
Citation: Kasperek, D.; Podpora, M.;

Kawala-Sterniuk, A. Comparison of

the Usability of Apple M1 Processors

for Various Machine Learning Tasks.

Sensors 2022, 22, 8005. https://

doi.org/10.3390/s22208005

Academic Editors: Cristinel Ababei,

Henry Medeiros and Richard J.

Povinelli

Received: 9 September 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Comparison of the Usability of Apple M1 Processors for
Various Machine Learning Tasks
David Kasperek * , Michal Podpora and Aleksandra Kawala-Sterniuk

Department of Computer Science, Opole University of Technology , Proszkowska 76, 45-758 Opole, Poland
* Correspondence: david.kasperek@icloud.com

Abstract: In this paper, the authors have compared all of the currently available Apple MacBook
Pro laptops, in terms of their usability for basic machine learning research applications (text-based,
vision-based, tabular). The paper presents four tests/benchmarks, comparing four Apple Macbook
Pro laptop versions: Intel based (i5) and three Apple based (M1, M1 Pro and M1 Max). A script in the
Swift programming language was prepared, whose goal was to conduct the training and evaluation
process for four machine learning (ML) models. It used the Create ML framework—Apple’s solution
dedicated to ML model creation on macOS devices. The training and evaluation processes were
performed three times. While running, the script performed measurements of their performance,
including the time results. The results were compared with each other in tables, which allowed to
compare and discuss the performance of individual devices and the benefits of the specificity of their
hardware architectures.

Keywords: processor architectures; neural processing unit; neural processing cores; NPU benchmark;
Apple M1; CoreML; Neural Engine; machine learning; deep learning

1. Introduction

Modern artificial intelligence algorithms make machines better in decision-making
applications [1], as well as in interaction-related applications, becoming more and more
intuitive for a human user [2–5]. Computers, with the increase of their computing power,
are able to perform many activities much faster than humans [6–10]. The world’s leading
research centers are working on algorithms that would allow the machine to compete with
the human brain [11–14]. Adapting (at least partially) intelligent human behavior enables
the analysis and appropriate interpretation of data, and thus the advancement in some of
the current challenges, including decision-making processes [10,15,16].

Machine learning relies on the analysis of a set of collected inputs to detect patterns,
similarities or characteristics [5,17–19]. This makes the machine able to ‘learn’ (as the term
implies) based on the data received [5,17,20]. Training performed in an iterative form
allows one to increase the efficiency and accuracy of predictions [21]. This is because the
algorithms that the machine uses in each repetition gather experience, which is then being
used for making adjustments [21,22]. Samples of categorized data are also provided for
training, thanks to which it is possible to check what result is expected for them. This
enables the computer to calculate output values that get closer to the expected value with
each iteration. During the learning process, an algorithm is created that enables the machine
to process data and, on its basis, also predict values of a specific type [3,19,23–25].

The variety of applications is constantly expanded in specialized research centers, both
public and private [15,19], and the rapid development of computers enables the processing
of more and more data and the use of increasingly complex algorithms. Thanks to machine
learning, it became possible to solve complex problems [19–21,24–26].

The implementation of self-learning algorithms allowed machine learning to be used
in solving various tasks [19,20,27,28]. Machine learning models, trained with the use

Sensors 2022, 22, 8005. https://doi.org/10.3390/s22208005 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208005
https://doi.org/10.3390/s22208005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5659-0933
https://orcid.org/0000-0002-1080-6767
https://orcid.org/0000-0001-7826-1292
https://doi.org/10.3390/s22208005
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208005?type=check_update&version=1


Sensors 2022, 22, 8005 2 of 20

of images and videos, made it possible to extract and identify specific objects, faces
and/or persons [19,24,29–31]. It is also possible to infer within the time domain, i.e., to
generate predictions [31].

1.1. Motivation for This Study

Scientists all over the globe are interested in increasing the computational capability
of their laptops and desktops in order to increase their productivity and comfort [32–35].
However, the hardware manufacturers provide only raw parameters (while the compu-
tational capability is still strongly dependent on the software frameworks and the op-
erating system), and comparing frameworks is also difficult due to the differences in
recommended hardware [36,37].

The most inconvenient aspect of buying new hardware for research work is the
fact that the products are often advertised using nonprofessional (marketing) (‘foggy’)
expressions/phrases, not related to the actual comfort and computational efficiency during
everyday work [38,39].

This is particularly true and important in the case of computers equipped with the
Apple silicon chip, while this platform is one of the most tempting options for researchers
who want to have hardware acceleration support for their machine learning projects [40,41].
Apple’s M1 chip is equipped with integrated neural cores, which makes this platform
worth consideration when ‘updating’ computational hardware [42,43]. However, it is very
difficult to find any information on the actual benefits of using a CPU with neural cores,
and it is even more difficult to find any comparisons between existing versions of the CPU
and between M1 and the Intel based laptops of previous editions.

The authors decided that such a comparison may be very useful, if done with real-
world modern machine learning examples, and that the results may be of great value for
researchers who are considering the investment in buying a new (possibly neural-core-
enabled) laptop.

1.2. Scope and Limitations of Study

The research presented within this paper is targeted toward the researcher (laptop
buyer) who is trying to make a reasonable choice among Apple’s laptops. The authors’
approach is to clarify and substantiate concrete arguments that present the advantages of
particular laptop models in numbers (as opposed to the foggy world of marketing), to en-
able the possibility to make a fact-based choice on which Apple laptop to buy. The reason
for benchmarking only Apple laptops was made upon the fact that M1s have a neural pro-
cessing unit, and therefore many researchers-laptop buyers may be interested in measuring
the real benefits of NPU acceleration in M1s.

This research compares all M1 models against one Intel i5 processor. The i5 is not the
most efficient member of its architecture family, but it is the only one available on the market
in the new Apple laptops at the moment. Although Apple used to sell i9 based laptops
in the past, it failed to fit the preferences of users, possibly due to the increased energy
consumption (shorter battery life) and cooling (Apple users are not used to active cooling
systems—CPU fans are preferred to be quiet/off), and the use of i9s was discontinued.

The comparison was made only among Apple laptops, and it would be also interesting
to see the comparison beyond that limitation. However, it was decided to limit the number
of variables to make the research as precise and trustworthy as possible. The authors did not
mix operating systems; there was also no disturbance resulting from switching toolboxes,
libraries, frameworks and programming languages. The uniform testing conditions were
provided on purpose—so that the research would not be accused of being influenced by a
poor library choice or questionable framework implementation. It was decided to compare
only the current laptops sold by Apple, to assess the real benefits of NPU and the real
differences between M1 versions. Of course, the benchmarks of other architectures would
be interesting to see in this comparison (including CUDA-enabled platforms), but it would
be a completely new challenge (with the difficulty set on making the comparison a just and



Sensors 2022, 22, 8005 3 of 20

honest test for different operating systems and environments), which was not in the scope
of this paper.

1.3. Benchmarking

The benchmarking of computer hardware is performed by using specialized software,
designed to stress-test and to show the computational power limitations of the whole system
or of its specific components, usually presenting the results in the form of a computation
time [44–46]. It is very important that the tasks are as close to reality as possible, that is,
that they correspond to real use cases in which the equipment will be used. The use of
realistic tasks ensures that the measured performance corresponds to ‘real’ applications [47].
ML-related benchmarking is increasingly attracting attention [48–51].

It is very important to properly analyze and interpret the results after the end of the
measurement phase. After collecting data, the difference between the comparative runs
of the benchmark executed on the competitive machines is analyzed. The results can be
converted into an easy-to-interpret reference scale such as points or ratings, visualized
and/or compared to other published results of the same benchmark [52].

