. Sensor images of laser and underwater camera. (a) The obstacles detected by laser.
(b) Environmental information captured by underwater camera.

The UUV can be considered as a rigid body model with six degrees of freedom, and
its motion state can be described by the total force, F, and total torque, M, acting on it:

.
P

w
= vw (3a)

.
vw

= m−1Rw
b F (3b)

.
ω

b
= J−1M (3c)

Here, Pw and vware the position and velocity, respectively, of the center of gravity
of the rigid body in the world inertial coordinate system, ωb is the angular rate given in
the rigid body motion coordinate system, m and J are the mass and inertia of the UUV,
respectively, and Rb

w is the rotation matrix which transfers the reference frame of the
vector from the body coordinate system to the world coordinate system. The total force
vector, F, includes propeller thrust, FT, hydrodynamic forces, and hydrostatic forces; the
hydrodynamic forces include lift, FL, and drag, FD, and the hydrostatic forces include
gravity, FG, and buoyancy, FB. The total torque vector, M, is calculated by the above forces,
and the specific details about hydrodynamic forces are referred to in [38], which will not be
described here.

We extend the control plugins in [37] based on the above dynamic model, and its
control logic is shown in Figure 5. There are three control loops that control the linear
velocity, attitude, and angular velocity of the UUV, respectively. The control quantity is
converted into the force or torque of the corresponding axis through the cascaded PI, PD,
or PID controllers, and finally output to the attitude solver. The variables, p, v, a, θ, and ω,
respectively, represent position, linear velocity, acceleration, angle, and angular velocity,
while the subscript i can be one of the three coordinate axes, X, Y, and Z; the subscript d is
the expected quantity, meanwhile, the subscript t is the real quantity.

Sensors 2022, 22, 8043 7 of 20

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21

ω, respectively, represent position, linear velocity, acceleration, angle, and angular veloc-
ity, while the subscript i can be one of the three coordinate axes, X, Y, and Z; the subscript
d is the expected quantity, meanwhile, the subscript t is the real quantity.

Figure 5. Design of controller for UUV attitude, angular velocity, and linear velocity.

3. Co−Simulation Template Based on Matlab and ROS
In this section, to build a programming interface for Matlab, a co−simulation template

based on Matlab and ROS is established, and simulation cases, such as path planning and
task scheduling, are demonstrated based on it.

The schematic diagram of the co-simulation based on Matlab and ROS is shown in
Figure 6, with Matlab/Simulink as the control terminal and ROS/Gazebo as the controlled
terminal. The controlled terminal handles the physics of the rigid body (UUV), while the
attached plugins are responsible for sensor reading and motion controlling. After estab-
lishing communication, the control terminal can perform high-level planning (see Figure
7 for details) based on images and sensor data acquired from virtual sensors, which is
done by subscribing to the corresponding topics and publishing commands. In principle,
the control terminal and the controlled terminal need to be distributed on different de-
vices. However, a virtual machine can be created as another device, and this approach is
adopted in this study. The Matlab version of the control terminal is R2021b under the
Windows operating system, and the ROS version of the controlled is Kinetic under the
Ubuntu 16.04 operating system.

Figure 6. The schematic diagram of co-simulation based on Matlab and ROS.

Figure 5. Design of controller for UUV attitude, angular velocity, and linear velocity.

3. Co–Simulation Template Based on Matlab and ROS

In this section, to build a programming interface for Matlab, a co−simulation template
based on Matlab and ROS is established, and simulation cases, such as path planning and
task scheduling, are demonstrated based on it.

The schematic diagram of the co-simulation based on Matlab and ROS is shown in
Figure 6, with Matlab/Simulink as the control terminal and ROS/Gazebo as the controlled
terminal. The controlled terminal handles the physics of the rigid body (UUV), while
the attached plugins are responsible for sensor reading and motion controlling. After
establishing communication, the control terminal can perform high-level planning (see
Figure 7 for details) based on images and sensor data acquired from virtual sensors, which
is done by subscribing to the corresponding topics and publishing commands. In principle,
the control terminal and the controlled terminal need to be distributed on different devices.
However, a virtual machine can be created as another device, and this approach is adopted
in this study. The Matlab version of the control terminal is R2021b under the Windows
operating system, and the ROS version of the controlled is Kinetic under the Ubuntu 16.04
operating system.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21

ω, respectively, represent position, linear velocity, acceleration, angle, and angular veloc-
ity, while the subscript i can be one of the three coordinate axes, X, Y, and Z; the subscript
d is the expected quantity, meanwhile, the subscript t is the real quantity.

Figure 5. Design of controller for UUV attitude, angular velocity, and linear velocity.

3. Co−Simulation Template Based on Matlab and ROS
In this section, to build a programming interface for Matlab, a co−simulation template

based on Matlab and ROS is established, and simulation cases, such as path planning and
task scheduling, are demonstrated based on it.

The schematic diagram of the co-simulation based on Matlab and ROS is shown in
Figure 6, with Matlab/Simulink as the control terminal and ROS/Gazebo as the controlled
terminal. The controlled terminal handles the physics of the rigid body (UUV), while the
attached plugins are responsible for sensor reading and motion controlling. After estab-
lishing communication, the control terminal can perform high-level planning (see Figure
7 for details) based on images and sensor data acquired from virtual sensors, which is
done by subscribing to the corresponding topics and publishing commands. In principle,
the control terminal and the controlled terminal need to be distributed on different de-
vices. However, a virtual machine can be created as another device, and this approach is
adopted in this study. The Matlab version of the control terminal is R2021b under the
Windows operating system, and the ROS version of the controlled is Kinetic under the
Ubuntu 16.04 operating system.

Figure 6. The schematic diagram of co-simulation based on Matlab and ROS. Figure 6. The schematic diagram of co-simulation based on Matlab and ROS.

Sensors 2022, 22, 8043 8 of 20

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21

In Figure 7, a comprehensive, high-level planning template is created in which the
task scheduler based on Stateflow is responsible for transforming complex tasks into a
series of events triggered by temporal conditions or external input signals. Then, the plan
module is responsible for planning a collision-free path according to the starting and end-
ing positions output by the task scheduler. The plan module contains the global planner
and the local planner, which can be used separately or jointly according to the require-
ments, and it is worth mentioning that the binary raster map of the simulation scene
should be received through the map before planning. The global planner uses the A-star
algorithm to output a set of waypoints for the control module, and the control module
uses the pure pursuit algorithm to calculate the expected velocity and angular velocity
and publish them to the velocity topic in the plant model. The local planner mainly uses
the vector field histogram (VFH) algorithm and adjusts the velocity by combining the ex-
pected linear velocity and angular velocity calculated by the control module with the scan-
ning information of the laser in the sensor module to avoid the obstacles in the environ-
ment while executing the path following task. The plant model can also subscribe to the
position and attitude information of the UUV in ROS/Gazebo, and the camera and laser
included in the sensor module support the visual display. In addition, the template is
modular, allowing users to design autonomous scheduling schemes, planning algorithms,
etc. for testing and performance evaluation.

