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Abstract: While computer networks and the massive amount of communication taking place on these
networks grow, the amount of damage that can be done by network intrusions grows in tandem.
The need is for an effective and scalable intrusion detection system (IDS) to address these potential
damages that come with the growth of these networks. A great deal of contemporary research on
near real-time IDS focuses on applying machine learning classifiers to labeled network intrusion
datasets, but these datasets need be relevant pertaining to the currency of the network intrusions.
This paper focuses on a newly created dataset, UWF-ZeekData22, that analyzes data from Zeek’s
Connection Logs collected using Security Onion 2 network security monitor and labelled using the
MITRE ATT&CK framework TTPs. Due to the volume of data, Spark, in the big data framework, was
used to run many of the well-known classifiers (naïve Bayes, random forest, decision tree, support
vector classifier, gradient boosted trees, and logistic regression) to classify the reconnaissance and
discovery tactics from this dataset. In addition to looking at the performance of these classifiers using
Spark, scalability and response time were also analyzed.

Keywords: Apache Spark; big data; network traffic analysis; intrusion detection systems; machine
learning; Zeek Connection Logs; MITRE ATT&CK® framework

1. Introduction and Background

Over the past decade, Internet of Things (IoT) traffic has increased exponentially. As
more devices transfer data across networks in different sectors such as healthcare, agriculture,
logistics, etc., network traffic is expected to increase exponentially, and it is predicted that
by 2023, there will be at least 43 billion devices [1]. Hence, being able to monitor and
recognize malicious activity and cyberattacks has become imperative. In this work, Zeek, an
open-source network-monitoring tool that provides the raw network data needed to tackle
today’s toughest networking challenges in the enterprise, cloud, and industrial computing
environments, was used to collect data [2]. This one-of-a-kind new modern dataset, UWF-
ZeekData22 [3], was labeled using the MITRE Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK) framework. The MITRE ATT&CK framework is a globally accessible
knowledge base of adversary tactics and techniques used to accomplish specific objectives [4].
This work, specifically using Zeek’s Connection (Conn) Log files from the UWF-ZeekData22
dataset [3], tries to identify connections that lead to the two adversary tactics, reconnaissance
(TA0043) and discovery (TA0007). Users of the reconnaissance tactic gather information about
vulnerabilities, which can be used for future attacks [5], and users of the discovery tactic try
to better understand the internal network [6]. Zeek’s Conn log files track the protocols and
associated information such as IP addresses, durations, transferred (two way) bytes, states,
packets, and tunnel information. In short, Zeek’s Conn files provide all the data regarding the
connection between two points [7].
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Due to the volume of data involved, the Hadoop Distributed File System (HDFS) was
used to store the data. HDFS is a scalable, fault-tolerant system that allows processing of big
data by making it available across a cluster of computers [8]. An open-source framework
for big data analytics that sits on top of the Hadoop framework, Apache Spark, was used
for machine learning (ML). Spark’s machine learning algorithms, specifically decision tree
(DT), gradient boosted trees (GBT), logistic regression (LR), naïve Bayes (NB), random
forest (RF), and support vector machines (SVM), were used for binary classification in the
big data framework. New binning methods were introduced to bin the raw network data,
and feature reduction was performed using information gain. In addition to statistical
metrics and execution timings obtained from the machine learning algorithms, an analysis
was also performed to determine the ideal Spark parameter configurations for classifying a
raw network dataset in the big data framework.

The uniqueness of this paper can be highlighted as follows: (i) this analysis is per-
formed on a modern, one-of-a-kind, newly created Zeek MITRE ATT&CK framework
labelled dataset, UWF-ZeekData22, which is available at datasets.uwf.edu (accessed on 20
August 2022) [3]; (ii) this is the first work to date that analyzes Zeek network connections
that lead to the classification of the reconnaissance and discovery tactics as defined by the
MITRE ATT&CK framework; and (iii) new binning methods are presented to bin a raw
network dataset.