2. Materials and Methods

According to the title of this paper, the main objective of the research was to assess
the usability of M1 based platforms for basic machine learning research tasks (for which a
laptop-based environment would be sufficient). The benchmarks and comparisons were
made using Swift based ‘Create ML’ machine learning ‘Playground’ project, developed and
run in the XCode environment.

Swift is an open-source programming language developed by Apple. Since its release
in 2014, the language has continuously evolved to make mobile and desktop programming
easy and fast. The syntax is intuitive and allows an interactive programming process.
Swift is optimized to perform best on its target devices—platforms developed by Apple.
The achieved efficiency is high, because the compiled code is adjusted to the hardware [53].

Xcode is an integrated development environment (IDE) created by Apple for the
macOS operating system. It supports various programming languages and includes many
tools for the software development process. Using Xcode, the user is able to design user
interfaces with dynamical adjustment to the screen size, write code that can take advantage
of many frameworks shared by Apple and run the code on physical or virtual Apple
devices and many more. Finished applications can be beta-tested by real users using the
‘TestFlight’ program or sent directly to the App Store [54,55].

Xcode Playgrounds are a solution for quick and interactive program development.
These simplified IDE versions allow testing the code almost in real time. At the same time,
Playgrounds enable the user taking full advantage of the Xcode IDE and its frameworks,
without creating large projects. The advantage of easy project sharing and ability to include
all datasets in the created playground are the reasons why Xcode Playgrounds were selected
for this research.

The framework ‘Create ML’ was introduced by Apple at the Worldwide Developers
Conference in 2018. Its aim is the development of custom machine learning models in a
simple way. To train the models, Create ML can analyze various types of inputs, including
images, text, tabular data and more. The created models can be implemented in Core
ML applications for the Apple platform [23,56]. The inputs and outputs of Create ML are
presented in Figure 1.

‘Create ML’ is optimized to perform fast model training on computers that are made
by Apple. The model creation process should popularize machine learning technologies in
applications for Apple devices [57].



Sensors 2022, 22, 8005 4 of 20

Figure 1. The data used by Create ML for model creation.

The workflow with ‘Create ML’ involves the following steps: (1) identifying the
problem whose kind of action is required from the model, and (2) choosing a training
template. ‘Create ML’ ships with a collection of templates including an image classifier,
object detection and more. Apple extends this list regularly [58,59].

The templates are needed to determine the right training algorithm. The training
techniques developed by Apple allow to create an efficient machine learning model, even
with a small quantity of data. The process performance and memory usage are hardware-
optimized. After training, a ‘.mlmodel’ file is created. The machine learning model is saved
in it. The file can be implemented in Xcode projects using Core ML [57]. The process of
creating a model with Create ML is shown in Figure 2.

Figure 2. The process of creating a model with Create ML.

‘Create ML’ can be used in two ways: by writing code in the Swift programming
language or using a graphical application (graphical user interface, GUI) bundled in Xcode.
In both ways, the user is able to create and train custom machine learning models that are
ready for implementation in applications [56,59]. In the created project, ‘Create ML’ was
used without the GUI.

2.1. Model Creation

To create a machine learning model using ‘Create ML’, it is necessary to know what the
expected output is, and what data will allow to achieve it. This will enable the selection of an
appropriate ‘Create ML’ ‘template’ (that determines the training type) and the preparation
of a relevant dataset [57]. The data should be differentiated, in a similar quantity for each
of the considered classes, obtained in a similar format, by similar methods and/or sensors.
The performance of the model depends on the size of the datasets. The more data used for
training, the greater the likelihood of obtaining good results [57,60].

The collected data must be properly segregated and labeled. When processing images,
text or audio files, Create ML suggests that the best way is to prepare folders (directories)
named after the classes existing within the dataset, and then to place the files in the correct
folders. Tabular data can be provided in the form of tabular data files, e.g., ‘.csv’ or ‘.json’,
and then converted by Create ML to the MLDataTable type. It is necessary to indicate



Sensors 2022, 22, 8005 5 of 20

which columns will be used as ‘features’ and which ones as the ‘target’ columns that are to
be returned by the model [57,60].

The prepared data should also be divided into two subsets: ‘training data’ on which
the training is performed and ‘test data’ used for the evaluation of the created model.
Apple recommends randomizing the whole dataset into these two subsets in a ratio of
80:20. This makes it possible to test the model made on data that have not been used for
training purposes, which makes the evaluation more accurate. The process of image data
preparation for ‘Create ML’ is presented in Figure 3. In the case of tabular data, ‘Create ML’
has a ready function that allows for automatic data division [60,61].

Figure 3. The preparation of datasets for Create ML (image data).

2.2. Model Training

The process of creating a machine learning model in ‘Create ML’ consists of several
stages, depending mainly on the selected template. In most cases, the process is similar to
the image classifier example shown in Figure 4.

The first step in creating an image classifier is extracting the features from the provided
data. The system first extracts a separate set of ‘validation data’ from the ‘training data’ set
that is used in the training process. Next, Create ML analyzes the rest of the training data
to determine the image features. The same process is repeated on the validation data.

In the next stage, training takes place. ‘Create ML’ uses transfer learning [57], capa-
ble of applying an existing model (trained with a dataset relevant to one problem) to a
completely new problem. The macOS operating system already has extensive machine
learning models [57,62] that were created by Apple. ‘Create ML’ uses their patterns to
perform a new training using previously extracted features. This allows to speed up the
entire process, increase the accuracy and reduce the size of the models [57].

Figure 4. The stages of training an image classifier with ‘Create ML’.



Sensors 2022, 22, 8005 6 of 20

The case training a tabular data model is presented in Figure 5. At the beginning,
the data are read and then the validation subset is extracted. If the user has chosen a
specific algorithm to be used for training, it is used. However, there is also a possibility
of an automatic selection of the algorithm. In this case, ‘Create ML’ performs the model
training using various algorithms with parameters selected by itself and then compares
their results. The process continues until the optimal solution is found.

Figure 5. The stages of training a tabular classifier with ‘Create ML’.

2.3. Model Evaluation

After completing the training, it is possible to evaluate the model. For this purpose,
the test subset of the dataset is used. ‘Create ML’ first repeats the process of analyzing
the received data, and then passes the data to the model. In the next step, the feedback
responses from the model are confronted with the ground truth (labeled testing dataset).
Evaluation results are usually lower than training and validation results because tests are
performed on this part of the dataset, which has not been involved at the training stage.
This allows for a better presentation of the situation of a real application of the model [60].

2.4. Model Export

After training, a ‘.mlmodel’ file is created containing the saved machine learning
model. This file can be imported directly into Xcode projects and implemented using ‘Core
ML’. It is also possible to save the file in a selected location on the disk or to share it using
file sharing [57].

2.5. Datasets Used within This Research

To perform this research about the machine learning model creation time, three model
types were selected:

• Image classifier;
• Tabular classifier;
• Tabular regressor.

Two image datasets and two tabular datasets were used in this work.

2.5.1. ClassifierData Dataset (Photos)

The dataset ‘ClassifierData’ contains images of electronic devices divided in 4 cate-
gories: ‘iPhone’, ‘MacBook’, ‘Apple Watch’ and ‘AirPods’. Each category counts 25 photos
captured with an iPhone X. The pictures present the devices from different angles and in
various light conditions. A sample view of the dataset is shown in Figure 6.

The dataset is divided into two parts: training data and testing data, split with a ratio of
4:1. The directory structure of the dataset complies with Apple’s ‘Create ML’ guidelines [60]
and is presented in Figure 7. The size of the ‘ClassifierData’ dataset is 121.7 MB.



Sensors 2022, 22, 8005 7 of 20

Figure 6. Photos of category ‘MacBook’ form the training data in ‘ClassifierData’.

Figure 7. The directory structure in ‘ClassifierData’.

