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Abstract: Background: Digital clinical measures collected via various digital sensing technologies such
as smartphones, smartwatches, wearables, and ingestible and implantable sensors are increasingly
used by individuals and clinicians to capture the health outcomes or behavioral and physiological
characteristics of individuals. Time series classification (TSC) is very commonly used for modeling
digital clinical measures. While deep learning models for TSC are very common and powerful,
there exist some fundamental challenges. This review presents the non-deep learning models that
are commonly used for time series classification in biomedical applications that can achieve high
performance. Objective: We performed a systematic review to characterize the techniques that are used
in time series classification of digital clinical measures throughout all the stages of data processing
and model building. Methods: We conducted a literature search on PubMed, as well as the Institute of
Electrical and Electronics Engineers (IEEE), Web of Science, and SCOPUS databases using a range
of search terms to retrieve peer-reviewed articles that report on the academic research about digital
clinical measures from a five-year period between June 2016 and June 2021. We identified and
categorized the research studies based on the types of classification algorithms and sensor input
types. Results: We found 452 papers in total from four different databases: PubMed, IEEE, Web
of Science Database, and SCOPUS. After removing duplicates and irrelevant papers, 135 articles
remained for detailed review and data extraction. Among these, engineered features using time series
methods that were subsequently fed into widely used machine learning classifiers were the most
commonly used technique, and also most frequently achieved the best performance metrics (77 out
of 135 articles). Statistical modeling (24 out of 135 articles) algorithms were the second most common
and also the second-best classification technique. Conclusions: In this review paper, summaries of
the time series classification models and interpretation methods for biomedical applications are
summarized and categorized. While high time series classification performance has been achieved in
digital clinical, physiological, or biomedical measures, no standard benchmark datasets, modeling
methods, or reporting methodology exist. There is no single widely used method for time series model
development or feature interpretation, however many different methods have proven successful.

Keywords: systematic review; time series classification; digital clinical measures; machine learning;
feature engineering

1. Introduction

Time Series Classification (TSC) involves building predictive models that output
a target variable or label from inputs of longitudinal or sequential observations across
some time period [1]. These inputs could be from a single variable measured across time
or multiple variables measured across time, where the measurements can be ordinal or
numerical (discrete or continuous).

Time series data are a very common form of data, containing information about the
(changing) state of any variable. Some common examples include stock market prices
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and temperature values across some period of time. Time series modeling tasks include
classification, regression, and forecasting. There are unique challenges that come with
modeling time series, given that measurements in time obtained in real-life settings are
subject to random noise, and that any measurement at a particular point in time could be
related to or influenced by measurements at other points in time [1]. Given this nature of
time series data, it is impractical to simply utilize established machine learning algorithms
such as logistic regression, support vector machine, or random forest on the raw time
series datasets because these data violate the basic assumptions of those models. In recent
years, two vastly different camps of time series classification techniques have emerged:
deep-learning-based models vs non-deep-learning-based models. While deep learning
models are extremely powerful and show great promise in classification performance
and generalizability, they also present challenges in the areas of hyperparameter tuning,
training, and model complexity decisions. To enable the evaluation of new models, a
reasonable baseline is also needed for comparison. Further, there already exists a review on
deep-learning time series classification methods [2]. Therefore, the focus of this review is
on non-deep learning-based time series classification models.

This paper also focuses specifically on the biomedical applications of time series
classification because there has been a huge increase in the generation of biomedical
time series datasets (such as data from wearable devices like Apple Watch and Fitbit)
recently as well as research using such data—examples include electrocardiogram (ECG,
for cardiovascular dysfunction screening) [3], electroencephalogram (EEG, for brainwave
tracking) [4], accelerometry (for activity recognition), and polysomnography (PSG for
sleep tracking) [5], etc. In addition, an increasing number of people use smart devices or
wearables regularly [6] for general fitness tracking [7], sleep tracking [8], fall detection [9],
or arrhythmia detection [10]. There is a growing need to design better data mining and
classification methods to discern important and useful information from biomedical time
series data. This would lead to more reliable methods for screening, diagnosis, and
monitoring, thereby providing huge benefits for healthcare as a whole.

Biomedical time series data collected from human subjects often present challenges
that impede the ability to leverage time series modeling techniques that are common
in other fields. For example, biomedical time series datasets often include just a small
number of human subjects due to the resources and effort needed for data collection and
annotation (or labeling to produce ground truth), which makes applying deep learning
models very difficult since they are extremely data hungry [11]. Another challenge is the
non-ergodic nature of datasets collected from human subjects, meaning that human subjects
have vast individual differences in mental and physical states, and thereby producing data
that look very different from one subject to another [12]. This results in sample level
observations or models that perform well on some individuals even while being completely
useless for others.

While both reviews and experimental evaluations of recent algorithmic advances
have been done [13], the usefulness and applicability of machine learning algorithms is
also impacted by interpretability and simplicity, particularly for biomedical predictive or
diagnostic tasks. This review systematically surveys papers published in recent years that
have used time series classification machine learning algorithms on biomedical datasets to
answer the following questions:

(1) What are the most common time series classification algorithms used in biomedical
data science in the past six years?

(2) What are the best performing time series classification algorithms for common biomed-
ical signals?