The rest of this paper is divided into the following sections. Section 2 presents the
related works; Section 3 briefly explains how this new dataset was generated and the
characteristics of this dataset; Section 4 explains the pre-processing in detail; Section 5
presents the machine learning algorithms and the Spark parameters used; Section 6 presents
and discusses the results obtained; Section 7 presents the conclusion, and Section 8 presents
the future works.

2. Related Works

Analysis of network data for the purpose of supporting an anomaly-based IDS has
been a topic of interest for some time [9–17]. The first widely studied network dataset
was the KDD99Cup dataset, analyzed in [10,12,15]. Reference [12] used a decision tree
classifier to support anomaly-based intrusion detection in network data. They found that a
particle swarm optimization algorithm can be used to prune trees and significantly improve
model performance. Reference [15] showed that SVM, using principal component analysis
for feature reduction, is effective for anomaly detection in a fog computing environment.
Reference [10] used multiple learning algorithms (logistic regression, SVM, random forest,
gradient boosting tree, and naïve Bayes) to test the performance differences that occur
as the number of features are changed. They found that the accuracy of these learners is
minimally affected by reducing the number of features, but training and testing time can
be significantly reduced.

The next big dataset, NSL-KDD, is a smaller subset of the KDD99Cup dataset, with a
significant number of duplicate records removed. It was analyzed by [10,13]. Reference [10]
used both NSL-KDD and KDD99Cup and found that the larger, more redundant KDD99Cup
dataset produced slower models as compared to the models developed using the smaller
NSL-KDD dataset. Reference [13] combined different decision tree models and found that
models perform best when combined with a sum-rule scheme.

The UNSW-NB15 dataset was created in 2015 by the University of New South Wales
and features nine different attack types along with significantly more modern network traffic
as compared to the KDD datasets. Reference [9] analyzed this dataset using the SVM, naïve
Bayes, decision tree, and random forest classifiers on the Apache Spark framework and found
that the random forest classifier performed the best in terms of both accuracy and execution
time. Reference [18] analyzed this dataset on the Apache Spark framework using binary
and multiclass random forest classifiers with principal component analysis and information
gain as feature selection methods. They found that PCA made model training slower, and in
some cases, accuracy was the same or worse than models trained without PCA. They also
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found that the binary classifier produces more accurate models than the multiclass classifier.
Reference [19] analyzed UNSW-NB15 using both binary and multiclass random forest algo-
rithms using information gain and principal component analysis as feature reduction methods
and Apache Spark as the framework. They found that binary random forest outperforms
multiclass random forest in terms of accuracy and that information gain outperforms principal
component analysis in terms of both accuracy and speed.

Reference [17] analyzed CICIDS2017, and this work addresses issues with traffic di-
versity and volume, lack of metadata, outdated attack payloads, and anonymized packets
found in other datasets. Reference [17] implemented k-nearest neighbor, random forest,
decision tree, gradient boosting tree, multilayer perceptron, naïve Bayes, and quadratic
discriminant analysis classifiers and reported their performance, stressing the importance
of generating and analyzing updated IDS datasets to keep up with current network traf-
fic/network attacks.

CSE-CIC-IDS2018, an update to CICIDS2017, followed a set of guidelines to create a
systematic update to keep the IDS dataset up to date with current network trends. It was
analyzed by [16], who applied gradient boosting tree, decision tree, random forest, naïve
Bayes, and logistic regression classifiers to this dataset to determine the impact of feature
selection and specifically the use of the Destination_Port feature. Reference [16] found that
the Destination_Port feature was generally useful in terms of model accuracy and should
be included when analyzing IDS data. This feature affected the performance of the machine
learning algorithms. They found that feature selection algorithms produce models that
perform as well as or better than models created without using feature selection algorithms
while consuming fewer computing resources.

In addition to large, general-purpose IDS datasets, some studies have produced their
own data tailored to their specific use cases. Reference [11] created and analyzed datasets
of varying sizes labeled SYNDOS10K-SYNDOS2MIL, which were generated by making
SYN DoS attacks on a network consisting of three PCs and nine IoT devices. They analyzed
these datasets with logistic regression, decision tree, random forest, gradient boosting tree,
and linear SVM and found that random forest performed best in terms of both accuracy
and execution time on this type of data.