2.5.2. Animals Dataset (Kaggle)

An image dataset called ‘Animals’ is available on the Kaggle platform, within the
project named ‘Animals Detection Images Dataset. Collection of wild animal species with an-
notations’ [63]. The collection was made available to the public domain under a Creative
Commons license.

The ‘Animals’ dataset is divided into two subsets for training and for testing. In each
of them there are photos in 80 different categories. They include various types of animals
such as dogs, cats, lions, tigers and many others. A sample view of the dataset is presented
in Figure 8. The size of the entire dataset is 9.58 GB. This research was conducted by using
the following quantities for the training, validation and testing—21,468, 1098 and 6505,
respectively. Label files were removed from each category as they are not used for the
‘Create ML’ image classifier.



Sensors 2022, 22, 8005 8 of 20

Figure 8. Photos of category ‘Lion’ in the ‘Animals’ training dataset.

2.5.3. PaymentFraud Dataset (Kaggle)

The ‘PaymentFraud’ dataset refers to the ‘Online Payments Fraud Detection dataset’.
Online payment fraud big dataset for testing and practice purpose’, from the Kaggle platform [64].
The dataset includes 5,080,807 entries, divided into two classes, each entry described by
eight features. Its author is the user ‘Rupak Roy’. The collection was made available under
a Creative Commons–attribution–noncommercial license.

The set consists of a ‘.csv’ file containing data about online transactions, including,
inter alia, the sender’s and recipient’s account balances, amount and type of transaction.
Each entry also contains an ‘isFraud’ label, which describes whether the transaction was
normal (0) or was a fraud (1). A view of the dataset is shown in Figure 9. The size of the
‘PaymentFraud.csv’ file is 493.5 MB.

Figure 9. An example view of the ‘PaymentFraud.csv’ file.



Sensors 2022, 22, 8005 9 of 20

2.5.4. SteamReviews Dataset (Kaggle)

The ‘SteamReviews’ dataset contains approximately 21 million user reviews of games
available on the Steam platform. It was uploaded to the Kaggle platform by ‘Marko M.’
under the name ‘Steam Reviews dataset 2021. Large collection of reviews of Steam games’ [65].
The dataset is available under the GNU GPL 2 license.

In order to adapt the dataset for use in ‘Create ML’, a cleanup was performed. The
Python programming language was chosen for its ease of programming and adaptation
to working with data. Using the ‘Pandas’ package, the contents of the ‘.csv’ file were
loaded into the ‘DataFrame’ format. Then the data was cleaned, by removing some of the
columns, including the comment text, author, creation date and others. Finally, the cleaned
dataset was saved to a 2.15 GB file ‘SteamReviewsCleaned.csv’. A sample view of the file is
presented in Figure 10.

Figure 10. A preview of the ‘SteamReviewsCleaned.csv’ file.

2.6. Choosing Appropriate Classifiers for a Particular Dataset

As part of the study, the training and evaluation of 4 machine learning models were
carried out. The following classifier were used for each of the four datasets:

• ClassifierData—image classifier;
• Animals—image classifier;
• PaymentFraud—tabular classifier;
• SteamReviews—tabular regressor.

2.7. Models Creation

The models were created using functions written in the Swift programming language.
The functions are described below.

Each image classifier was created in a function called ‘createImageClassifier’. The train-
ing dataset was passed using the ‘MLImageClassifier.DataSource’ type. At the beginning,
the actual timestamp (with nanosecond accuracy) was saved. Next, the ‘Create ML’ pro-
cess of training an image classifier was started using the ‘MLImageClassifier’ function.
The whole process was documented/logged in the console. When the training was done,
another timestamp was saved and the total training time was calculated. The function
returned the created model and time value in seconds.

Implementing the use of the ‘createTabularClassifier’ function was similar to the
process of creating an image classifier. The only differences were that the data type was
different—‘MLDataTable’, and the Create ML function ‘MLClassifier’ took not only the



Sensors 2022, 22, 8005 10 of 20

training data but also required indicating the target column for classification. The time of
the training was measured and returned (in seconds), as well as the created model.

A function called ‘createTabularRegressor’ was used to create a tabular regressor. It
took in the same arguments as the ‘createTabularClassifier’ function. However, the missing
data needed to be removed from the ‘MLDataTable’ using the ‘data.dropMissing()’ com-
mand. The ‘MLLinearRegressor’ function performed a Create ML training of a tabular
regressor model.

2.8. Model Testing

Each model was tested using a dedicated function. The time of the Create ML testing
process was also measured and the results acquired.

The ‘testImageClassifier’ function took the testing dataset as an argument in the form
of a ‘MLImageClassifier.DataSource’ type, as well as the created machine learning model.
Firstly, the initial timestamp was acquired. Then, the Create ML testing process was
performed, and the percentage of correctness was calculated based on the result returned.
The function calculated the total time of the testing by subtracting the initial timestamp
from a final timestamp. The evaluation of a tabular classifier was almost the same, except
for the model type (’MLClassifier’) and the testing data type (’MLDataTable’).

To perform a test of a trained tabular regressor, the ‘testTabularRegressor’ function
was used. The data type of the model was ‘MLLinearRegressor’ and the testing dataset in
the form of ‘MLDataTable’. After the evaluation, the maximum error and RMSE (root-mean-
square error) were returned. The function also measured the time of the testing process.

2.9. Parent Functions of Creating Models

The process of training and testing machine learning models was controlled by special
functions, created for each ‘Create ML’ template type. The functions loaded the datasets,
called the subfunctions described before and presented the results in console. This reduced
the required amount of code, because in the case of the image classifier, functions were
universal—they could be used with various datasets.

In the ‘createImageModel’ function, the image classifier was created and evaluated.
Firstly, the paths to the training and testing data were created, based on the dataset name
passed. Then, the data was loaded into the ‘MLImageClassifier.DataSource’ type, and the
directory structure of ‘labeledDirectories’ type was declared. The model was created
using the ‘createImageClassifier’ subfunction. The training and validation accuracies
were calculated from the result. Then, the model evaluation was performed using the
‘testImageClassifier’ subfunction. All results were printed to the console.

The tabular data was handled in a similar way. To assess the tabular classifier, a func-
tion ‘createTabularClassifierModel’ was used. At the beginning, a ‘.csv’ file with the dataset
was opened and loaded into the ‘MLDataTable’ type. Next, the feature columns were
declared and a new ‘MLDataTable’ was created using the feature columns only. The new
table was then randomly split into training and testing datasets, in compliance with the
recommended 8:2 proportion. To create a tabular classifier, the ‘createTabularClassifier’
subfunction was used. The subfunction took the training data and a target column as
arguments. The created model and testing dataset were passed to the ‘TestTabularClassifier’
subfunction. The obtained results were presented in the console. The tabular regressor
research process differed from the classifier by the obtained data types and datasets.

2.10. Measurement of Execution Time

In order to obtain a greater reliability of the results when measuring the time of
creating the models, the study was performed in a loop. All measurements were made
three times. The total run time of each iteration of the loop, the development process
and the model testing process were measured. All information about the script running
status was reported in the console on an ongoing basis.



Sensors 2022, 22, 8005 11 of 20

2.11. Hardware Used

The research was carried out on 4 Apple MacBook Pro computers. Each device was
running macOS Monterey version 12.4 [66], with Xcode version 13.4 installed.

The four above-mentioned notebooks were chosen to reflect the buyer’s options when
buying a new laptop. The main difference was the CPU version (and architecture): Intel i5
(8 GB), Apple M1 (8 GB), Apple M1 Pro (16 GB) and Apple M1 Max (32GB).