Figure 7. The comprehensive high-level planning template in Matlab/Simulink.

Subsequently, we simulated the path-planning task, and the simulation scenario in
Figure 8 is a 50 m × 50 m water area with obstacles; each obstacle is higher than the UUV
and on the same plane. The specific task is to conduct global path planning by the A-star
algorithm and local obstacle avoidance by the VFH algorithm to control the UUV moving
from position (0,0) to position (50,50).

Figure 7. The comprehensive high-level planning template in Matlab/Simulink.

In Figure 7, a comprehensive, high-level planning template is created in which the
task scheduler based on Stateflow is responsible for transforming complex tasks into a
series of events triggered by temporal conditions or external input signals. Then, the
plan module is responsible for planning a collision-free path according to the starting
and ending positions output by the task scheduler. The plan module contains the global
planner and the local planner, which can be used separately or jointly according to the
requirements, and it is worth mentioning that the binary raster map of the simulation scene
should be received through the map before planning. The global planner uses the A-star
algorithm to output a set of waypoints for the control module, and the control module
uses the pure pursuit algorithm to calculate the expected velocity and angular velocity and
publish them to the velocity topic in the plant model. The local planner mainly uses the
vector field histogram (VFH) algorithm and adjusts the velocity by combining the expected
linear velocity and angular velocity calculated by the control module with the scanning
information of the laser in the sensor module to avoid the obstacles in the environment
while executing the path following task. The plant model can also subscribe to the position
and attitude information of the UUV in ROS/Gazebo, and the camera and laser included
in the sensor module support the visual display. In addition, the template is modular,
allowing users to design autonomous scheduling schemes, planning algorithms, etc. for
testing and performance evaluation.

Subsequently, we simulated the path-planning task, and the simulation scenario in
Figure 8 is a 50 m × 50 m water area with obstacles; each obstacle is higher than the UUV
and on the same plane. The specific task is to conduct global path planning by the A-star
algorithm and local obstacle avoidance by the VFH algorithm to control the UUV moving
from position (0,0) to position (50,50).

Sensors 2022, 22, 8043 9 of 20Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

Figure 8. The simulation scenario in ROS/Gazebo.

Before planning in Matlab\Simulink, a binary raster map should be imported. The
open-source function package, pgm_map_creator [39], is used to scan the Gazebo world
file (Figure 8) into the portable gray map file format (PGM) map (Figure 9a); then, the
obtained PGM map is rasterized and imported into the plan module. In addition, the
planned trajectory is shown in Figure 9b.

(a) (b)

Figure 9. The simulation results of path-planning task. (a) Convert Gazebo world file to PGM map.
(b) The trajectory of the UUV in the simulation platform.

The above simulation case is mainly realized based on the plan module. To verify the
performance of the task scheduler, an underwater information collection task is con-
structed. This example demonstrates how to make the UUV perform an information gath-
ering task on a given map. The UUV is expected to visit three locations on the map: the
charging station at point (5,5), the acquisition station at point (53,13), and the transmission
station at point (15,46); meanwhile, the order of access to these locations is determined by
the scheduler, which provides the UUV with a target point at each stage for navigation.
The simulation results are presented in Figure 10; the UUV completes the task and returns
to the start point avoiding obstacles under the control of the scheduler.

Figure 8. The simulation scenario in ROS/Gazebo.

Before planning in Matlab\Simulink, a binary raster map should be imported. The
open-source function package, pgm_map_creator [39], is used to scan the Gazebo world
file (Figure 8) into the portable gray map file format (PGM) map (Figure 9a); then, the
obtained PGM map is rasterized and imported into the plan module. In addition, the
planned trajectory is shown in Figure 9b.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

Figure 8. The simulation scenario in ROS/Gazebo.

Before planning in Matlab\Simulink, a binary raster map should be imported. The
open-source function package, pgm_map_creator [39], is used to scan the Gazebo world
file (Figure 8) into the portable gray map file format (PGM) map (Figure 9a); then, the
obtained PGM map is rasterized and imported into the plan module. In addition, the
planned trajectory is shown in Figure 9b.

(a) (b)

Figure 9. The simulation results of path-planning task. (a) Convert Gazebo world file to PGM map.
(b) The trajectory of the UUV in the simulation platform.

The above simulation case is mainly realized based on the plan module. To verify the
performance of the task scheduler, an underwater information collection task is con-
structed. This example demonstrates how to make the UUV perform an information gath-
ering task on a given map. The UUV is expected to visit three locations on the map: the
charging station at point (5,5), the acquisition station at point (53,13), and the transmission
station at point (15,46); meanwhile, the order of access to these locations is determined by
the scheduler, which provides the UUV with a target point at each stage for navigation.
The simulation results are presented in Figure 10; the UUV completes the task and returns
to the start point avoiding obstacles under the control of the scheduler.

Figure 9. The simulation results of path-planning task. (a) Convert Gazebo world file to PGM map.
(b) The trajectory of the UUV in the simulation platform.

The above simulation case is mainly realized based on the plan module. To verify the
performance of the task scheduler, an underwater information collection task is constructed.
This example demonstrates how to make the UUV perform an information gathering task
on a given map. The UUV is expected to visit three locations on the map: the charging
station at point (5,5), the acquisition station at point (53,13), and the transmission station
at point (15,46); meanwhile, the order of access to these locations is determined by the
scheduler, which provides the UUV with a target point at each stage for navigation. The
simulation results are presented in Figure 10; the UUV completes the task and returns to
the start point avoiding obstacles under the control of the scheduler.

Sensors 2022, 22, 8043 10 of 20Sensors 2022, 22, x FOR PEER REVIEW 10 of 21

(a) (b)

Figure 10. The simulation results of scheduling task. (a) Simulation scenario for task scheduling. (b)
The trajectory of the UUV in the simulation platform.

4. UUV Formation Control Simulation Case and Underwater Experimental Verifica-
tion

In this section, a formation control scheme based on the communication-constrained
potential field and the virtual structure method [40] is proposed for target hunting, and
the reliability of the scheme is verified in the simulation platform through the Python pro-
gramming interface, and further underwater experiments are carried out.