Other studies, such as [14], used data that are not made publicly available. They
applied a multilayer SVM to their data to support a block lowest common ancestor algo-
rithm to cluster network intrusion features. They found that this approach produces better
clustering detection times when compared to similar methods.

There are very few works to date on the MITRE ATT&CK framework with respect
to identifying attacks using machine learning. Reference [20] used two hidden layer feed-
forward neural networks to impute missing values in a 2018/2019 ENISA dataset [21]
based on ATT&CK descriptions of the intrusions. They found that this is a valid approach
for filling out intrusion datasets with missing values. Reference [22] used hierarchical
clustering on a small (270 records) intrusion dataset from MITRE to predict likely future
attacks based on other recent attacks. They found that 75% of the ATT&CK techniques
can be highly predicted based on earlier attacks by the same advanced persistent threat.
Thus, though there are some works on the MITRE ATT&CK framework, there are no works
that map a large, raw network dataset with attacks labeled according to the ATT&CK
framework, which is then analyzed using machine learning.

3. Data

The Zeek Conn Log MITRE ATT&CK framework labeled dataset, UWF-ZeekData22,
available at [3], generated using the Cyber Range at The University of West Florida (UWF), was
used for this analysis. This dataset has 9,280,869 attack records and 9,281,599 benign records.

Zeek’s Conn log file tracks the protocols and associated information, such as IP
addresses, durations, two-way bytes, states, packets, and tunnel information. In short, the
Conn log files provide all the data regarding the connection between two points. The full
list of the attributes (and attribute types) of the Conn log file is presented in Figure 1. The
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“mitre_attack” attribute was added to label the data as per the MITRE ATT&CK framework.
A description of the attributes in the Zeek Conn Logs file is presented in Appendix A.
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3.1. Data Breakdown by Tactic and Technique

Table 1 presents a breakdown of the data in the Zeek Conn logs by the MITRE ATT&CK
Tactic. There were 9,278,722 instances of reconnaissance activity, 2086 instances of discovery
activity, and very few instances of other adversary tactics in this dataset; hence, only
reconnaissance and discovery were used for this analysis. Table 2 presents a breakdown of
the Zeek Conn logs by the MITRE ATT&CK Technique, which is a more granular view of
tactic (i.e., “T1046 Network Discovery Service” is a technique, which is a member of the
discovery tactic).

Table 1. Conn log breakdown by MITRE ATT&CK tactic.

Label_Tactic Count

Discovery 2086
Lateral movement 4
Privilege escalation 13

Reconnaissance 9,278,722
Persistence 1

Initial access 1
Exfiltration 7

Defense evasion 1
Resource development 3

Credential access 31
Benign data 9,281,599
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Table 2. Conn log breakdown by MITRE ATT&CK technique.

MITRE ATT&CK Technique Count

T1585 9,278,722
T1078 1
T1048 7
T1068 12
T1046 2086
T1588 3
T1021 4
T1552 31

3.2. The Reconnaissance Tactic

The reconnaissance tactic covers network attacks that are carried out with the goal of gath-
ering information to plan future attacks [23]. This dataset has 9,278,722 reconnaissance records,
all of which are T1595 active scanning attacks in the MITRE ATT&CK nomenclature [23],
which could include scanning IP blocks, vulnerability scanning, or wordlist scanning.

3.3. The Discovery Tactic

The discovery tactic covers attacks that are meant to learn specifics of network
infrastructure [5]. This dataset has 2086 discovery records, all of which are T1046 net-
work service discovery attacks. In the T1046 technique, adversaries attempt to get a listing
of services running on remote hosts and local network infrastructure. This is done through
port scans or vulnerability scans [5].

4. Preprocessing

Preprocessing is broken down into two parts. The first part presents a way to pre-
process raw network data using binning, and the second part uses information gain for
feature selection.

4.1. Preprocessing Using Binning

The Zeek Conn logs contain continuous valued attributes, nominal attributes, IP ad-
dresses, and port numbers. For processing in Spark’s machine learning environment, prepro-
cessing was required. The following sections cover how each type of column in the dataset
(i.e., continuous value, nominal, IP number, and port) was preprocessed and binned.