The first system compared was the Apple MacBook Pro 2016. It is the only one of the
compared computers operating on the Intel architecture. It has a dual-core Intel Core i5
2.9 GHz processor, 8 GB of RAM and an integrated graphics chip Intel Iris Graphics 500,
equipped with 1536 MB. This computer is referred to as ‘i5’ in this work.

The next tested device was the 202 MacBook Pro. It is a computer with the first Apple
M1 integrated chip, based on the ARM architecture. It has 8 computing cores: 4 high-
performance and 4 energy-saving. The chipset also includes an 8-core GPU (graphical
processing unit) and a 16-core Neural Engine—Apple’s custom NPU (neural processing
unit), accelerating machine learning computations [67]. The computer also has 8 GB of
RAM. It is referred to as ‘M1’ in this research.

Another computer on which the tests were performed was the MacBook Pro 2021 with
the M1 Pro chip. This is a higher option on the Apple chipset, featuring an 8-core CPU and
a 14-core GPU. The main difference between the M1 and the M1 Pro systems is the division
of the functionality of the processor cores—the M1 Pro uses 6 cores as high-performance
and 2 as energy-saving ones. The memory interface is also improved [68]. The M1 Pro also
features 16-core Neural Engine [68]. The computer is equipped with 16 GB of RAM. It is
referred to as ‘M1 Pro’ for easy recognition.

The fourth computer tested was the MacBook Pro 2021 with the M1 Max chip. It is a
processor equipped with 10 CPU cores (8 high-performance and 2 energy-saving), 24-core
GPU and 16-core Neural Engine and 32 GB of RAM. According to [68], the bandwidth of
the system is improved compared to the M1 Pro [68], as well as the built-in memory [68]. It
is referred to as ‘M1 Max’.

3. Results

Two groups of measurements were carried out as part of this research:

• The comparison of execution time between standard boot mode and the special safe
boot mode—since it is possible to boot a computer with macOS in normal boot mode or
in the so-called safe mode (which could have produced significantly different results),
both scenarios were tested by running a series of measurements of the execution time
using the exact same system;

• A comparative study of the creation time of the machine learning models mentioned
in the previous section, on all four machines.

3.1. Benchmark of the Influence of the macOS Boot Mode

A comparative study of the two boot modes was carried out using the ‘i5’ MacBook
Pro. The test was performed by first putting the computer into safe mode, executing the
script, and then back to normal boot, and executing the script. The device was connected
to the power supply all the time in order to avoid any restrictions resulting from possible
energy saving.

In the case of the ‘ClassifierData’ dataset, the total creation and testing time for the
machine learning model was lower for the safe mode, although the shortest model total
training time was obtained in safe mode. For each of the runs, the training accuracy
and validation accuracy were both equal to 100%. During the runs, different numbers
of training iterations were obtained—in the case of the safe mode it was 14, 12 and 12,
and for the normal boot mode, it was 13 in each case. The total training time was shorter
by more than 10 s in the safe mode, which had an impact on the overall evaluation results.
However, in the testing process, each safe-mode model made one error, which translated
into a decrease in accuracy to 95.83% compared to 100% obtained in the normal boot mode.



Sensors 2022, 22, 8005 12 of 20

The comparison of the averaged measurement results for the ‘ClassifierData’ dataset is
presented in Table 1.

Table 1. Comparison of the averaged measurement results for the ‘ClassifierData’ dataset, executed
using the safe and normal boot mode.

Safe Mode Normal Mode

Training data—analysis time (s) 16.43 26.64
Validation data—analysis time (s) 2.47 2.91
Model training—total time (s) 0.31 0.41
Model training—number of iterations 12.67 13
Training accuracy 100% 100%
Validation accuracy 100% 100%
Total model creation time (s) 20.15 31.70

Evaluation data—analysis time (s) 5.87 8.63
Evaluation accuracy 95.83% 100%
Total model evaluation time (s) 6.25 8.99

The analysis of the ‘Animals’ dataset showed significant differences between the safe
and normal boot modes. Their averaged results are compared in Table 2. The ‘training
data—analysis time’ was almost three times longer in the safe mode compared to the normal
boot mode. Each training session consisted of 24 iterations as this was the maximum value
in ‘Create ML’ by default. However, in the case of the ‘model training—total time’, the time
results were comparable. This might mean that the CPU access time/mode was the same in
both boot modes of the system, and the significance of the differences in the training time
(and validation time, thus also in the total time) resulted from the limitations of the safe
mode, for example from the disabled acceleration. The correctness scores (the accuracy)
suggested that the models created were nearly identical.

Table 2. Comparison of the averaged measurement results of the ‘Animals’ dataset for the safe and
normal boot mode.

Safe Mode Normal Mode

Training data—analysis time (s) 3002 1055
Validation data—analysis time (s) 151 54
Model training—total time (s) 224.62 216.05
Training accuracy 88.15% 88.19%
Validation accuracy 87.10% 86.37%
Total model creation time (s) 3425.23 1370.42

Evaluation data—analysis time (s) 879 319
Evaluation accuracy 84.83% 84.68%
Total model evaluation time (s) 894.15 332.66

In the case of examining the tabular classifier using the data from the ‘PaymentFraud’
dataset, very similar results were obtained. The total model creation time was slightly
shorter in the safe mode. The training accuracy in both modes was identical, and the
validation accuracy differed only by 0.01 percentage points. This suggested that the models
created might be extremely similar. The comparison of the averaged results of examining
the ‘PaymentFraud’ dataset is presented in Table 3.

In the linear regressor analysis, all results were very similar. The total model creation
time was 1.8% higher in the normal boot mode than in the safe mode. The same results
were obtained for the highest error values and root-mean-square errors. The results are
compared in Table 4.



Sensors 2022, 22, 8005 13 of 20

Table 3. Comparison of the averaged measurement results of the ‘PaymentFraud’ dataset for the safe
and normal boot mode.

Safe Mode Normal Mode

Data processing time (s) 6.65 6.83
Training accuracy 99.96% 99.96%
Validation accuracy 99.96% 99.97%
Total model creation time (s) 203.54 213.56

Evaluation accuracy 99.96% 99.96%
Total model evaluation time (s) 3.67 3.73

Table 4. Comparison of the averaged measurement results of the ‘SteamReviewsCleaned’ dataset for
the safe and normal boot mode.

Safe Mode Normal Mode

Data processing time (s) 29.129 29.608
Training—maximum error 2,428,429 2,428,429
Training—root-mean-square error 19,627 19,627
Validation—maximum error 1,841,631 1,841,631
Validation—root-mean-square error 19,834 19,834
Total model creation time (s) 48.885 49.776

Evaluation—maximum error 2,653,823 2,653,823
Evaluation—root-mean-square error 19,605 19,605
Total model evaluation time (s) 6.778 6.859

The execution time for each iteration of the loop was significantly faster with the
normal mode. In all cases, the iteration time in the safe boot mode exceeded 220% of the
normal boot mode’s iteration time. The total measurement time in the normal mode was
6177 s (over 1 h and 42 min), whereas in case of the safe boot mode the measurement time
was more than double (over 3 h and 52 min). The comparison of exemplary iteration test
times in safe and normal boot mode are presented in Table 5.

Table 5. Comparison of exemplary iteration test times in safe and normal boot mode.

Safe Mode Normal Mode

First iteration time (s) 4819 2101
Second iteration time (s) 4538 2036
Third iteration time (s) 4590 2040
Total time (s) 13,947 6177

As a result of a comparative study, no significant benefits were found for running ma-
chine learning tasks in the safe boot mode (despite fewer processes running in it). Slightly
shorter safe boot mode total processing times were observed for the ‘ClassifierData’, ‘Pay-
mentFraud’ and ‘SteamReviewsCleaned’ datasets, but significantly longer data processing
time for the ‘Animals’ dataset outweighed the overall study result. For this reason, it
was decided to abandon the idea of running tests in the safe boot mode and perform the
remaining tests using the normal macOS boot mode.