4.1. Formation Control Scheme Based on Potential Field Model and Virtual Structure
The core of the formation control is to comprehensively consider the surrounding

environment and maintain real-time communication with nearby robots to make the robot
cluster move toward the targets in the given formation. As an earlier proposed local path-
planning algorithm, the artificial potential field method has been widely used in robot
formation control because of its simple mathematical model and convenient real-time con-
trol. The basic idea is to abstract the motion of the robot in the real environment into the
involuntary motion under the virtual potential field. For example, the gravitational field
generated by the target has a gravitational effect on the robot, and the repulsive field gen-
erated by the obstacles has a repulsive effect on the robot. Then, the force at any point in
the environment is the superposition of all potential fields. The robot starts from the initial
position and reaches the target point along the direction of the fastest descent of the po-
tential field. In this study, the artificial potential field is improved, and the communication
constrained potential field is added, and the specific model is as follows:
A. Gravitational potential field

The gravitational field is proportional to the quadratic of the distance between the
robot and the destination, and the gravitational field can be defined as [41]:

21()
2a aP r rε= (4)

() (,)a a a aF G r x yε ε= −∇ = − −


 (5)

where, Pa is the gravitational potential, r is the distance between the robot and the desti-
nation, εa is the gravitational constant, and Fa is the gravitational force on the robot at point
(x,y).
B. Repulsion potential field

Figure 10. The simulation results of scheduling task. (a) Simulation scenario for task scheduling. (b) The
trajectory of the UUV in the simulation platform.

4. UUV Formation Control Simulation Case and Underwater Experimental Verification
In this section, a formation control scheme based on the communication-constrained

potential field and the virtual structure method [40] is proposed for target hunting, and
the reliability of the scheme is verified in the simulation platform through the Python
programming interface, and further underwater experiments are carried out.

4.1. Formation Control Scheme Based on Potential Field Model and Virtual Structure

The core of the formation control is to comprehensively consider the surrounding
environment and maintain real-time communication with nearby robots to make the robot
cluster move toward the targets in the given formation. As an earlier proposed local
path-planning algorithm, the artificial potential field method has been widely used in
robot formation control because of its simple mathematical model and convenient real-time
control. The basic idea is to abstract the motion of the robot in the real environment into
the involuntary motion under the virtual potential field. For example, the gravitational
field generated by the target has a gravitational effect on the robot, and the repulsive
field generated by the obstacles has a repulsive effect on the robot. Then, the force at
any point in the environment is the superposition of all potential fields. The robot starts
from the initial position and reaches the target point along the direction of the fastest
descent of the potential field. In this study, the artificial potential field is improved, and the
communication constrained potential field is added, and the specific model is as follows:

A. Gravitational potential field

The gravitational field is proportional to the quadratic of the distance between the
robot and the destination, and the gravitational field can be defined as [41]:

Pa(r) =
1
2

εar2 (4)

→
F a = −∇Ga(r) = (−εax,−εay) (5)

where, Pa is the gravitational potential, r is the distance between the robot and the destination,
εa is the gravitational constant, and Fa is the gravitational force on the robot at point (x,y).

B. Repulsion potential field

Sensors 2022, 22, 8043 11 of 20

While moving toward the target, the robot should also avoid obstacles and nearby
robots, which are the source of repulsive forces in the potential field model, and the
repulsive force field can be modeled as [42,43]:

Pb(r) =

{
1
2 εb × (1

r −
1
d0
)

2
, r ≤ d0

0 , r > d0

}
(6)

→
F b = −∇Pb(r) =




−εbx×

(
1√

x2+y2
− 1

d0

)
×
(
x2 + y2)−3

2 ,

−εby×
(

1√
x2+y2

− 1
d0

)
×
(
x2 + y2)−3

2

, x2 + y2 ≤ d0
2

0 , x2 + y2 > d0
2


(7)

where Pb is the repulsion potential, r is the distance between the robot and the destination, εb
is the repulsion constant, d0 is the maximum range affected by the repulsive force, and Fb is
the repulsion force on the robot at point (x,y).

C. Communication-constrained potential field

To ensure the stability of the formation system, it is necessary to make each UUV clear
its role in the whole formation, which requires good communication between UUVs in
a certain range. Considering the interference of the underwater environment, the UUV
can only communicate with other nearby UUVs, which is the communication constraint.
Therefore, a communication-constrained potential field model is constructed:

Fc(r) =


0, r < 1

2 Rmax

εcKlr, r > 1
2 Rmax

1, r > Rmax

 (8)

When the distance between UUVs is less than 1
2 Rmax, the potential field has no ef-

fect. When the distance between UUVs is greater than 1
2 Rmax,the potential field exerts a

piecewise gravitational effect. Kl is the proportionality coefficient, and εc is the potential
field constant, combining the gravitational potential field, repulsive potential field, and
communication-constrained potential field. Thus, the resultant force on the UUV is:

F∑ = Fa + ∑n
i=1 Fbi + ∑n

i=1 Fci (9)

The schematic diagram of the formation control scheme based on the improved artificial
potential field and the virtual structure is shown in Figure 11. Firstly, the virtual structure
(reference points) is set around the target, and then, the UUV moves towards the reference
points under the action of gravitational potential. Under the action of the communication-
constrained potential field, the UUVs will dynamically adjust the approaching speed by
considering the distance difference between other UUVs and the reference points to prevent a
certain UUV from moving too fast or too slow to achieve stable formation.

4.2. Simulation Settings and Results

The formation control scheme based on the improved artificial potential field and
virtual structure is proposed in the previous section. To verify the feasibility of the scheme,
the target-hunting experiment is designed and simulated in the simulation platform. The
size of the experimental field is set as 10 m × 10 m, and the number of UUVs participating
in the target hunting is set as 4, and the target is set at point (5,8). Gaussian noise is
added to simulate the interference of the underwater environment when obtaining the
real-time position of the UUV; the details are in Equation (10). In the following simulation
experiments, UUVs are arranged as “line” and “diamond” formations to hunt the target
respectively, and the simulation process is shown in Figure 12.

Sensors 2022, 22, 8043 12 of 20Sensors 2022, 22, x FOR PEER REVIEW 12 of 21

Figure 11. Schematic diagram of formation scheme based on improved artificial potential field and
virtual structure.

4.2. Simulation Settings and Results
The formation control scheme based on the improved artificial potential field and

virtual structure is proposed in the previous section. To verify the feasibility of the
scheme, the target-hunting experiment is designed and simulated in the simulation plat-
form. The size of the experimental field is set as 10 m × 10 m, and the number of UUVs
participating in the target hunting is set as 4, and the target is set at point (5,8). Gaussian
noise is added to simulate the interference of the underwater environment when obtain-
ing the real-time position of the UUV; the details are in Equation (10). In the following
simulation experiments, UUVs are arranged as “line” and “diamond” formations to hunt
the target respectively, and the simulation process is shown in Figure 12.

2

2

2

2

2

2

() ()

() ()

x

y

c
actual

c
actual

L x L x ae

L y L y ae

μ

μ

×

×


= +




= +

 (10)

where L(x) and L(y) are the positions reported to the UUV, L(x)actual and L(y)actual are the
exact positions of the UUV, a and c are the parameters of the Gaussian noise, which can
adjust the noise size and error degree, while μx and μy are random numbers.

Figure 11. Schematic diagram of formation scheme based on improved artificial potential field and
virtual structure. 