(3) How is interpretability addressed in the scientific literature that describes applying
TSC algorithms for specific biomedical tasks?

The motivation for this review came from the observation that the types of algorithms
explored and the depth of analysis performed in time series biomedical data science have
not been well described. In general, there has been a strong emphasis on algorithmic
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performance and a lack of focus on interpretability and model simplicity. This review
aims to provide a general and recent landscape of the types of time series classification
algorithms on longitudinal biomedical data and these algorithms can be applied toward
specific tasks and with more insightful analysis.

2. Methods

A list of search terms was developed that are specific for each of the following four
databases: PubMed, IEEE, SCOPUS, and Web of Science (Supplementary Table S1). Four
literature databases were searched: PubMed, IEEE, Web of Science, and SCOPUS. Among
these databases, IEEE enforces a limit on the number of search terms to a maximum of 20.
Hence, the defined search terms on IEEE were different from those on PubMed, Web of
Science, and SCOPUS. The literature search was limited to the last six years for a manage-
able scope of review. The defined searches include the general terms and variations of time
series machine learning classification and the fields of biomedical data. While the approach
limits the coverage of the review, more recent work is often built upon previous work and
new time series classification techniques are often compared to established techniques from
previous work, therefore this method is expected to provide a sufficient representation of
the field. Covidence was used for literature screening and data extraction. This review has
a very clear focus on only non-deep-learning time series classification techniques utilized
on biomedical data. This boundary notably excludes time series regression tasks and deep
learning techniques.

There were two phases of screening before data extraction. The first phase was
screening by titles and abstracts, which Covidence automatically extracted from the DOI
URLs. This phase was completed by two reviewers where each reviewer read through
each title/abstract and labeled them as “include” or “exclude”. Conflicts were resolved by
discussion among the reviewers in order to reach consensus. A total of 260 papers were
found to be irrelevant in this phase, mainly due to the following reasons:

• Classification algorithm is not used on biomedical data or time series data;
• The article does not focus on classification algorithms, but regression algorithms,

clustering algorithms, or other algorithms;
• The article focuses only on deep learning algorithms.

The second phase was screening of the full texts, which were pulled automatically by
Covidence if free full texts were readily available. The rest of the full texts were uploaded
manually to the Covidence platform using university credentials for access. Again, two
reviewers each went through all the papers and adjudicated the inclusion of papers into
the final data extraction. Conflicts were resolved by discussion to reach a consensus. A
total of 40 papers were excluded in this phase, mainly due to the following reasons:

• No access to full paper;
• Not enough information about classification algorithm performance included;
• The data came from animals instead of humans;
• The algorithms used are not classification algorithms.

Data from each paper were extracted by one of five reviewers, and then verified,
edited, and cleaned by the study lead. In Table 1, we detail the information that was
extracted from each paper:
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Table 1. Data fields extracted from identified academic research.

Categories Choices/Sub-Fields Definitions/Descriptions

General (Relevant)
Information

Article Type The type of article for a particular paper being reviewed, such
as Journal Article/Conference Article/Review Paper

Area of application Describes the area of biomedical signal and application this
paper is about.

Aim of study Defines the specific challenge or question this paper is
aimed at tackling

Name of
Publisher/Journal/Conference Site of article publication.

Classification Task
Defines the kind of classification task performed in this article.
(Pointwise classification, window classification, or whole
sequence classification)

Input data (X) The type of input biomedical time series data

Label (Y) The output label or variable. Example: sleep vs wake, healthy
vs diseased.

Data source or open dataset name States if the data are open source and where the
dataset is hosted.

Population Size The number of subjects are included in this dataset.

Data exclusion criteria States the criteria considered to exclude subjects or specific
parts of the data.

All algorithms tested List (or examples) of all the algorithms tested.

Best algorithm name The name of the best algorithm.

Classification Task

Whole-Series Classification
In whole time series classification (WSC) for a dataset of n
samples, we are provided a set of tuples where each of an entire
time series is associated with one class label.

Sequence-to-sequence (point-wise) The class label of each point in time is predicted.

Window-based Classification or
Onset Detection

Onset detection is a subtype of time series classification in
which—as opposed to whole series classification—class labels
are provided with a time-stamp. As an alternative to time
pointwise classification, time-stamped labels have been
leveraged for classifying time series windows that precede the
class label’s time-stamp. For onset detection, a class label
requires a time-stamp. This additional information can enforce
that solely information from the past and present is used to
predict a future target.
This can be understood as a compromise between time
pointwise classification and whole time series classification. An
example is to detect the onset of sepsis in the intensive care unit

Best Algorithm Class

Feature Engineering

The type of time series classification technique where features
are extracted to describe a particular time series sample and the
features are fed into traditional machine learning algorithms as
inputs of the predictive modeling.

Statistical Modeling

This technique uses statistical modeling (such as Kalman filters
or state-space models like Hidden Markov Models) to describe
or fit the time series observed. Using the information obtained
from statistical models, we can make decisions or extract
features to be used as inputs to machine learning algorithms.

Wavelet Transform [8]

Wavelet Transform can be used for signal cleaning
(preprocessing), signal decomposition (preprocessing), and
feature extraction. This technique is widely used and can be
considered an integral part of time series machine learning.
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Table 1. Cont.