3.2. Processor Architecture Benchmark

As part of the research, three measurements of training time and model testing time
allowed us to assess and compare the efficiency of the machines for typical ML use cases.

3.2.1. Running the Benchmark

The test was carried out on each of the computers. The machines were connected to
the power supply and booted up (into the normal macOS boot mode). The file ‘Bench-



Sensors 2022, 22, 8005 14 of 20

marker_Playground.playground’ was copied onto each computer’s hard drive. The file
was loaded into the Xcode environment and executed. The computers were not processing
any additional tasks/software during the study to avoid additional CPU load. After the
program had finished, the console output was saved in a ‘.txt’ file.

Two exemplary screenshots with benchmark report output from the test of the ‘M1 Pro’
machine are presented below in Figure 11.

Figure 11. Fragments of the output for the measurement results of the ‘M1 Pro’ computer, per-
formed using the ‘ClassifierData’ dataset. Left—beginning of the measurement; right—during the
measurement process.

3.2.2. The Results of the Benchmark

Table 6 presents the accuracy and time results of the process of creating and testing
the model performed using the ‘ClassifierData’ dataset.

Table 6. Average results for the test performed using the ‘ClassifierData’ dataset.

i5 M1 M1 Pro M1 Max

Training data—analysis time (s) 26.640 2.887 6.957 7.083
Validation data—analysis time (s) 2.910 0.334 0.921 0.888
Model training—total time (s) 0.412 0.243 0.217 0.333
Model training—number of iterations 13 11 12.3 14.3
Training accuracy 100% 100% 100% 100%
Validation accuracy 100% 100% 100% 100%
Total model creation time (s) 31.697 4.111 8.571 8.773

Evaluation data—analysis time (s) 8.633 0.821 1.933 2.053
Evaluation accuracy 100% 95.83% 95.83% 97.22%
Total model evaluation time (s) 8.989 0.997 2.138 2.287

While working with the ‘ClassifierData’ dataset, the shortest average data analysis
times were observed for the ‘M1’ computer. Its average ‘training data—analysis time’
was more than nine times shorter than that of the ‘i5’ computer. Computers with the
‘M1 Pro’ and ‘M1 Max’ chipsets achieved similar data analysis times. The longest ‘model
training—total time’ was obtained by the computer with an i5 processor, a bit shorter on a
device with the ‘M1 Max’ chip, and the best results were achieved by ‘M1’ and ‘M1 Pro’.



Sensors 2022, 22, 8005 15 of 20

Despite slight variations in the number of iterations per training, their impact on the final
result did not seem to be substantial. All models achieved 100% accuracy for training as
well as for validation. The ‘i5’ computer model creation time was 8.44 times longer than of
the ‘M1’ computer. Despite this, it achieved 100% for the evaluation accuracy, unlike the
other systems.

For the ‘i5’, ‘M1’ and ‘M1 Pro’ computers, it was observed that the training always
took longer during the first iteration of the measurement loop (similarly when using the
safe mode analyzed in Section 3.1). The validation and testing stages of the measurement
loop did not have such clear disproportions for the first iteration as the training stage. Data
analysis times in iterations are presented in Table 7.

Table 7. Comparison of data analysis times for the ‘ClassifierData’ dataset.

Processor Iteration Training Data (s) Validation Data (s) Testing Data (s)

i5
I 32.10 3.59 8.53
II 23.42 1.46 8.53
III 24.40 3.68 8.84

M1
I 4.05 0.347 0.879
II 2.20 0.326 0.802
III 2.41 0.330 0.783

M1 Pro
I 8.83 0.938 1.96
II 5.88 0.898 1.89
III 6.16 0.928 1.95

M1 Max
I 7.34 0.67 1.61
II 8.36 1.15 2.79
III 5.55 0.838 1.76

Table 8 shows average test results for the ‘Animals’ dataset. The shortest mean data
analysis times were observed on the ‘M1 Pro’ computer. All computers with Apple chipsets
(’M1’, ‘M1 Pro’ and ‘M1 Max’) achieved similar data analysis times. The ‘i5’ computer
clearly stayed behind. The training data analysis time was 917 s (over 15 min) longer
compared to that of the ‘M1 Pro’. The model training process for the image classifier was
the fastest on the ‘M1 Pro’ computer. Its time was only 18% of the result of ‘i5’. The ‘M1 Max’
and the ‘M1 Pro’ computers had similar results. The ‘model training—total time’ lasted 86%
longer on the ‘M1’ than on ‘M1 Pro’ computers. All computers achieved a similar accuracy
in training, validation and testing. The ‘M1 Pro’ computer had the shortest total model
creation and testing times, while the ‘i5’ had the longest. In the case of model creation,
the difference was over 1171 s (almost 20 min).

Table 8. Average test results for the ‘Animals’ dataset.

i5 M1 M1 Pro M1 Max

Training data—analysis time (s) 1054.667 142.333 137.667 142.667
Validation data—analysis time (s) 54.387 7.233 7.160 7.347
Model training—total time (s) 216.043 75.230 40.423 42.720
Training accuracy 88.19% 88.17% 87.91% 88.15%
Validation accuracy 86.37% 86.89% 86.12% 87.71%
Total model creation time (s) 1370.423 243.957 198.987 206.137

Evaluation data—analysis time (s) 319.000 44.823 41.977 43.857
Evaluation accuracy 84.68% 84.94% 84.94% 85.11%
Total model evaluation time (s) 332.660 51.280 46.590 48.730

As for the ‘PaymentFraud’ tabular dataset, the ‘M1 Max’ computer achieved the short-
est average initial data processing time—processing of 493.5 MB took on average 2.090 s.
The second shortest result belonged to the ‘M1 Pro’ computer, and the third to the ‘M1’
computer. All computers with the Apple chipset achieved similar initial data processing
times. The ‘i5’ computer needed more than three times longer. All computers achieved



Sensors 2022, 22, 8005 16 of 20

the same training accuracy and almost identical validation accuracy, in all cases close to
100%. As for the total model creation time, the disproportions were not as impressive as
for the previous datasets. The shortest average time was obtained by the ‘M1’ computer,
and the longest by the ‘i5’ computer. The difference between them was 94.803 s (the ‘i5’
computer processing time took 1.8 times longer than the ‘M1’ computer). The ‘M1 Pro’ and
‘M1 Max’ computers had similar model creation times. The evaluation of the created tabular
classifiers showed that all models achieved 99.96% correctness in testing. The ‘M1 Max’
computer performed the fastest during model evaluation, and the ‘i5’ computer performed
the longest. Average test results are presented in Table 9.

Table 9. Average test results for the ‘PaymentFraud’ dataset.

i5 M1 M1 Pro M1 Max

Data processing time (s) 6.831 2.343 2.160 2.090
Training accuracy 99.96% 99.96% 99.96% 99.96%
Validation accuracy 99.97% 99.95% 99.97% 99.96%
Total model creation time (s) 213.561 118.758 143.456 137.789

Evaluation accuracy 99.96% 99.96% 99.96% 99.96%
Total model evaluation time (s) 3.727 1.504 1.298 1.272

The analysis of the ‘SteamReviewsCleaned’ tabular dataset is presented in Table 10.
It was the first one to give arguments for the superiority of the ‘M1 Max’ computer. In all
timing categories, the ‘M1 Max’ computer achieved the shortest average scores. The ‘M1 Pro’
and ‘M1 Max’ computers’ similarity in results was clearly visible, although the ‘M1 Pro’
computer was almost able to keep up with the ‘M1 Max’ computer. The initial data
processing time of the ‘i5’ computer was 3.58 times longer than that of the ‘M1 Max’
computer. The difference in the ‘total model creation time’ between the ‘M1 Max’ and
‘M1 Pro’, ‘M1 Max’ and ‘M1’ and ‘M1 Max’ and ‘i5’ computers was 1.846 s, 3.944 s and
36.698 s, respectively. All computers obtained identical results for the maximum error value
and root-mean-square errors for training, validation and evaluation. The evaluation was
also the fastest on the ‘M1 Max’ computer.