L(x) = L(x)actual + ae
µx2

2×c2

L(y) = L(y)actual + ae
µy2

2×c2

(10)

where L(x) and L(y) are the positions reported to the UUV, L(x)actual and L(y)actual are the
exact positions of the UUV, a and c are the parameters of the Gaussian noise, which can
adjust the noise size and error degree, while µx and µy are random numbers.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21

Figure 12. Flow chart of target-hunting simulation experiment.

For the “line” formation target-hunting experiment, the initial positions of the UUVs
are set at points (0,0), (3,0), (6,0), and (9,0). For the “diamond” formation target-hunting
experiment, the initial positions of the UUVs are set at points (4.5,2), (3,1), (6,1), and (4.5,0).
The running results of the simulation platform are shown in Figure 13a,b, and the histor-
ical paths of the four UUVs are shown in Figures 13c,d, respectively. As it can be seen
from Figure 13, when the UUVs approach the target, they can maintain the formation
while moving towards the target, ensuring the spacing with the target and the friendly
UUVs, and finally surround the target, which means that the hunting is successful.

(a) (b)

Figure 12. Flow chart of target-hunting simulation experiment.

Sensors 2022, 22, 8043 13 of 20

For the “line” formation target-hunting experiment, the initial positions of the UUVs
are set at points (0,0), (3,0), (6,0), and (9,0). For the “diamond” formation target-hunting
experiment, the initial positions of the UUVs are set at points (4.5,2), (3,1), (6,1), and (4.5,0).
The running results of the simulation platform are shown in Figure 13a,b, and the historical
paths of the four UUVs are shown in Figure 13c,d, respectively. As it can be seen from
Figure 13, when the UUVs approach the target, they can maintain the formation while
moving towards the target, ensuring the spacing with the target and the friendly UUVs,
and finally surround the target, which means that the hunting is successful.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21

Figure 12. Flow chart of target-hunting simulation experiment.

For the “line” formation target-hunting experiment, the initial positions of the UUVs
are set at points (0,0), (3,0), (6,0), and (9,0). For the “diamond” formation target-hunting
experiment, the initial positions of the UUVs are set at points (4.5,2), (3,1), (6,1), and (4.5,0).
The running results of the simulation platform are shown in Figure 13a,b, and the histor-
ical paths of the four UUVs are shown in Figures 13c,d, respectively. As it can be seen
from Figure 13, when the UUVs approach the target, they can maintain the formation
while moving towards the target, ensuring the spacing with the target and the friendly
UUVs, and finally surround the target, which means that the hunting is successful.

(a) (b)

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21

(c) (d)

Figure 13. Simulation results of target hunting. (a,b) The running results of two experiments on the
simulation platform. (c,d) The UUV trajectories of the two experiments.

4.3. Underwater Experimental Verification
The above simulation results confirmed the effectiveness of our proposed formation

control scheme. To further investigate the effect of the proposed formation control scheme
in the real environment, the underwater experiments are carried out. The UUVs used in
the experiment are designed and manufactured as in Figure 14a, and their 3D model is
shown in Figure 14b.

(a) (b)

Figure 14. (a) The UUV used in the underwater experiment. (b) 3D model of UUV.

In terms of structure, the whole UUV is powered by a 12V lithium battery, and the
control cabin includes a main cabin and two side cabins, all which are round cabins. A
Raspberry PI 4B microcontroller is installed in the main cabin to realize UUV environment
awareness and algorithm planning, and an STM32 development board is also configured
as its lower machine to control the thrusters; batteries and charging modules are placed
in the side cabins.

In terms of power, the mobile carrier of the UUV is mainly composed of seven thrust-
ers, two upper and lower support plates, and four electrode plates. The distribution of the
thrusters is shown in Figure 15. The thrusters numbered 1–4 are used to control the move-
ment of the UUV on the horizontal plane, and the adjacent two thrusters are arranged at
90°. The remaining three propellers are used for the UUV ascending and descending mo-
tion, which are arranged in an angle between the hull, and the coordinated operation of
the seven propellers can help the UUV achieve omnidirectional motion. Firstly, the control
module will calculate the movement speed (Vx,Vy,Wz) required by the UUV through PID
and then adjust the speed of each thruster according to the power distribution scheme.
Taking the thruster 3 in the horizontal direction as an example, when the thruster rotates

Figure 13. Simulation results of target hunting. (a,b) The running results of two experiments on the
simulation platform. (c,d) The UUV trajectories of the two experiments.

4.3. Underwater Experimental Verification

The above simulation results confirmed the effectiveness of our proposed formation
control scheme. To further investigate the effect of the proposed formation control scheme
in the real environment, the underwater experiments are carried out. The UUVs used in
the experiment are designed and manufactured as in Figure 14a, and their 3D model is
shown in Figure 14b.

Sensors 2022, 22, 8043 14 of 20

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21

(c) (d)

Figure 13. Simulation results of target hunting. (a,b) The running results of two experiments on the
simulation platform. (c,d) The UUV trajectories of the two experiments.

4.3. Underwater Experimental Verification
The above simulation results confirmed the effectiveness of our proposed formation

control scheme. To further investigate the effect of the proposed formation control scheme
in the real environment, the underwater experiments are carried out. The UUVs used in
the experiment are designed and manufactured as in Figure 14a, and their 3D model is
shown in Figure 14b.

(a) (b)

Figure 14. (a) The UUV used in the underwater experiment. (b) 3D model of UUV.

In terms of structure, the whole UUV is powered by a 12V lithium battery, and the
control cabin includes a main cabin and two side cabins, all which are round cabins. A
Raspberry PI 4B microcontroller is installed in the main cabin to realize UUV environment
awareness and algorithm planning, and an STM32 development board is also configured
as its lower machine to control the thrusters; batteries and charging modules are placed
in the side cabins.

In terms of power, the mobile carrier of the UUV is mainly composed of seven thrust-
ers, two upper and lower support plates, and four electrode plates. The distribution of the
thrusters is shown in Figure 15. The thrusters numbered 1–4 are used to control the move-
ment of the UUV on the horizontal plane, and the adjacent two thrusters are arranged at
90°. The remaining three propellers are used for the UUV ascending and descending mo-
tion, which are arranged in an angle between the hull, and the coordinated operation of
the seven propellers can help the UUV achieve omnidirectional motion. Firstly, the control
module will calculate the movement speed (Vx,Vy,Wz) required by the UUV through PID
and then adjust the speed of each thruster according to the power distribution scheme.
Taking the thruster 3 in the horizontal direction as an example, when the thruster rotates

Figure 14. (a) The UUV used in the underwater experiment. (b) 3D model of UUV.

In terms of structure, the whole UUV is powered by a 12V lithium battery, and the
control cabin includes a main cabin and two side cabins, all which are round cabins. A
Raspberry PI 4B microcontroller is installed in the main cabin to realize UUV environment
awareness and algorithm planning, and an STM32 development board is also configured
as its lower machine to control the thrusters; batteries and charging modules are placed in
the side cabins.