Categories Choices/Sub-Fields Definitions/Descriptions

Distance-based methods [7]

This method is based on defining or quantifying the difference
or distance (proxy for dissimilarity) between every pair of time
series data samples in the dataset. Classification is performed
based on the calculated distances, where two time series that
are in close proximity (i.e., they have a small distance) under
some distance measure are likely to come from the same class.

Ensemble-based
Ensemble-based classification algorithms utilize multiple
algorithms to make predictions and then aggregate the results
coming from these different algorithms

Shapelet/Shape-based
Shapelet-based methods are similar to significant pattern
mining. Time series shapelets are subsequences that maximize
classification performance.

Non-linear index and thresholding

This time series classification method is based on defining
indices based on domain- and data-driven time series features.
The thresholds for these indices can be predefined or found
through statistical learning. The thresholds are then used to
make predictions of classes.

Other Any other methods of time series classification that cannot be
easily categorized.

Best Algorithm
Performances [14,15]

Accuracy

The degree of correctness of a calculation of the best
algorithm reported.

TP+TN
TP+FN+TN+FP

F1-score

The harmonic mean of precision and recall of the best
algorithm reported.

2 × Precision×Sensitivity
Precision+Sensitivity

Area Under Curve of
Receiver-Operating Characteristic

The measure of the usefulness of a test, in general, of the best
algorithm reported.

Sensitivity
The percentage of true positives of the best algorithm reported.

TP
TP+FN

Specificity
The percentage of true negatives of the best algorithm reported.

TN
TN+FP

Cohen’s Kappa

A statistical measure of inter-rater reliability for categorical
variables of the best algorithm reported.

p0−pe
1−pe

Positive Predictive
Value

The percentage of positive test results is a true positive.
TP

TP+FP

Negative Predictive Value The percentage of negative test results is a true negative.
TN

TN+FN

False Positive Rate
The percentage of false alarm of the best algorithm reported

FP
FP+TN

Area Under Precision-Recall Curve
A model performance metric for binary responses that is
appropriate for rare events and not dependent on model
specificity
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3. Results

After removing duplicates and irrelevant papers, 135 articles remained for review and
data extraction. Time series classification modeling typically consists of 3 main steps: signal
preprocessing/transformation, modeling, and classification (Figure 1). The classification
step is basically the process of model tuning, training, and validation. The different types
of algorithms used in the modeling steps are adapted from the categories summarized
in “The great multivariate time series classification bake off: a review and experimental
evaluation of recent algorithmic advances” by Ruiz et al. [13] (Figure 1b). The most common
techniques found in our search are feature engineering and selection, statistical modeling,
distance-based, index development, and shape-based methods (Table 1 and Table S2).
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Figure 1. (a). Review results and the number of papers through each selection process. (b). Flow
chart of the common steps in time series classification techniques found in this review. Raw time
series signals usually go through some steps of preprocessing for artifact removal or noise reduction,
and then are passed through the modeling stage. The modeling stage can use many different types of
algorithms, such as feature engineering and selection, statistical modeling, and distance calculation
(Table 1). Classifiers are then tuned, trained, validated, and compared to find the best model for a
specific task.

4. Algorithm Summaries

Among the articles reviewed, electroencephalogram (EEG) signals were the most com-
mon biosignals investigated. Detailed information about the types of signals investigated
in these papers are shown in Figure 2a. Engineered time series features that are fed into
widely used machine learning classifier models are the most commonly used technique
and most often found achieve the best performance (77 out of 135 articles). Statistical
modeling (24 out of 135 articles) algorithms are the second most common. Wavelet-based
classification models (8 out of 135 articles) are also common (Figure 2c). Of papers that
reported accuracy, 64% achieved accuracy higher than 90%. Of those that reported F1-
scores, 70% achieved an F1-score higher than 0.90. Of those that reported AUC-ROC values,
24% achieved AUC-ROC values higher than 0.90. Of those that reported the sensitivity
and/or specificity, 54% and 57%, respectively, achieved scores higher than 0.90. Of those
that reported Cohen’s Kappa, 43% achieved a Cohen’s Kappa higher than 0.90.
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Figure 2. (a). Numbers of papers found in this review focusing on each different biosignal type
specified on the horizontal axis. (b). Conceptual representation of non-deep learning time series
classification modeling types. [1,16–20]. (c). Number of articles found for the categories of time series
classification methods (horizontal axis) used in biomedical applications.