Table 10. Average test results for the ‘SteamReviewsCleaned’ dataset.

i5 M1 M1 Pro M1 Max

Data processing time (s) 29.608 9.927 8.347 8.268
Training—maximum error 2,428,429 2,428,429 2,428,429 2,428,429
Training—root-mean-square error 19,627 19,627 19,627 19,627
Validation—maximum error 1,841,631 1,841,631 1,841,631 1,841,631
Validation—root-mean-square error 19,834 19,834 19,834 19,834
Total model creation time (s) 49.776 17.022 14.924 13.078

Evaluation—maximum error 2,653,823 2,653,823 2,653,823 2,653,823
Evaluation—root-mean-square error 19,605 19,605 19,605 19,605
Total model evaluation time (s) 6.859 2.348 1.732 1.648

It took an average of 431.150 s for the ‘M1 Pro’ computer to iterate over the benchmark
loop of the ‘Benchmarker_Playground’ program (see Table 11). The ‘M1 Max’ computer
achieved a similar average result, longer by only 1.821 s. The ‘M1’ computer iterated on
average in 454.539 s. The ‘i5’ computer obtained the longest result, with an average iteration
time of 2058.969 s.

Of all of the measurement iterations, the fastest single iteration time was achieved by
the ‘M1 Max’ computer, in 423.963 s. It is worth noting that the fastest iteration of the ‘M1’
computer (446.181 s) was still longer than the fastest iteration of the ‘M1 Max’ computer
(445.702 s).



Sensors 2022, 22, 8005 17 of 20

The program also measured the total running time. The best result was obtained by the
‘M1 Pro’ computer, performing all tests in 1293.450 s (over 21 min and 33 s). The ‘M1 Max’
computer had a similar result—1298.913 s. The ‘M1’ computer completed all tasks in
approximately 5% longer than the ‘M1 Pro’ computer. The ‘i5’ computer needed 6176.917 s
(almost 1 h and 43 min).

Table 11. Average iteration times of the ‘Benchmarker_Playground.playground’ program.

i5 M1 M1 Pro M1 Max

Average iteration time (s) 2058.969 454.539 431.150 432.971
Fastest iteration (s) 2035.695 446.181 428.403 423.963
Longest iteration (s) 2101.150 462.364 436.282 445.702
Total measurement time (s) 6176.917 1363.620 1293.450 1298.913

4. Discussion

The research included a comparative analysis of the computational performance of
four currently available Apple laptop processor models in machine learning applications
performed using ‘CreateML’—a machine learning tool designed by Apple. As Create ML is
able to create the same machine learning models, regardless of the hardware it runs on, all
models obtained satisfactory results, which confirmed their usability and applicability in
the prepared use cases.

The obtained results of the processing time measurements clearly showed that the
‘M1 Pro’ and ‘M1 Max’ computers were best suited for ‘CreateML’ machine learning
applications. Older computers, although technically weaker, were still capable of making
useful machine learning models, although it took considerably more time. The use of three
publicly available datasets in the work enabled the research to be repeated and the results
to be compared.

On the basis of the obtained results the following conclusions can be drawn:

• The computer equipped with the ‘M1’ chipset was the best one at creating models
from smaller datasets;

• The ‘M1 Pro’ and ‘M1 Max’ systems usually achieved similar results;
• The ‘M1 Max’ was the best one at processing tabular data;
• The advantage of the ‘M1 Max’ system over the ‘ M1 Pro’ grew with the size of the

tabular dataset;
• Despite the longest training and validation times, the ‘i5’ computer created similar or

identical machine learning models, and in the case of the ‘ClassifierData’ dataset, it
even achieved the highest accuracy;

• The number of iterations of the training process in ‘Create ML’ did not translate
directly into the correctness obtained;

• The ‘training data—analysis time’ and validation had no direct effect on the ‘model
training—total time’ of the model;

• Despite the use of the same Neural Engine accelerator (NPU) in the ‘M1’, ‘M1 Pro’ and
‘M1 Max’ systems, their training times were different, which suggests that the training
process was also influenced by other parameters of the microcircuit and/or system;

• In all of the time results of the analysis or data processing, there was a similarity in the
results of Apple’s M1 based chipsets;

• The evaluation confirmed that the prepared models were almost identical or the same
(in the case of tabular sets), for each model;

• The ‘evaluation accuracy’ was usually lower than the ‘training accuracy’ and ‘valida-
tion accuracy’.

It is possible to extend the ‘Benchmarker’ program with the possibility to use new data
sets. Its methods and functions are already prepared to allow for the easy use of new data.
This would allow us to check how the processors/systems deal with datasets of different
sizes and properties. Another new research opportunity is to perform the benchmarks



Sensors 2022, 22, 8005 18 of 20

on other computers. This would allow the results to be confronted with other macOS-
compatible hardware options (including iMac or Mac Pro) and to check their machine
learning performance.

It would also be interesting to analyze DL-based image processing models with image
outputs, as they require much larger computational resources; however, the graphical
output would make it much more challenging to determine the correctness and compare
the efficiency among the tested platforms.

5. Summary

As a result of the tests (proposed and run as a part of this research), the following
practical reflections can be stated:

• The ‘i5’ computer, despite that it is not the latest version of the Apple Macbook Pro,
is able to achieve similar or identical machine learning models as the new versions,
although it needs more time;

• The advantage of the Neural Engine (NPU accelerator) is clearly visible, giving a huge
boost on all M1 based machines tested (remarkably reducing the required process-
ing time);

• The processing time differences between the ‘M1’, ‘M1 Pro’, and ‘M1 Max’ systems in
machine learning applications does not seem to make a huge difference.

All of the performed tests clearly showed the benefits of hardware acceleration offered
by the NPU included within the design of the Apple M1 processor family. The authors of
this work hope that the NPUs not only will be upgraded, enhanced and empowered in
future versions of this particular processor family, but that they will also become a standard
feature in other/all new processor architectures.

Author Contributions: Conceptualization, D.K. and M.P.; methodology, D.K.; software, D.K.; valida-
tion, D.K. and M.P.; formal analysis, D.K.; investigation, D.K.; writing—original draft preparation,
M.P., D.K. and A.K.-S.; writing—review and editing, A.K.-S. and M.P.; visualization, D.K.; supervision,
M.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Swift code of the ‘Benchmarker’ project is available on GitHub at
https://github.com/dKasperek/Benchmarker (uploaded/accessed on 25 August 2022). By default,
the code runs three times. In each iteration four machine learning models are created (the used
datasets are ‘ClassifierData’—available in the GitHub project, ‘Animals’ [63], ‘PaymentFraud’ [64] and
‘SteamReviews’ [65]). Datasets must be imported to the ‘Resources’ folder inside the Xcode project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and

research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef]
2. Pratt, I. Artificial Intelligence; Red Globe Press: London, UK, 1994. [CrossRef]
3. McCarthy, J. What Is Artificial Intelligence? 2007. Available online: http://jmc.stanford.edu/articles/whatisai/whatisai.pdf

(accessed on 1 October 2022).
4. Pannu, A. Artificial intelligence and its application in different areas. Artif. Intell. 2015, 4, 79–84.
5. Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning,

Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39.
6. Salomon, G.; Perkins, D.N.; Globerson, T. Partners in cognition: Extending human intelligence with intelligent technologies.