In terms of power, the mobile carrier of the UUV is mainly composed of seven thrusters,
two upper and lower support plates, and four electrode plates. The distribution of the
thrusters is shown in Figure 15. The thrusters numbered 1–4 are used to control the
movement of the UUV on the horizontal plane, and the adjacent two thrusters are arranged
at 90◦. The remaining three propellers are used for the UUV ascending and descending
motion, which are arranged in an angle between the hull, and the coordinated operation of
the seven propellers can help the UUV achieve omnidirectional motion. Firstly, the control
module will calculate the movement speed (Vx,Vy,Wz) required by the UUV through PID
and then adjust the speed of each thruster according to the power distribution scheme.
Taking the thruster 3 in the horizontal direction as an example, when the thruster rotates to
the forward direction, it will provide the UUV with a velocity of V3 at an angle, α, to the
Y-axis, and the velocity can be decomposed into:

Vx = V3 × cos a

Vy = V3 × sin a

Wz = V3 × R

(11)

where R is the radius of the robot, and α is the angle between the thruster placement direction
and the Y-axis direction of the robot. By inverting the matrix, we can inversely calculate the
required speed of the thruster when the overall speed of the robot is known as follows:

V3 = Vx +
Vy

tan a
+

R(tan a + 1)
tan a

Wz (12)

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21

to the forward direction, it will provide the UUV with a velocity of V3 at an angle, α, to the
Y-axis, and the velocity can be decomposed into:

3

3

3

cos
sin

x

y

z

V V a
V V a
W V R

= ×
 = ×
 = ×

 (11)

where R is the radius of the robot, and α is the angle between the thruster placement di-
rection and the Y-axis direction of the robot. By inverting the matrix, we can inversely
calculate the required speed of the thruster when the overall speed of the robot is known
as follows:

3
(tan 1)

tan tan
y

x z

V R aV V W
a a

+= + + (12)

Figure 15. The distribution of the thrusters.

Similarly, Equation (12) is extended to obtain the dynamic model of the four thrust-
ers:

1

2

3

4

1 (tan 1)1
tan tan
1 (tan 1)1

tan tan
1 (tan 1)1

tan tan
1 (tan 1)1

tan tan

x

y

z

R a
a a

V R a V
V a a V
V R a

W
a aV

R a
a a

− + 
 
   − +          =      − − +          +
 
 

 (13)

where V1–V4 are respectively the rotational speed of the four thrusters in the horizontal
direction. According to Formula (13), the control execution module can decompose the
overall motion speed of the UUV into the four thrusters to realize omnidirectional move-
ment.

The settings of the underwater experiment are consistent with those of the simulation
experiment in the previous section; UUVs are arranged in the formation of “linear” and
“diamond” to hunt the target, respectively, and the trajectory of each UUV can be rec-
orded in real time through the console. The experimental results are shown in Figure 16.

Figure 15. The distribution of the thrusters.

Sensors 2022, 22, 8043 15 of 20

Similarly, Equation (12) is extended to obtain the dynamic model of the four thrusters:


V1

V2

V3

V4

 =



1 1
tan a

−R(tan a+1)
tan a

1 −1
tan a

R(tan a+1)
tan a

1 −1
tan a

−R(tan a+1)
tan a

1 1
tan a

R(tan a+1)
tan a


·


Vx

Vy

Wz

 (13)

where V1–V4 are respectively the rotational speed of the four thrusters in the horizontal di-
rection. According to Formula (13), the control execution module can decompose the overall
motion speed of the UUV into the four thrusters to realize omnidirectional movement.

The settings of the underwater experiment are consistent with those of the simulation
experiment in the previous section; UUVs are arranged in the formation of “linear” and
“diamond” to hunt the target, respectively, and the trajectory of each UUV can be recorded
in real time through the console. The experimental results are shown in Figure 16.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

(a) (b)

(c) (d)

Figure 16. The results of the underwater experiment. (a,b) The running results of two experiments
in the pool. (c,d) The UUV trajectories of the two experiments.

The simulation and underwater experiments fully verify the feasibility of the for-
mation control scheme based on the improved artificial potential field and the virtual
structure method, which can keep UUVs moving forward with the given formation under
the interference of the external environment, and stably hunt the target. By comparing the
simulation results (Figure 13) with the experimental results (Figure 16), the highly con-
sistent results indicate that the fidelity of the simulation platform is reliable.

5. Discussion
The principle, implementation process, and verification experiments of our simula-

tion platform are introduced above. In this section, the extensibility of the simulation plat-
form (introducing its use in the hardware-in-loop simulation system) and comparison
with other representative underwater simulation platforms will be discussed.

The hardware-in-loop (HIL) simulation is a transitional stage between software-in-
loop (SIL) simulation and actual testing. It is characterized by part of the system hardware
being directly placed into the simulation loop, which realizes real-time data interaction
between the simulation model and the actual system and improves the fidelity of the
whole model. The traditional HIL simulation systems are generally composed of the slave
machine and the master machine in which the slave machine is built by the card type
micro-computer, sensors, communication equipment, and other hardware. The master
machine will conduct high-level planning according to the interaction information be-
tween the robot and the environment in the slave machine and issues commands to it.
Hardware assembly and debugging are difficult, and the expected results are unsatisfac-
tory. Thanks to its high integration, the simulation platform designed in this study can be

Figure 16. The results of the underwater experiment. (a,b) The running results of two experiments in
the pool. (c,d) The UUV trajectories of the two experiments.

The simulation and underwater experiments fully verify the feasibility of the formation
control scheme based on the improved artificial potential field and the virtual structure
method, which can keep UUVs moving forward with the given formation under the
interference of the external environment, and stably hunt the target. By comparing the
simulation results (Figure 13) with the experimental results (Figure 16), the highly consistent
results indicate that the fidelity of the simulation platform is reliable.

Sensors 2022, 22, 8043 16 of 20

5. Discussion

The principle, implementation process, and verification experiments of our simulation
platform are introduced above. In this section, the extensibility of the simulation platform
(introducing its use in the hardware-in-loop simulation system) and comparison with other
representative underwater simulation platforms will be discussed.

The hardware-in-loop (HIL) simulation is a transitional stage between software-in-
loop (SIL) simulation and actual testing. It is characterized by part of the system hardware
being directly placed into the simulation loop, which realizes real-time data interaction
between the simulation model and the actual system and improves the fidelity of the
whole model. The traditional HIL simulation systems are generally composed of the slave
machine and the master machine in which the slave machine is built by the card type
micro-computer, sensors, communication equipment, and other hardware. The master
machine will conduct high-level planning according to the interaction information between
the robot and the environment in the slave machine and issues commands to it. Hardware
assembly and debugging are difficult, and the expected results are unsatisfactory. Thanks
to its high integration, the simulation platform designed in this study can be loaded into
the card computer to act as the slave machine without other hardware resources.