4.1.1. Binning Continuous Valued Columns

To establish the set of bin ranges for the continuous valued columns in this dataset,
the trimmed mean and standard deviation was calculated for each column. To calculate
the trimmed mean, first, null values as well as extreme outliers were removed. Several
columns in this dataset (for example, duration) exhibit skewed data distributions, often
forming long tails skewing to the right. To address the skewness caused by lengthy and
low-lying tails, a 10% trim on the data was used to generate the bins. This resulted in 80%
of these data being used for mean and standard deviation calculations, with 10% of the
lowest-ranking and highest-ranking values being removed. The binning can be outlined
with the following edges:

edge0 = float(‘−inf’)
edge1 = mean_val − stddev_val × 2
edge2 = mean_val − stddev_val
edge3 = mean_val
edge4 = mean_val + stddev_val
edge5 = mean_val + stddev_val × 2
edge6 = float(‘inf’)
edges = [edge0, edge1, edge2, edge3, edge4, edge5, edge6]
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The bin ranges were used in conjunction with the PySpark ML Bucketizer function to
convert the respective columns into a limited range of integer values. The resulting bins
and distribution for the duration column, using the above binning outline, are presented in
Table 3 and Figure 2.

Table 3. Distribution for Duration.

Bin Range Bin Value Count

Bin1 1 -
Bin2 2 -
Bin3 3 43,548
Bin4 4 15,458
Bin5 5 7656
Bin6 6 11,208
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Figure 2. Initial value distribution for duration across bins.

The resulting distribution for duration, with bin1 and bin2 ending in a negative value
for their high end and having a 0 count of values, was caused by the slant of the dataset,
resulting in two standard deviations left of the dataset’s mean pushing over the 0 value.
This difference with a normal distribution, where the application of the standard deviation
is ideal, can be seen in Figure 3, generated using the maximum value of the trimmed
dataset, which clearly shows a heavily leftwards distribution.
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Using the Moving-Mean to Bin Continuous Valued Columns

To maintain the desired number of bins in spite of the skewness of the data and to
avoid redundant bin ranges, a moving-mean logic was inserted during the establishment
of the edges (where the minimum value of an attribute never drops below 0):
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if min_val ≥ 0:
while mean_val—2 × stddev_val < 0:

mean_val += stddev_val

This moving-mean logic would insert itself in the binning method such that the bins
established through a set number of standard deviations within the mean value of the
trimmed dataset would shift rightwards with the moving-mean value until the first two
bins no longer encompassed a redundant range of data. Table 4 presents the distribution
with this process performed on the duration column.

Table 4. Distribution for duration with moving-mean logic.

Bin Range Bin Value Count

Bin1 1 43,548
Bin2 2 15,458
Bin3 3 7656
Bin4 4 3382
Bin5 5 1506
Bin6 6 6320

As can be seen in Figure 4, the moving-mean generated two additional bins, taking
away from the previously established bin6. Previously representing a bin range of duration
values more than three standard deviations away from the true mean of the trimmed
dataset, this would now (after the emergence of two additional bins) encompass values
more than five standard deviations from the true mean.
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The parity of box6 in both sets of results, as well as the obvious positive skewness
leftward, is contradictory to the nature of normal distributions. This, however, must be
taken with the general level of abstraction inherent in any binning methodology.

Table 5 shows the bin counts for each attribute when this binning method is applied to
the continuous attributes in the Zeek Conn file. The moving-mean bins were also calculated.
An additional bin was generated for null values with a bin designation of 0.
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Table 5. Number of bins for continuous attributes before and after moving-mean.