Educ. Res. 1991, 20, 2–9. [CrossRef]
7. Fuller, S. When history outsmarts computers. Futures 2003, 35, 769–772. [CrossRef]
8. Wilamowski, B.M. Can computers be more intelligent than humans? In Proceedings of the 2011 4th International Conference on

Human System Interactions, HSI 2011, Yokohama, Japan, 19–21 May 2011; pp. 22–29.

https://github.com/dKasperek/Benchmarker
http://doi.org/10.1016/j.ijinfomgt.2019.01.021
http://dx.doi.org/10.1007/978-1-349-13277-5
http://jmc.stanford.edu/articles/whatisai/whatisai.pdf
http://dx.doi.org/10.3102/0013189X020003002
http://dx.doi.org/10.1016/S0016-3287(03)00027-2


Sensors 2022, 22, 8005 19 of 20

9. Rosett, C.M.; Hagerty, A. Why Now? Computers Enable a Future with Machine Learning. In Introducing HR Analytics with
Machine Learning; Springer Nature: Berlin, Germany, 2021; pp. 95–105.

10. De Cremer, D.; Kasparov, G. AI should augment human intelligence, not replace it. Harv. Bus. Rev. 2021, 18. Available online:
https://hbr.org/2021/03/ai-should-augment-human-intelligence-not-replace-it (accessed on 1 October 2022).

11. Kelty-Stephen, D.G.; Cisek, P.E.; De Bari, B.; Dixon, J.; Favela, L.H.; Hasselman, F.; Keijzer, F.; Raja, V.; Wagman, J.B.;
Thomas, B.J.; et al. In search for an alternative to the computer metaphor of the mind and brain. arXiv 2022, arXiv:2206.04603.

12. De Garis, H.; Shuo, C.; Goertzel, B.; Ruiting, L. A world survey of artificial brain projects, Part I: Large-scale brain simulations.
Neurocomputing 2010, 74, 3–29. [CrossRef]

13. Vinny, M.; Singh, P. Review on the Artificial Brain Technology: BlueBrain. J. Informatics Electr. Electron. Eng. 2020, 1, 3. [CrossRef]
14. Goertzel, B.; Lian, R.; Arel, I.; De Garis, H.; Chen, S. A world survey of artificial brain projects, Part II: Biologically inspired

cognitive architectures. Neurocomputing 2010, 74, 30–49. [CrossRef]
15. Silaparasetty, N. Machine Learning Concepts with Python and the Jupyter Notebook Environment; Apress: Berkeley, CA, USA, 2020.
16. Hu, B.G.; Dong, W.M. A design of human-like robust AI machines in object identification. arXiv 2021, arXiv:2101.02327.
17. Kreuzberger, D.; Kühl, N.; Hirschl, S. Machine Learning Operations (MLOps): Overview, Definition, and Architecture. arXiv

2022, arXiv:2205.02302.
18. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386.
19. Mirtaheri, S.L.; Shahbazian, R. Machine Learning: Theory to Applications; CRC Press: FL, USA, 2022.
20. Carbonell, J.G.; Michalski, R.S.; Mitchell, T.M. An overview of machine learning. In Machine Learning; Springer: Berlin/Heidelberg,

Germany, 1983; pp. 3–23.
21. Dietterich, T.G. Machine learning for sequential data: A review. In Proceedings of the Joint IAPR International Workshops

on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Windsor, ON,
Canada, 6–9 August 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 15–30.

22. Burrell, J. How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data Soc. 2016, 3. [CrossRef]
23. Thakkar, M. Beginning Machine Learning in iOS; Apress: Berkeley, CA, USA, 2019. doi: 10.1007/978-1-4842-4297-1. [CrossRef]
24. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018.
25. Bonaccorso, G. Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning; Packt Publishing Ltd.:

Birmingham, UK, 2018.
26. Langley, P. The changing science of machine learning. Mach. Learn. 2011, 82, 275–279. [CrossRef]
27. Kunde, S.; Choudhry, S.R.; Pandit, A.; Singhal, R. Learning-to-learn efficiently with self-learning. In Proceedings of the

Proceedings of the Sixth Workshop on Data Management for End-To-End Machine Learning, Philadelphia, PA, USA, 12 June
2022; pp. 1–11.

28. Singh, J.P. Scientific Exploration of Conceptual and Algorithmic Terminologies of Machine Learning. In Advances in Computational
Intelligence and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 325–333.

29. Franco, D.; Navarin, N.; Donini, M.; Anguita, D.; Oneto, L. Deep fair models for complex data: Graphs labeling and explainable
face recognition. Neurocomputing 2022, 470, 318–334. [CrossRef]

30. Singhal, P.; Srivastava, P.K.; Tiwari, A.K.; Shukla, R.K. A Survey: Approaches to facial detection and recognition with machine
learning techniques. In Proceedings of the Second Doctoral Symposium on Computational Intelligence; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 103–125.

31. Qiao, L.; Chen, S.; Tan, X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43, 331–341.
[CrossRef]

32. Landauer, T.K. The Trouble with Computers: Usefulness, Usability, and Productivity; MIT Press: Cambridge, MA, USA, 1995.
33. Kuehr, R.; Williams, E. Computers and the Environment: Understanding and Managing Their Impacts; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2007; Volume 14.
34. Filip, F.G. Automation and computers and their contribution to human well-being and resilience. Stud. Informatics Control 2021,

30, 5–18. [CrossRef]
35. Khan, H.U.; Ali, F.; Alshehri, Y.; Nazir, S. Towards Enhancing the Capability of IoT Applications by Utilizing Cloud Computing

Concept. Wirel. Commun. Mob. Comput. 2022, 2022, 1–14. [CrossRef]
36. Stein, S.; Wiebe, N.; Ding, Y.; Bo, P.; Kowalski, K.; Baker, N.; Ang, J.; Li, A. EQC: Ensembled quantum computing for variational

quantum algorithms. In Proceedings of the Proceedings of the 49th Annual International Symposium on Computer Architecture,
New York, NY, USA, 18–22 June 2022; pp. 59–71.

37. Nain, G.; Pattanaik, K.; Sharma, G. Towards edge computing in intelligent manufacturing: Past, present and future. J. Manuf.
Syst. 2022, 62, 588–611. [CrossRef]

38. Dai, Y.N.; Viken, G.; Joo, E.; Bente, G. Risk assessment in e-commerce: How sellers’ photos, reputation scores, and the stake of a
transaction influence buyers’ purchase behavior and information processing. Comput. Hum. Behav. 2018, 84, 342–351. [CrossRef]

39. Qisman, M.; Rosadi, R.; Abdullah, A. Market basket analysis using apriori algorithm to find consumer patterns in buying goods
through transaction data (case study of Mizan computer retail stores). In Proceedings of the Journal of Physics: Conference Series; IOP
Publishing: Bristol, UK, 2021; Volume 1722, p. 012020.

40. Tien, N.H.; Dat, N.; Chi, D.T.P. Product policy in international marketing comparative analysis between Samsung and Apple. Int.
J. Res. Mark. Manag. Sales 2019, 1, 129–133.

https://hbr.org/2021/03/ai-should-augment-human-intelligence-not-replace-it
http://dx.doi.org/10.1016/j.neucom.2010.08.004
http://dx.doi.org/10.54060/JIEEE/001.01.003
http://dx.doi.org/10.1016/j.neucom.2010.08.012
http://dx.doi.org/10.1177/2053951715622512
http://dx.doi.org/10.1007/978-1-4842-4297-1
http://dx.doi.org/10.1007/s10994-011-5242-y
http://dx.doi.org/10.1016/j.neucom.2021.05.109
http://dx.doi.org/10.1016/j.patcog.2009.05.005
http://dx.doi.org/10.24846/v30i4y202101
http://dx.doi.org/10.1155/2022/2335313
http://dx.doi.org/10.1016/j.jmsy.2022.01.010
http://dx.doi.org/10.1016/j.chb.2018.02.038


Sensors 2022, 22, 8005 20 of 20

41. Singh, A.P. Dynamics of Persuasion in Advertising: An Analysis of Apple Commercials. Ph.D. Thesis, West Texas A&M
University, Canyon, TX, USA, 2019.