The setup of our hardware-in-loop simulation system is shown in Figure 17; the slave
machine on the left is connected with a display screen, and the master machine is on the
right. The master and slave computers communicate with each other through the wireless
interface, wlan0; the network connection status is shown in Figure 18.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

loaded into the card computer to act as the slave machine without other hardware re-
sources.

The setup of our hardware-in-loop simulation system is shown in Figure 17; the slave
machine on the left is connected with a display screen, and the master machine is on the
right. The master and slave computers communicate with each other through the wireless
interface, wlan0; the network connection status is shown in Figure 18.

Figure 17. The setup of hardware-in-loop simulation system.

Figure 18. Network connection between the master and slave computers.

To evaluate the environmental compatibility and operation performance of our hard-
ware-in-loop simulation system, we successively analyzed the indicators of master CPU
usage, startup time, slave memory usage, and command delay based on two representa-
tive card type micro-computers, NVIDIA Jetson Nano (Figure 19a) and Raspberry Pi 4B
(Figure 19b), as shown in Table 1.

Figure 17. The setup of hardware-in-loop simulation system.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

loaded into the card computer to act as the slave machine without other hardware re-
sources.

The setup of our hardware-in-loop simulation system is shown in Figure 17; the slave
machine on the left is connected with a display screen, and the master machine is on the
right. The master and slave computers communicate with each other through the wireless
interface, wlan0; the network connection status is shown in Figure 18.

Figure 17. The setup of hardware-in-loop simulation system.

Figure 18. Network connection between the master and slave computers.

To evaluate the environmental compatibility and operation performance of our hard-
ware-in-loop simulation system, we successively analyzed the indicators of master CPU
usage, startup time, slave memory usage, and command delay based on two representa-
tive card type micro-computers, NVIDIA Jetson Nano (Figure 19a) and Raspberry Pi 4B
(Figure 19b), as shown in Table 1.

Figure 18. Network connection between the master and slave computers.

Sensors 2022, 22, 8043 17 of 20

To evaluate the environmental compatibility and operation performance of our hardware-
in-loop simulation system, we successively analyzed the indicators of master CPU usage,
startup time, slave memory usage, and command delay based on two representative card
type micro-computers, NVIDIA Jetson Nano (Figure 19a) and Raspberry Pi 4B (Figure 19b),
as shown in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

(a) (b)

Figure 19. Two representative card type micro-computers: (a) NVIDIA Jetson Nano and (b) Rasp-
berry Pi 4B.

Table 1. Performance analysis of HIL system based on the different card type micro-computers.

Card Computer
Master

CPU Usage Startup Time
Slave

Memory Usage
Command

Delay
NVIDIA Jetson Nano 42% 3.2 s 37% 2 s

Raspberry Pi 4B 42% 3.6 s 59% 1.9 s

The indicators discussed in Table 1 prove that the HIL simulation system has good
environmental compatibility and performance to meet the task needs, thanks to our sim-
ulation platform. To further highlight the superiority of our simulation platform, eight
indicators are compared between our simulation platform and the most representative
underwater simulation platforms, MVSPU [30], Stonefish [31], and UUV Simulator [28]
from three aspects, as detailed in Table 2. In conclusion, our simulation platform has
unique advantages in simulation accuracy, architecture design, and user experience.

Table 2. Comparison of representative underwater simulation platforms.

 MVSPU [30] Stonefish [31] UUV Simulator [28] Our Platform

Environment
Dimensions 3D 3D 3D 3D

Precision Low Medium High High

Features
Distributed Architecture No No No Yes
Programming Interface 1 1 1 Multiple

Robotics Platform Unity 3D ROS ROS and Gazebo ROS and Gazebo

Evaluation
Level of Standardization Low Medium Medium High

Difficulty of Development Difficult Difficult General Easy
Optional Mode SIL SIL SIL SIL and HIL

6. Conclusions and Future Work
To guide researchers to better develop UUVs from theoretical design to simulation

verification and to practical application, this study first proposed an efficient development
framework in which the self-developed modular simulation platform plays an essential
role. Then, the implementation process of the simulation platform is introduced in detail
from the construction of the virtual environment, the UUV model import, sensor plugins,
and control plugins. Subsequently, to test the interface function of the simulation plat-
form, simulation experiments based on Matlab and Python interfaces are constructed. In
the co-simulation experiment based on Matlab and ROS, we designed the high-level plan-
ning template and carried out simulation experiments, such as path planning and task
scheduling. In the co-simulation experiment based on Python and ROS, the formation

Figure 19. Two representative card type micro-computers: (a) NVIDIA Jetson Nano and (b) Raspberry
Pi 4B.

Table 1. Performance analysis of HIL system based on the different card type micro-computers.

Card Computer Master
CPU Usage Startup Time Slave

Memory Usage
Command

Delay

NVIDIA Jetson Nano 42% 3.2 s 37% 2 s
Raspberry Pi 4B 42% 3.6 s 59% 1.9 s

The indicators discussed in Table 1 prove that the HIL simulation system has good
environmental compatibility and performance to meet the task needs, thanks to our sim-
ulation platform. To further highlight the superiority of our simulation platform, eight
indicators are compared between our simulation platform and the most representative
underwater simulation platforms, MVSPU [30], Stonefish [31], and UUV Simulator [28]
from three aspects, as detailed in Table 2. In conclusion, our simulation platform has unique
advantages in simulation accuracy, architecture design, and user experience.

Table 2. Comparison of representative underwater simulation platforms.

MVSPU [30] Stonefish [31] UUV Simulator [28] Our Platform

Environment
Dimensions 3D 3D 3D 3D

Precision Low Medium High High

Features

Distributed Architecture No No No Yes

Programming Interface 1 1 1 Multiple

Robotics Platform Unity 3D ROS ROS and Gazebo ROS and Gazebo

Evaluation

Level of Standardization Low Medium Medium High

Difficulty of Development Difficult Difficult General Easy

Optional Mode SIL SIL SIL SIL and HIL

6. Conclusions and Future Work

To guide researchers to better develop UUVs from theoretical design to simulation
verification and to practical application, this study first proposed an efficient development
framework in which the self-developed modular simulation platform plays an essential role.
Then, the implementation process of the simulation platform is introduced in detail from the

Sensors 2022, 22, 8043 18 of 20

construction of the virtual environment, the UUV model import, sensor plugins, and control
plugins. Subsequently, to test the interface function of the simulation platform, simulation
experiments based on Matlab and Python interfaces are constructed. In the co-simulation
experiment based on Matlab and ROS, we designed the high-level planning template and
carried out simulation experiments, such as path planning and task scheduling. In the
co-simulation experiment based on Python and ROS, the formation control scheme for
target hunting based on the improved artificial potential field and virtual structure was
proposed and verified. At the same time, underwater experiments were constructed; the
experimental results indicate that the fidelity of our simulation platform is reliable. In
addition, the application of the simulation platform in the hardware-in-loop simulation
system is discussed to highlight its extensibility. Finally, the representative underwater
simulation platforms are compared with our platform from different perspectives to show
the unique advantages of our simulation platform.