The classification performance metrics of all the articles were recorded and included
in this review, including accuracy, F1-score, Area Under Curve of Receiver Operating
Characteristics (AUC-ROC), sensitivity, specificity, and Cohen’s Kappa. The accuracy score
is the most commonly reported performance metric, with 68% of the articles reporting ac-
curacy scores (Figure 3). All other performance metrics are seldom reported: 30% reported
F1-score, 19% reported AUC-ROC, 35% reported specificity, 43% reported sensitivity, and
6% reported Cohen’s Kappa. This is concerning because oftentimes using only one or two
performance metrics to evaluate a classifier is unreliable and does not tell the whole story of
performance [21,22]. In the 135 papers reviewed, 86.7% reported one or more performance
metrics, 50.4% reported two or more performance metrics, and 37.8% reported three or more
performance metrics. Only 2 papers out of 135 reported more than 6 performance metrics.
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4.1. Preprocessing Methods

In all 135 papers, 50% specifically mentioned the preprocessing methods used. The
most common preprocessing method is filtering, which was used mainly for artifact re-
moval or noise reduction. Some other common preprocessing methods include re-sampling
(downsampling for lower frequency or upsampling for higher frequency), segmentation,
and smoothing. Other common methods are the use of discrete wavelet transform to
decompose the original signal into different frequency bands [23–25], the use of continuous
wavelet transform to expand the feature space [26], and the use of Fourier transform for
signal decomposition and feature extraction [27,28]. There are also intelligent upsampling
techniques, such as the use of synthetic data generation for a larger sample during pre-
processing [29]. We present a summary of the commonly used preprocessing methods in
Supplementary Table S3.

4.2. Feature Engineering Methods

Feature engineering was the most commonly used method of time series classification.
The feature engineering pipeline (Figure 1b) usually consists of the following steps:

1. Preprocessing: this step takes raw data as the input and performs some manipulation
of the data to return cleaner signals. Common steps include artifact removal, filtering,
and segmentation.

2. Signal transformation: this step can be used in preprocessing and also as a precursor
to feature extraction. Some manipulation is performed on the signal to represent it in
a different space. Common choices are Fourier Transform and wavelet transforms.

3. Feature extraction: in this step, features are extracted from the time series data as a
new representation of the original time series.
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4. Feature selection: this step selects the features that are the most descriptive, or have the
most explanation power. Feature selection is also frequently performed in conjunction
with model building.

5. Model selection: the best model is found through hyperparameter tuning and/or
comparisons between different types of algorithms.

6. Model validation: performance metrics are calculated for all of the final models. This
is frequently done in conjunction with model selection and often using some form of
cross-validation.

An example feature engineering technique for a time series is shown in Figure 4.
Summary tables of the extracted features for general time series data as well as specific
signals (HRV, EEG, etc.) and feature selection methods are presented in Supplementary
Table S4a,b. Supplementary Table S5 also presents a summary table for all of the found
feature selection methods. In short, feature engineering is used for all signal types across
many different applications.
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4.3. Other Methods

Ensemble Methods: Ensemble-based methods are characterized by the connection of
multiple algorithmic models that join forces to make the final prediction. These methods
may or may not need an additional feature engineering step. Some algorithms that do
not necessitate feature engineering in this category are Hierarchical Vote Collective of
Transformation-based Ensembles and Bag of Symbolic Fourier Approximation Symbols
ensemble algorithms (BOSS) [13]. Newman et al. [31] describe a novel 3-classifier ensemble
algorithm for detecting short periods of artificially induced nystagmus (a vision condi-
tion in which the eyes make repetitive, uncontrolled movements) from continuous eye
movement data. The ensemble of classifiers include a support vector machine (SVM), a
linear discriminant analysis (LDA), and boosted trees, and the final classification decision
is made by the majority vote. This method reported an accuracy of 0.9877, F1-score of
0.98, sensitivity of 0.9911, and specificity of 0.9863. Elsayed et al. [32] tested eight different
state-of-the-art time series classification methods to find the optimal univariant ECG signal
classifier. These models are: the Fully Convolutional Network (FCN), Long Short-Term
Memory and Fully Convolutional Network (LSTM-FCN) and its attention-based LSTM
model (ALSTM-FCN), the Deep Gated Recurrent and Convolutional Network Hybrid
Model (GRU-FCN), the Residual Network Mode (ResNet), Multilayered Perceptron model
(MLP), Dynamic Time Warping model (DTW), and the noise-reduction-based model, BOSS.
The best performance resulted from GRU-FCN, which achieved the highest accuracy in
five out of the six datasets that were tested, with a reported accuracy score of 0.92.

State-space Models: State-space models are characterized by the construction of a state
and transition model where the transitions are modeled by probabilities. Often, state-space
models are most intuitively used for sequence-to-sequence or point-wise classification. For
example, She et al. [33] introduced an adaptive transfer learning algorithm to classify and
segment events from non-stationary, multi-channel temporal data recorded by an Empatica
E4 wristband, including 3-axis accelerometry (ACC), heart rate (HR), skin temperature
(TEMP), and electrodermal activity (EDA). Using a multivariate Hidden Markov Model
(HMM) and Fisher’s Linear Discriminant Analysis (FLDA), the algorithm adaptively adjusts
to shifts in the distribution over time, thereby achieving an accuracy of 0.9981 and F1-score
of 0.9987. Garcia et al. [34] proposed a method based on dynamic affect (or emotional state)
recognition from multimodal physiological signals such as EEG, Electrooculography (EOG),
and Electromyography (EMG). This model is based on learning about latent space using
Gaussian Process Latent Variable Models (GP-LVM), which maps high-dimensional data
(multimodal physiological signals) to a low-dimensional latent space. A support vector
classifier is implemented to evaluate the relevance of the latent space features in the affect
recognition process, thereby achieving an accuracy of 0.90556.