Bins Used (Nulls Included) Moving-Mean Bins (Nulls Included)

duration 5 7
orig_bytes 5 7
orig_pkts 5 5

orig_ip_bytes 6 6
resp_bytes 2 2
resp_pkts 4 6

resp_ip_bytes 4 6
missed_bytes 1 1

4.1.2. Binning Nominal Valued Columns

Nominal values within this dataset are columns containing non-numeric data. They may
contain names of things, categories, states, or sequences. They often contain non-numeric
characters although that is not always the case. One of the difficulties in their consideration
in algorithms is that such data can contain many unique values, whose naming conventions
do not necessarily indicate an intrinsic value difference. For this analysis, non-numeric
values were converted into numbers. Spark provides a convenient means of performing
such conversions through the StringIndexer method from MLib [6], which is Apache Spark’s
scalable machine learning library. This method was set up to keep all invalid or empty values,
converting those as well to separate integer values for binning purposes. This method was
applied to the columns presented in Table 6, with the resulting bin counts.

Table 6. Number of bins for integer attributes in Zeek Conn data.

Counts of Integer Bins

proto 3
conn_state 10
local_orig 2
local_resp 2

history 59
service 10

Though the IP addresses and port numbers would also fall under this category, they
were handled as explained in the next couple sections.

4.1.3. Binning IP Address Columns

For binning IP addresses of traffic source and destination, the commonly recognized
network classifications of A, B, C, D, and E were used, each of which pertain to specific
ranges of the first octet in the IP address [24]. These different octet ranges correlate to
different default subnet masks, with ascending classifications reserving more bits for the
network address and fewer for the host address. Class A is best-suited for serving incredibly
large networks, while Class C would normally be assigned to very small networks. Classes
D and E are normally relegated to experimental use cases, such as for multicasting, research,
and development [24].

Below are the established octet ranges (inclusive) for each classification [24]:

• Class A: First octet value 0–126;
• Class B: First octet value 128–191;
• Class C: First octet value 192–223;
• Class D: First octet value 224–239;
• Class E: First octet value 240–254.

Using these ranges, the data in these attributes were binned into seven categories, as
shown in Table 7. The “Other” classification was used to capture values that may exceed
these boundaries, and a category was used for null or non-applicable values. An example
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of this classification method was applied to the dest_ip column of the Zeek Conn data, as
shown in Table 7. This column represents the IP address of a packet destination on the
network, and it totaled 312 unique addresses within the scope of the sample dataset.

Table 7. Binning illustrated for dest_ip attribute in dataset.

Classification Dest_Ip Bin Count

Class A 1 33,039
Class B 2 46,063
Class C 3 363
Class D 4 57
Class E 5 0
Other 6 5

Null/Non-applicable 0 569

Based on Table 5, Classes A and B IP addresses were the most plentiful in this data.
This is to be expected given that Classes A, B, and C are considered the most commonly
occurring IP types in most network traffic [24]. The remaining bins represent a small
fraction of the total dataset.

Applied to both of the IP columns in the Zeek Conn data, Table 8 shows the changes
in unique values before and after binning.

Table 8. Number of unique values before and after binning for dest_ip and src_ip attributes.

Unique Values before Binning Unique Values after Binning

dest_ip_zeek 312 6
src_ip_zeek 39 3

4.1.4. Binning Port Numbers

Port numbers can range widely in value, with the Internet Assigned Numbers Au-
thority (IANA) administering ports 0 through 65,535 [25]. This spectrum can be divided
into three ranges covering well-known ports, registered ports, and dynamic/private ports.
Well-known ports range from 0 to 1023 and are protected, with operating systems restricting
access to these ports to only processes with appropriate privileges. Registered ports range
from 1024 to 49,151, and their use should only be with IANA registration. All other ports
up to 65,353 can be used more freely for all manner of purposes.

Based on this classification system, Table 9 shows the bin ranges that were generated
to represent the three port ranges, with a bin value of 0 representing null values. With
the bin ranges applied in Table 9, the results for dest_port and src_port are as shown in
Table 10.

Table 9. Binning shown for port number attributes.

Classification Range Bin Value

Well-known ports 0–1023 1
Registered ports 1024–49,151 2

Dynamic/Private ports 49,152–65,535 3
Null values Null 0
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Table 10. Number of unique values before and after binning dest_port and src_port.