We believe that our proposal is a useful asset for the development of robot simulation
techniques, which is an interesting direction for future research because it bridges the gap
between theory and experiment to compensate for the difficulties in practical testing.

Several directions exist for future work: first, our simulation platform will be extended
to UAVs, unmanned vehicles, and other fields to expand its application scope; second, the
optimization of the simulation calculation, such as the accurate description and modeling
of the environment interference and the robot motion model, respectively; lastly, the
simulation framework development and test interface will be further improved to provide
simulation services for complex tasks.

Author Contributions: Conceptualization and methodology, Z.Z., J.D. and W.M.; funding acquisition,
Y.R.; software and investigation, W.M., Z.Z., W.W. and Z.W.; writing—original draft, Z.Z.; writing—review
and editing, Y.Z. and Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Key R&D Program of China under
Grant 2020YFD0901000, in part by the National Natural Science Foundation of China under Grants
61971257 and 62127801, in part by the Young Elite Scientist Sponsorship Program by CAST under
Grant 2020QNRC001, and in part by the project ‘The Verification Platform of Multi-tier Coverage
Communication Network for Oceans (LZC0020)’ of Peng Cheng Laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohsan, S.A.H.; Mazinani, A.; Othman, N.Q.H.; Amjad, H. Towards the internet of underwater things: A comprehensive survey.

Earth Sci. Inform. 2022, 15, 735–764. [CrossRef]
2. Sahoo, A.; Dwivedy, S.K.; Robi, P.S. Advancements in the field of autonomous underwater vehicle. Ocean Eng. 2019, 181, 145–160.

[CrossRef]
3. Du, J.; Song, J.; Ren, Y.; Wang, J. Convergence of broadband and broadcast/multicast in maritime information networks. Tsinghua

Sci. Technol. 2021, 26, 592–607. [CrossRef]
4. Guan, S.; Wang, J.; Jiang, C.; Duan, R.; Ren, Y.; Quek, T.Q.S. MagicNet: The maritime giant cellular network. IEEE Commun. Mag.

2021, 59, 117–123. [CrossRef]
5. Fang, Z.; Wang, J.; Ren, Y.; Han, Z.; Poor, H.V.; Hanzo, L. Age of information in energy harvesting aided massive multiple access

networks. IEEE J. Sel. Areas Commun. 2022, 40, 1441–1456. [CrossRef]
6. Fang, Z.; Wang, J.; Jiang, C.; Zhang, Q.; Ren, Y. AoI-inspired collaborative information collection for AUV-assisted internet of

underwater things. IEEE Internet Things J. 2021, 8, 14559–14571. [CrossRef]
7. Fang, Z.; Wang, J.; Du, J.; Hou, X.; Ren, Y.; Han, Z. Stochastic optimization-aided energy-efficient information collection in internet

of underwater things networks. IEEE Internet Things J. 2022, 9, 1775–1789. [CrossRef]
8. Yan, Z.; Xu, D.; Chen, T.; Zhang, W.; Liu, Y. Leader-follower formation control of UUVs with model uncertainties, current

disturbances, and unstable communication. Sensors 2018, 18, 662. [CrossRef]
9. Hadi, B.; Khosravi, A.; Sarhadi, P. A review of the path planning and formation control for multiple autonomous underwater

vehicles. J. Intell. Robot. Syst. 2021, 101, 67. [CrossRef]
10. Cheng, C.; Sha, Q.; He, B.; Li, G. Path planning and obstacle avoidance for AUV: A review. Ocean Eng. 2021, 235, 109355.

[CrossRef]
11. Cao, X.; Chen, L.; Guo, L.; Han, W. AUV global security path planning based on a potential field bio-inspired neural network in

underwater environment. Intell. Autom. Soft Comput. 2021, 27, 391–407. [CrossRef]

http://doi.org/10.1007/s12145-021-00762-8
http://doi.org/10.1016/j.oceaneng.2019.04.011
http://doi.org/10.26599/TST.2021.9010002
http://doi.org/10.1109/MCOM.001.2000831
http://doi.org/10.1109/JSAC.2022.3143252
http://doi.org/10.1109/JIOT.2021.3049239
http://doi.org/10.1109/JIOT.2021.3088279
http://doi.org/10.3390/s18020662
http://doi.org/10.1007/s10846-021-01330-4
http://doi.org/10.1016/j.oceaneng.2021.109355
http://doi.org/10.32604/iasc.2021.01002

Sensors 2022, 22, 8043 19 of 20

12. Sun, Y.; Ran, X.; Zhang, G.; Xu, H.; Wang, X. AUV 3D path planning based on the improved hierarchical deep Q network. J. Mar.
Sci. Eng. 2020, 8, 145. [CrossRef]

13. Lin, C.; Han, G.; Zhang, T.; Shah, S.B.H.; Peng, Y. Smart underwater pollution detection based on graph-based multi-agent
reinforcement learning towards AUV-based network ITS. IEEE Trans. Intell. Transp. Syst. 2022, in press. [CrossRef]

14. Yuan, J.; Wang, H.; Zhang, H.; Lin, C.; Yu, D.; Li, C. AUV obstacle avoidance planning based on deep reinforcement learning.
J. Mar. Sci. Eng. 2021, 9, 1166. [CrossRef]

15. He, Z.; Dong, L.; Sun, C.; Wang, J. Asynchronous multithreading reinforcement-learning-based path planning and tracking for
unmanned underwater vehicle. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 2757–2769. [CrossRef]

16. Yan, Z.; Xu, D.; Chen, T.; Zhou, J. Formation control of unmanned underwater vehicles using local sensing means in absence of
follower position information. Int. J. Adv. Robot. Syst. 2021, 18, 1–13. [CrossRef]

17. Park, B.S. Adaptive formation control of underactuated autonomous underwater vehicles. Ocean Eng. 2015, 96, 1–7. [CrossRef]
18. Yuan, C.; Licht, S.; He, H. Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear

uncertain dynamics. IEEE Trans. Cybern. 2018, 48, 2920–2934. [CrossRef] [PubMed]
19. Pang, S.K.; Li, Y.H.; Yi, H. Joint formation control with obstacle avoidance of towfish and multiple autonomous underwater

vehicles based on graph theory and the null-space-based method. Sensors 2019, 19, 2591. [CrossRef] [PubMed]
20. Huang, H.; Tang, Q.; Zhang, G.; Zhang, T.; Wan, L.; Pang, Y. Multibody system-based adaptive formation scheme for multiple

under-actuated AUVs. Sensors 2020, 20, 1943. [CrossRef]
21. Fernandez-Chaves, D.; Ruiz-Sarmiento, J.R.; Jaenal, A.; Petkov, N.; Gonzalez-Jimenez, J. Robot@VirtualHome, an ecosystem of

virtual environments and tools for realistic indoor robotic simulation. Expert Syst. Appl. 2022, 208, 117970. [CrossRef]
22. Ojeda, P.; Monroy, J.; Gonzalez-Jimenez, J. A simulation framework for the integration of artificial olfaction into multi-sensor

mobile robots. Sensors 2021, 21, 2041. [CrossRef]
23. Rivera, Z.B.; De Simone, M.C.; Guida, D. Unmanned ground vehicle modelling in gazebo/ROS-based environments. Machines

2019, 7, 42. [CrossRef]
24. Dai, X.; Ke, C.; Quan, Q.; Cai, K.Y. RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-

the-loop simulations. Aerosp. Sci. Technol. 2021, 114, 106727. [CrossRef]
25. Xiao, K.; Tan, S.; Wang, G.; An, X.; Wang, X.; Wang, X. XTDrone: A Customizable Multi-Rotor UAVs Simulation Platform. In

Proceedings of the 2020 4th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 12–14 June
2020; pp. 55–61.