Shape/Pattern-based: These models are characterized by mining or comparing shapes
or patterns in a time or sequence vector. For example, Zhou et al. [35] published an
algorithm that can take into consideration the interaction among signals collected at spa-
tiotemporally distinct points, where fuzzy temporal patterns are used to characterize and
differentiate between different classes of multichannel EEG data. This algorithm achieved
an accuracy of 0.9318 and an F1-score of 0.931, thereby classifying positive vs negative
emotion states.

Distance-based: These models calculate the distance (or differences) of time series
data vectors. For example, Forestier et al. [36] propose an efficient algorithm to find the
optimal partial alignment (optimal subsequence matching) and a prediction system for
multivariate signals using maximum a posteriori probability estimation and filtering. This
scoring function is based on dynamic time warping. They were able to achieve an accuracy
of 0.95, an F1-score of 0.926, and a sensitivity of 0.896.

Other: There are other methodologies that are difficult to characterize. One com-
mon method is performed by using statistical modeling of some sort. For example,
İşcan et al. [37] published a high performance method to classify and discriminate var-
ious ECG patterns (to identify and classify QRS complexes). The model is called LLGMN,
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which is composed of a Log-Linear Model and a Gaussian Mixture Model (GMM), and
gives a posterior probability for the training data. This model was able to achieve the
highest accuracy, which was 0.9924.

Another common method is designing a composite metric or index based on domain
knowledge or data-driven metrics. For example, Zhou et al. [38] proposed a new algo-
rithm to detect gait events on three walking terrains in real-time based on an analysis
of acceleration jerk signals with a time–frequency method to obtain gait parameters, as
well as detecting the peaks of jerk signals using peak heuristics. The performance of the
newly proposed algorithm was evaluated in eight healthy subjects walking on level ground,
upstairs, and downstairs. The mean F1-score was above 0.98 for HS (heel-strike) event
detection and 0.95 for TO (toe-off) event detection on the three terrains.

Some articles focus specifically on investigating the wavelet transform and increasing
its usefulness for specific use cases. For example, Ji et al. [39] systematically investigated
the performances of mother wavelets commonly used in detecting gait events. The overall
performance of the Continuous Wavelet Transform (CWT) in detecting the two gait events
was significantly different when using various mother wavelets. “Db6” has the highest
detection accuracy with the lowest detection time-error, achieving a final accuracy of 1.0.
Lu et al. [40] proposed two methods: Discrete Wavelet Transform (DWT) and Extra Trees
Classifier, and a personal identification method based on Continuous Wavelet Transform
(CWT) and Convolutional Neural Networks (CNN). Nested five-fold cross-validation was
used for model selection and model assessment. The CWT method was adopted to uncover
feature differences between EMG signals of different subjects. The two methods achieved
accuracies of 0.99206 and 0.99203, respectively.

4.4. Interpretation Methods

Model interpretability is a significant aspect of model building. In time series classifi-
cation for biomedical applications, the interpretation of models that have been built and
validated could highlight potential insights into the biomedical phenomenon of interest.
Some models have a built-in methodology of interpretation, such as statistical modeling
(Hidden Markov Models, Bayesian Models, or ARIMA models) and indices that are in-
formed based on domain knowledge. For many more models with great performance,
however, interpretability is a challenge. Only 47 out of the 135 papers reviewed have
included some form of interpretation method or model explanation method. Table 2 sum-
marizes the different types of model interpretation methods with descriptions and some
examples.

Table 2. Summary of the different types of model interpretation methods discussed or used in
each article.

Type of Interpretation Method Description Example Papers

Plotting and Annotating Raw Signal

Plotting and annotating raw signals is a widely adopted and useful
method for explaining the significance of differentiating features or
shapes in time series classification problems. The plots generally
consist of a representation of the raw or preprocessed signals in
scatter or line plots and highlight the characteristics of the raw or
transformed signal, which serves as the differentiating features or
shapes for different classes. Some groups have also adopted plotting
of preprocessed and transformed signals to present interpretable
results. Examples of this method include plotting heart rate values
with steps that compare rest and active periods, plotting detected
anomalous sequences that are compared against normal sequences,
and plotting time series samples in cluster plots after dimension
reduction or feature extraction.

[41–46]
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Table 2. Cont.

Type of Interpretation Method Description Example Papers

Visualization of indices over
biological/physiological constructs

Instead of plotting against raw signals in 1D, researchers also
routinely plot calculated or estimated metrics against 2D or 3D
biological constructs, especially when the time series data are signals
that represent complicated biological systems, such as brain activities
or blood circulation. This interpretation method is very commonly
used on electroencephalogram datasets, and examples include a
graphical representation of the brain for mean calculated metrics for
calm and distressed individuals, as well as a construction of 2D maps
of scalp topographies that indicate statistical differences.

[4,26,28,47]

Statistical Analysis/Modeling

Statistical analysis and modeling are used to provide interpretability
for not just the models built for classification, but also for clinical
application and biomedical understanding. Various plots and tests
can be used to demonstrate the relationship between outcomes and
certain features or estimated metrics. Example plots are kernel
distribution plots, distribution box-plots from statistical models,
normality plots, and the visualization of the separability of indices
through plotting of the index space. Example analysis tests include
variance analysis, normality tests, correlation analysis, and also
modeling techniques such as generalized linear models, bivariate
random-effects models, and Bayesian hierarchical models.