42. Dempsey, P. The tear down: Apple iMac 2021 desktop computer. Eng. Technol. 2021, 16, 70–71.
43. Mattioli, M. Meet the FaM1ly. IEEE Micro 2022, 42, 78–84. [CrossRef]
44. Hesse, C.N.; Eichelberger, H. Benchmarking Neural Networks on Heterogeneous Hardware Resources. In Proceedings of the

SSP; Leipzig, Germany, 9–10 November 2021.
45. Fojtik, R. New Processor Architecture and Its Use in Mobile Application Development. In Digital Science; Springer: Cham,

Switzerland, 2021; pp. 545–556.
46. Dalakoti, V.; Chakraborty, D. APPLE M1 CHIP VS INTEL (X86). EPRA Int. J. Res. Dev. (IJRD) 2022, 7, 207–211.
47. Bouckaert, S.; Gerwen, J.; Moerman, I.; Phillips, S.C.; Wilander, J. Benchmarking Computers and Computer Networks. EU

FIRE White Paper. 2010. Available online: https://www-sop.inria.fr/members/Thierry.Turletti/WP11.pdf (accessed on
1 October 2022).

48. Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V. MoleculeNet: A benchmark
for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [CrossRef]

49. Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open graph benchmark: Datasets for machine
learning on graphs. Adv. Neural Inf. Process. Syst. 2020, 33, 22118–22133.

50. Alaudah, Y.; Michałowicz, P.; Alfarraj, M.; AlRegib, G. A machine-learning benchmark for facies classification. Interpretation 2019,
7, SE175–SE187. [CrossRef]

51. Olson, R.S.; La Cava, W.; Orzechowski, P.; Urbanowicz, R.J.; Moore, J.H. PMLB: A large benchmark suite for machine learning
evaluation and comparison. BioData Min. 2017, 10, 1–13. [CrossRef]

52. Armstrong, B.; Eigenmann, R. A methodology for scientific benchmarking with large-scale application. In Performance Evaluation
and Benchmarking with Realistic Applications; MIT Press: Cambridge, MA, USA, 2001; pp. 109–127.

53. Apple Inc. About Swift—The Swift Programming Language (Swift 5.5). 2022. Available online: https://docs.swift.org/swift-
book/ (accessed on 1 October 2022).

54. Apple Inc. Xcode 13—Apple Developer. 2022. Available online: https://developer.apple.com/xcode/ (accessed on
1 October 2022).

55. Apple Inc. Xcode|Apple Developer Documentation. 2022. Available online: https://developer.apple.com/documentation/
xcode/ (accessed on 1 October 2022).

56. Apple Inc. Create ML Overview—Machine Learning—Apple Developer. 2022. Available online: https://developer.apple.com/
machine-learning/create-ml/ (accessed on 1 October 2022).

57. Apple Inc. WWDC 2018, Session 703, Introducing Create ML. In Proceedings of the Apple Worldwide Developers Conference,
San Jose, CA, USA, 4–8 June 2018.

58. Apple Inc. WWDC 2019, Session 430, Introducing the Create ML app. In Proceedings of the Apple Worldwide Developers
Conference, San Jose, CA, USA, 3–7 June 2019.

59. Apple Inc. Create ML|Apple Developer Documentation. 2022. Available online: https://developer.apple.com/documentation/
createml (accessed on 1 October 2022).

60. Apple Inc. Creating an Image Classifier Model|Apple Developer Documentation. 2022. Available online: https://developer.
apple.com/documentation/createml/creating_an_image_classifier_model (accessed on 1 October 2022).

61. Apple Inc. Creating a Model from Tabular Data|Apple Developer Documentation. 2022. Available online: https://developer.
apple.com/documentation/createml/creating_a_model_from_tabular_data (accessed on 1 October 2022).

62. Bavikadi, S.; Sutradhar, P.R.; Khasawneh, K.N.; Ganguly, A.; Pudukotai Dinakarrao, S.M. A review of in-memory computing
architectures for machine learning applications. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, Virtual Event,
China, 7–9 September 2020; pp. 89–94.

63. antoreepjana. Animals Detection Images Dataset. Collection of Wild Animal Species with Annotations. Available online:
https://www.kaggle.com/datasets/antoreepjana/animals-detection-images-dataset (accessed on 1 October 2022).

64. Rupak Roy. Online Payments Fraud Detection Dataset. Online Payment Fraud Big Dataset for Testing and Practice Pur-
pose. Available online: https://www.kaggle.com/datasets/rupakroy/online-payments-fraud-detection-dataset (accessed on
1 October 2022).

65. Marko M. Steam Reviews Dataset 2021. Large Collection of Reviews of Steam Games. Available online: https://www.kaggle.
com/datasets/najzeko/steam-reviews-2021 (accessed on 1 October 2022).

66. Apple Inc. macOS Monterey — official source link from Mac App Store. 2022. Available online: https://apps.apple.com/us/
app/macos-monterey/id1576738294?mt=12 (accessed on 1 October 2022).

67. Apple Inc. Apple Event—November 10, 2020; Apple Inc.: Cupertino, CA, USA, 2020.
68. Apple Inc. Apple Event—October 18, 2021; Apple Inc.: Cupertino, CA, USA, 2021.

http://dx.doi.org/10.1109/MM.2022.3169245
https://www-sop.inria.fr/members/Thierry.Turletti/WP11.pdf
http://dx.doi.org/10.1039/C7SC02664A
http://dx.doi.org/10.1190/INT-2018-0249.1
http://dx.doi.org/10.1186/s13040-017-0154-4
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/
https://developer.apple.com/xcode/
https://developer.apple.com/documentation/xcode/
https://developer.apple.com/documentation/xcode/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/documentation/createml
https://developer.apple.com/documentation/createml
https://developer.apple.com/documentation/createml/creating_an_image_classifier_model
https://developer.apple.com/documentation/createml/creating_an_image_classifier_model
https://developer.apple.com/documentation/createml/creating_a_model_from_tabular_data
https://developer.apple.com/documentation/createml/creating_a_model_from_tabular_data
https://www.kaggle.com/datasets/antoreepjana/animals-detection-images-dataset
https://www.kaggle.com/datasets/rupakroy/online-payments-fraud-detection-dataset
https://www.kaggle.com/datasets/najzeko/steam-reviews-2021
https://www.kaggle.com/datasets/najzeko/steam-reviews-2021
https://apps.apple.com/us/app/macos-monterey/id1576738294?mt=12
https://apps.apple.com/us/app/macos-monterey/id1576738294?mt=12

	Introduction
	Motivation for This Study
	Scope and Limitations of Study
	Benchmarking

	Materials and Methods
	Model Creation
	Model Training
	Model Evaluation
	Model Export
	Datasets Used within This Research
	ClassifierData Dataset (Photos)
	Animals Dataset (Kaggle)
	PaymentFraud Dataset (Kaggle)
	SteamReviews Dataset (Kaggle)

	Choosing Appropriate Classifiers for a Particular Dataset
	Models Creation
	Model Testing
	Parent Functions of Creating Models
	Measurement of Execution Time
	Hardware Used

	Results
	Benchmark of the Influence of the macOS Boot Mode
	Processor Architecture Benchmark
	Running the Benchmark
	The Results of the Benchmark


	Discussion
	Summary
	References