26. Chen, S.; Zhou, W.; Yang, A.S.; Chen, H.; Li, B.; Wen, C.Y. An end-to-end UAV simulation platform for visual SLAM and
navigation. Aerospace 2022, 9, 48. [CrossRef]

27. Liu, K.; Zhou, X.; Zhao, B.; Ou, H.; Chen, B.M. An Integrated Visual System for Unmanned Aerial Vehicles Following Ground
Vehicles: Simulations and Experiments. In Proceedings of the 2022 IEEE 17th International Conference on Control & Automation
(ICCA), Naples, Italy, 27–30 June 2022; pp. 593–598.

28. Manhães, M.M.M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV Simulator: A Gazebo-based Package for
Underwater Intervention and Multi-Robot Simulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA,
USA, 19–23 September 2016; pp. 1–8.

29. Ngo, A.T.; Tran, N.H.; Ton, T.P.; Nguyen, H.; Tran, T.P. Simulation of Hybrid Autonomous Underwater Vehicle Based on ROS and
Gazebo. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi
Minh City, Vietnam, 14–16 October 2021; pp. 109–113.

30. Nie, Y.; Luan, X.; Gan, W.; Ou, T.; Song, D. Design of Marine Virtual Simulation Experiment Platform Based on Unity3D. In
Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–5.

31. Cieślak, P. Stonefish: An Advanced Open-Source Simulation Tool Designed for Marine Robotics, with a ROS Interface. In
Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; pp. 1–6.

32. Chou, Y.C.; Chen, H.H.; Wang, C.C.; Wang, C.C.; Chen, W.H. A Hardware-in-the-Loop Simulation Platform for Development of
AUV Control Systems. In Proceedings of the 2019 IEEE Underwater Technology (UT), Taiwan, China, 16–19 April 2019; pp. 1–6.

33. Kaliappan, V.K.; Budiyono, A.; Min, D.; Muljowidodo, K.; Nugroho, S.A. Hardware-in-the-Loop Simulation Platform for the
Design, Testing and Validation of Autonomous Control System for Unmanned Underwater Vehicle. Indian J. Geo-Mar. Sci. 2012,
41, 575–580.

34. IHO S-57/ENC-Object and Attribute Catalogue. Available online: http://www.s-57.com/ (accessed on 2 October 2022).
35. Ramesh, N.V.K.; Karthik, C.V.S.; Yugesh, J.; Vani, B.V.; Reddy, B.N.K. Analysis of Potential Regions for Maritime using QGIS

Tool. In Proceedings of the 2022 Second International Conference on Advances in Electrical, Computing, Communication and
Sustainable Technologies (ICAECT), Bhilai, India, 21–22 April 2022; pp. 1–4.

36. Zaki, A.; Buchori, I.; Sejati, A.W.; Liu, Y. An object-based image analysis in QGIS for image classification and assessment of coastal
spatial planning. Egypt. J. Remote Sens. Space Sci. 2022, 25, 349–359. [CrossRef]

37. Meyer, J.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; von Stryk, O. Comprehensive Simulation of Quadrotor UAVs Using ROS
and Gazebo. In Proceedings of the Third International Conference on Simulation, Modeling, and Programming for Autonomous
Robots, Tsukuba, Japan, 5–8 November 2012; pp. 400–411.

38. Ridley, P.; Fontan, J.; Corke, P. Submarine Dynamic Modelling. In Proceedings of the Australian Conference on Robotics and
Automation 2013, Sydney, Australia, 2–4 December 2003; pp. 1–8.

http://doi.org/10.3390/jmse8020145
http://doi.org/10.1109/TITS.2022.3162850
http://doi.org/10.3390/jmse9111166
http://doi.org/10.1109/TSMC.2021.3050960
http://doi.org/10.1177/1729881420986745
http://doi.org/10.1016/j.oceaneng.2014.12.016
http://doi.org/10.1109/TCYB.2017.2752458
http://www.ncbi.nlm.nih.gov/pubmed/28961137
http://doi.org/10.3390/s19112591
http://www.ncbi.nlm.nih.gov/pubmed/31174385
http://doi.org/10.3390/s20071943
http://doi.org/10.1016/j.eswa.2022.117970
http://doi.org/10.3390/s21062041
http://doi.org/10.3390/machines7020042
http://doi.org/10.1016/j.ast.2021.106727
http://doi.org/10.3390/aerospace9020048
http://www.s-57.com/
http://doi.org/10.1016/j.ejrs.2022.03.002

Sensors 2022, 22, 8043 20 of 20

39. Pgm Map Creator. Available online: https://github.com/hyfan1116/pgm_map_creator (accessed on 10 August 2022).
40. Zhou, D.; Wang, Z.; Schwager, M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual

structures. IEEE Trans. Robot. 2018, 34, 916–923. [CrossRef]
41. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 500–505.
42. Ge, H.; Chen, G.; Xu, G. Multi-AUV cooperative target hunting based on improved potential field in a surface-water environment.

Appl. Sci. 2018, 8, 973. [CrossRef]
43. Zhen, Q.; Wan, L.; Li, Y.; Jiang, D. Formation control of a multi-AUVs system based on virtual structure and artificial potential

field on SE(3). Ocean Eng. 2022, 253, 111148. [CrossRef]

https://github.com/hyfan1116/pgm_map_creator
http://doi.org/10.1109/TRO.2018.2857477
http://doi.org/10.3390/app8060973
http://doi.org/10.1016/j.oceaneng.2022.111148

	Introduction
	Framework Design and Platform Implementation
	Self-Feedback Development Framework for UUV
	Construction of Virtual Ocean Environment
	Design of 3D Model, Sensor Plugin, and Control Plugin for UUV

	Co–Simulation Template Based on Matlab and ROS
	UUV Formation Control Simulation Case and Underwater Experimental Verification
	Formation Control Scheme Based on Potential Field Model and Virtual Structure
	Simulation Settings and Results
	Underwater Experimental Verification

	Discussion
	Conclusions and Future Work
	References