[26,41,48–53]

Feature weight/importance
analysis/ranking

Analysis and visualization of feature importance in a model are very
helpful for researchers and clinicians to identify the most useful and
important features that contribute to predicting an outcome or
influencing a diagnosis. Many time series classification algorithms
have built-in methods for feature importance analysis, such as
Random Forest, Logistic Regression, and some statistical modeling
based classification algorithms. In the pipeline of feature engineering
techniques of time series classification, it is often seen that feature
selection or dimension reduction are used, and these steps also
automatically generate a ranking of feature importance to model
building. Additionally, feature importance and ranking can be
generated by specific techniques such as Fisher Importance score and
Shapley values.

[44,54–60]

Classifier Boundary Plotted
against features

Plotting the classifier’s boundary in the feature space or lower
dimensional space helps to visualize the classifier’s ability to
differentiate observations from one class to another, i.e., separability.
SVM-based classifiers commonly utilize this method
for interpretability.

[61]

Index Parameter and
Threshold Tuning

Index parameter and threshold tuning is an interpretation method
that is usually used in conjunction with classifier building by using a
domain-driven approach. Using a domain-driven approach, the
researchers typically try to design an index to quantify a biological or
physiological phenomenon. The design of the index is usually
flexible and can be tuned by changing the parameters used in the
index’s formula. The threshold of the index is used to differentiate
the classes (such as normal vs abnormal conditions, positive vs
negative diagnosis). Both the parameters and the threshold of the
designed index can be tuned using the existing the dataset, and the
classifier’s performance metrics can be examined to find the best set
of parameters and threshold(s) to achieve the best classifier
performances. These parameters and thresholds could also have
biomedical significance and meaning relevant for future medical
understanding and research. Index analysis can be performed against
record length (length of time series), missingness, sample saturation,
and time offset.

[51,57,62,63]
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Table 2. Cont.

Type of Interpretation Method Description Example Papers

Channel or Signal Selection

Channel or signal selection is a model building technique but also an
interpretation method. Given the prevalence of multivariable time
series data in biomedical applications, it is critical for researchers to
determine which signals among many, or which channels, can be
used for classification. By comparing the classifiers’ performances
using different signals/channels or specifications of the signals (such
as where the sensors are placed), researchers are able to find the best
combination that achieves the best performance results, and hence
provides interpretability in terms of which signal types or channels
are most important for the given biomedical application.

[64–66]

Performance Comparisons
Investigating Different Scenarios

Comparing classifier performance metrics when built under different
scenarios serves as an interpretation method as well as an
experimentation method. Experts in a domain of interest can make
sense of why a certain scenario produces the best predictability or
algorithm performance, thereby contributing to biomedical
understanding and research. For example, accuracy and F1-scores
can be compared using datasets collected under different sensor
inputs, different user locations, different symbolic or discretization
methods, and different data fusion techniques

[60,67]

Bland–Altman plot illustrating
the agreement

Bland–Altman plots can be used to evaluate the difference between
estimated predictions from the algorithm and the gold standard,
thereby providing interpretation of the algorithm’s prediction power
and potential usefulness as a digital biomarker.

[68]

Deep Learning Network Analysis

Although deep learning models are generally thought of as black box
models without easy and direct insight into what the models are
doing, there has been recent and impactful research into developing
the interpretability of deep learning models and some methods for
model explanation. The cited example paper introduces a “global
and local explanation”. Global explanation means looking at entire
classes of data that show which regions of the signal patterns have
the most influence for a specific class. Local explanation is the
analysis of specific input signals and model outcomes. These
methods enable a deeper understanding of the network’s behavior,
thereby showing the most informative regions that trigger the
classification decision and highlighting the possible causes of
abnormal physiology or behavior.

[69]

4.5. Best Performing Algorithms

While it is impossible to reasonably declare that one particular type of time series
classification algorithm is best for all biomedical applications, it is possible to recommend
certain algorithms that achieved great performances and are commonly cited for each differ-
ent input data type. The algorithm(s) that achieved the best performances are selected and
summarized for each of the following most common input signal types: Electrocardiogram
(ECG), Electroencephalogram (EEG), Actigraphy, Electromyogram (EMG), Photoplethys-
mogram (PPG), and Inertial Measurement Unit (IMU). In these papers, wavelet transform
processing combined with neural network classifiers achieved the best results for Actig-
raphy data. (Note: This neural-network-based model is included in the review because
it is not exactly deep learning, given our focus on time series specific transformation
techniques.) Overall, the statistical modeling classifiers and feature engineering methods
performed the best and most consistently for all input signal types. We also observed that
wavelet transformation was consistently used as a preprocessing method, feature extraction
method, or as an integral part of index development, and furthermore, that it achieved
great results.
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Electrocardiogram (ECG): Adam et al. [70] introduced a time series classification
algorithm that extracts 224 non-linear features and relative wavelet features, selects 15
features ranked by the ReliefF method, and uses the k-nearest neighbor as the classifier for
the detection of cardiovascular diseases from electrocardiogram signals. This approach
achieved an average accuracy of 0.9927, sensitivity of 0.9974, specificity of 0.9808, and
positive predictive value (PPV) of 0.9952. This algorithm can be categorized as feature
engineering combined with wavelet transform processing.

While the intention of this review is to find non-deep learning algorithms that can
perform very well, some algorithms that cannot be completely classified as just deep
learning models are also included, for example, when the neural network architecture is
very small with a stronger focus on statistical modeling—or when it’s designed with a time
series specific transformation. Here, two such algorithms are included for discussion that
also perform very well for ECG signals. Iscan et al. [37] present a time series classifier model
composed of a Log-Linear model and a Gaussian mixture model—short-handed as LLGMN.
This is essentially a neural-network-based model that gives a posteriori probability for the
training data. This algorithm was able to achieve a high accuracy of 0.9924. He et al. [71]
presented an algorithm using Continuous Wavelet Transform and Convolutional Neural
Networks to achieve the best accuracy, which was 0.9923, and an F1-score of 0.994, a
sensitivity of 0.9941, and specificity of 0.9891.

Electroencephalogram (EEG): Newman et al. [31] described a novel 3-classifier en-
semble algorithm for detecting short periods of artificially induced nystagmus from the
long-term eye movement data collected by the CAVA, which achieved an accuracy of 0.9877,
F1-score of 0.98, sensitivity of 0.99, and specificity of 0.9963. The frequency domain features
were used and calculated using FFT. The ensemble of classifiers include an SVM, an LDA,
and boosted trees, and the final classification decision is made by a majority vote. [An
efficient automatic arousals detection algorithm in single channel EEG.] Ugur et al. [72]
used a simple SVM classifier to detect arousal state. This algorithm was able to achieve an
accuracy of 0.982, F1-score of 0.962, sensitivity of 0.9467, and specificity of 0.9933. The fea-
tures that were extracted were the mean and the variance of the scalogram (CWT squared)
coefficients for a range of 16–21 Hz.

Actigraphy: Casado et al. [73] examined various different methods to classify and
recognize walking, which was captured by the inertial sensors (accelerometer, gyroscope,
and magnetometer) of a mobile phone. The authors examined both feature-based tech-
niques and shape-based techniques. For the shape-based techniques, the authors evaluated
the subsequence dynamic time warping, support vectors of an SVM as representative
patterns, Partitioning Around Medoids (PAM) as representative patterns, and supervised
summarization. The shape-based techniques achieved the best accuracy, which was 0.9535,
by using a support vector machine with an rbf kernel. Among the feature-based techniques,
the best accuracy was achieved by a Random Forest model with an accuracy score of 0.9531.
The Convolutional Neural Network models achieved the best accuracy of 0.9834, even
with one input channel (as opposed to nine channels in the other models). Islam et al. [74]
published an algorithm that achieved an accuracy of 0.9523, F1-score of 1.0, sensitivity of
0.75, and specificity of 0.8824 using a Random Forest algorithm. The 23 features used are
the maximum, minimum, average, standard deviation, variance, coefficients of variations
in duration (CVD) of stride, stance and swing intervals, age, approximate entropy (ApEn),
weight, height, sex, and gait speed of participants.

Electromyograph (EMG): Lu et al. [40] presented an algorithm using EMG for personal
recognition that uses feature engineering and the ExtraTrees Classifer, thereby achieving
an accuracy of 0.99206. Meshab et al. [26] presented an algorithm for the prediction of
recovery from spinal cord injury using EMG. This algorithm extracts features using the time-
domain EMG total power and pattern variability, frequency-domain features computed
using Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), and Continu-
ous Wavelet Transform (CWT), and makes predictions using kNN, thereby achieving an
accuracy of 0.975.
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Photoplethysmogram (PPG): She et al. [33] presented an algorithm that uses a mul-
tivariate Hidden Markov Model to adaptively learn the data distribution and a Linear
Discriminant analysis to classify sleep vs wake from PPG data. This algorithm achieved an
average accuracy score of 0.9981 and an F1-score of 0.9987.

Inertial Measurement Unit (IMU): Hemmati et al. [75] presented a wavelet-based
algorithm to detect postural transitions. The inertial signal was decomposed using a
4th-order Daubechies Wavelet Transform and the classifier uses subject-specific fixed
thresholds (curve length and area under the curve) to achieve an accuracy as high as 0.96.
Pham et al. [68] presented an algorithm for the detection of steps using Continuous Wavelet
Transform and found the minimum and maximum, thereby achieving an accuracy score
of 0.99, sensitivity score of 0.9, specificity score of 0.88, PPV of 0.96, and NPV of 0.73.
Martindale et al. [76] presented an algorithm for the prediction of activity levels using a
hierarchical Hidden Markov Model, thereby achieving an F1-score of 0.962, a sensitivity
score of 0.956, and a specificity score of 0.992.

5. Discussion

While deep learning methods have seen wide usage and high performance in health
informatics in recent years, this review demonstrates the utility and power of non-deep
learning machine learning algorithms. Many papers were reviewed with a focus on
conventional machine learning algorithms that achieved almost perfect performance in
classification metrics (i.e., 0.999 in classification accuracy). Compared to deep learning
approaches, many conventional machine learning algorithms can be used off-the-shelf,
without the researcher needing to rebuild the model architecture and tune a large number
of hyperparameters. Conventional machine learning algorithms are also generally easier
to train, optimize, and deploy due to their light-weight model (not necessarily needing a
large number of parameters as in deep neural networks). This review also serves to identify
the non-deep learning time series classification techniques that can serve as a competitive
baseline comparator for researchers to understand whether newly designed deep learning
networks are truly performing well or not. Among all of the papers reviewed, feature
engineering methods followed by off-the-shelf machine learning techniques such as Support
Vector Machine and Random Forest are by far the most common. To aid future researchers
in building and testing feature engineering algorithms, we have provided an almost
exhaustive list of features and transformation techniques that can be applied to longitudinal
data in health informatics. A summary of the most common preprocessing methods has
been provided, but we do not claim the summary to be exhaustive since preprocessing
methods are very frequently domain dependent, and often decisions about preprocessing
are made with the researchers’ own experiences and discretion with considerations about
the different characteristics of each unique dataset. There is, however, a lack of standards
in terms of the classification metrics reported, which goes against the best practices of
reporting multiple metrics to fully describe the performances of the algorithms tested. A
total of 42 out of the 135 papers that were reviewed only reported one metric, and 31 of
these 42 papers reported the accuracy score, which is prone to bias [22,77].

5.1. Small Datasets

A pipeline of signal processing, feature engineering, and a classifier of choice were able
to achieve high classification performances on datasets that came from small populations
(<20). For example, Hong et al. [55] (as mentioned above) published an algorithm to detect
drowsiness using EEG, PPG, and ECG signals. The data were collected from 16 healthy
subjects, and non-linear features were extracted, selected, and fed into a Random Forest
Classifier, thereby achieving an accuracy score of 0.99, F1-score of 0.99, and Cohen’s Kappa
of 0.985. Among the papers that used small datasets, (discrete or continuous) wavelet
transform—as a processing method or feature extraction technique—was very commonly
used and very effective, such as for the paper presented by Hemmati et al. [75] (mentioned
above), which used data from only 12 subjects. Statistical modeling methods are also very
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effective as classifiers, such as the paper presented by She et al. [33] (mentioned above),
which used data from only 20 subjects. This highlights the benefits and present needs of
non-deep learning time series classifiers, especially for biomedical applications where time
series data with gold standard labels are difficult to come by.

5.2. Clinical Decision Support

Time series classification models are important for clinical decision support, being
supplemented by Electronic Health Records (EHR) or other data that are gathered in the
clinical setting to make predictions that could help healthcare providers better dedicate
attention and resources, such as mortality rate predictions or early detection of sepsis.
Again, a pipeline of preprocessing, feature engineering, and classifier models has been very
effecitive, particularly because these kinds of models provide the ease of using domain
knowledge in model building and have strong and intuitive interpretability. For example,
Nancy et al. [56] presented a Statistical Tolerance Roughset-Induced Decision Tree (STRiD)
using features that were extracted for the classification of subjects with hepatitis or throm-
bosis in a clinical setting—as opposed to without—thereby achieving an accuracy score of
0.915, F1-score of 0.9336, and AUC-ROC score of 0.93.

5.3. Medical Devices

Portable and wearable devices have developed stronger capabilities and gained wider
usage over the years. Time series modeling using the continuous data stream that comes
from these devices can generate medical insights over long stretches of time and identify
digital biomarkers that can serve as a screening tool for common medical conditions [78].
Again, the feature engineering pipeline of time series classification is very commonly used
and achieves great results due to the limited computational power and storage space found
on these devices. An example of the application of time series classification modeling on
medical devices is Newman et al.’s study [31], as presented above, which achieved an
accuracy of 0.9877 and F1-score of 0.98.

6. Limitations

While rigorous, our paper selection method would have benefited from a third re-
viewer to break ties and resolve discrepancies. Furthermore, we were not aware of any
existing classification system for categorizing the time series classification algorithms, and
thus we developed our own, which may be sub-optimal. It is evident that many papers are
difficult to categorize or assign a single category because studies often incorporate multiple
different approaches, for example, using Dynamic Time Warping to calculate distances
between time series motifs, and subsequently using those distances as input features into
a Support Vector Machine. Additionally, although we sought to exclude deep learning
approaches through our search term design, some papers examined both deep learning
and non-deep learning classification algorithms and we felt compelled to include these
papers in our review, both to not exclude the non-deep learning methods, as well as to gain
insight into the direct comparison between these two approaches.

7. Conclusions

In conclusion, our group performed this systematic review to survey the landscape of
non-deep-learning-based time series classification methods used in biomedical applications.
Non-deep learning time series classification techniques can be extremely powerful—given
their great algorithm performances—while also allowing for great interpretability. How-
ever, this field still lacks standardization for model testing and validation procedures
and reporting metrics, which should be addressed to allow for better reproducibility and
understanding of the algorithms that are presented by researchers in this field.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22208016/s1, Table S1: Search terms for each database; Table S2: Description
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of each algorithm type and example papers; Table S3: Summary of time series signal preprocessing
methods and example papers; Table S4: (a) Example of feature engineering techniques and papers, (b)
Features for common signals and example papers; Table S5: Summary of feature selection methods and
example papers. Refs. [79–95] are cited in supplementary materials.
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