Bin Values Classification Src_Port Count Dest_Port Count

0 Null 0 0
1 Well-known ports 980 49,003
2 Registered ports 45,417 28,957

3 Dynamic/Private
ports 33,699 2136

4 Other 0 0

The difference between the two port types (src_port and dest_port) within this dataset
is also more clearly defined, with most of the source network traffic originating from
registered and dynamic ports and the destination ports largely made up of the well-known
ports, as can be observed in Table 11.

Table 11. Differences between bin values for src_port vs. dest_port [26].

Bin Values Classification Src_Port Count Dest_Port Count

0 Null 0 0
1 Well-known ports 980 49,003
2 Registered ports 45,417 28,957

3 Dynamic/Private
ports 33,699 2136

4 Other 0 0

4.2. Information Gain

After binning, information gain was used to assess the relevance of the 18 features.
Information gain is the difference between a class’s entropy and the entropy of the class and
a selected feature split, with entropy measuring the extent of randomness in the dataset [27].
It is an assessment of the usefulness of a feature in classification.

The following calculations [28] were performed on each feature to produce information
gain values for ranking purposes:

Gain(A) = In f o(D)− In f oA(D) (1)

where

In f o(D) = −
m

∑
i=1

pilog2(pi) (2)

In f oA(D) =
V

∑
j=1

∣∣Dj
∣∣

|D| × In f o
(

Dj
)

(3)

Given that

• Info(D) is the average amount of information needed to identify the class level of a
tuple in D;

• InfoA(D) is the expected information required to classify a tuple from D based on
partitioning from A;

• pi is the nonzero probability that an arbitrary tuple belongs to a class;
• |Dj|/|D| is the weight of the partition.

The information gain values for the features (attributes) in the Zeek Conn logs are
presented in Table 12.
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Table 12. Information gain for features in Zeek Conn dataset.

Attribute No. Attribute Info_Gain

1 history 0.827
2 protocol 0.77
3 service 0.726
4 orig_bytes 0.724
5 dest_ip 0.674
6 orig_pkts 0.655
7 orig_ip_bytes 0.572
8 local_resp 0.524
9 dest_port 0.486
10 duration 0.386
11 conn_state 0.166
12 resp_pkts 0.085
13 resp_ip_bytes 0.065
14 src_port 0.008
15 resp_bytes 0.008
16 src_ip 0.007
17 local_orig 0.002
18 missed_bytes 0

The higher the attribute on the list, the more relevant it is in the classification process.
Based on these results, the top 6, top 9, top 12, and top 18 attributes were used to run the
machine learning algorithms.

5. Experimentation

Figure 5 presents the experimentation process. First, after binning the raw network
data, information gain was calculated. Then, the two tactics, reconnaissance and discovery,
were isolated and segregated into separate dataframes for binary classification. The ratio
of attack to benign data was maintained at 30%:70% in each dataframe. The dataset was
split into 70:30 for training and testing the machine learning classifiers. For each machine
learning algorithm, four sets of attributes were tested: 6, 9, 12, and 18.
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5.1. Computing Environment

The University of West Florida’s Hadoop cluster was used. This cluster consists of six
Dell PowerEdge R730XD servers and three Dell PowerEdge R730 servers, each of which
has dual Intel Xeon E5-2650v3 CPUs with 10 cores and 20 threads per CPU (40 cores) and
128 GB of DDR4 RDIMM RAM. The cluster has six worker nodes that execute the machine
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learning algorithms. Spark 3.2.1 and Hadoop 3.3.1 were used for the environment. Spark
provides a rich set of APIs that were used to implement and run the various machine
learning algorithms [29].

5.2. Machine Learning Algorithms Used

Six different classifiers were compared: logistic regression, naïve Bayes, random forest,
gradient boosted tree, decision tree, and support vector machines. Spark’s Machine learning
libraries were used to run the various classifiers, and the BinaryClassificationMetrics was
used to generate various statistical results such as accuracy, precision, recall, F-measure,
area under the curve, and false-positive rate.

5.2.1. Logistic Regression

Logistic regression (LR) applies a linear discriminant rule and is a widely used machine
learning algorithm used for classification of data [11]. Logistic regression considers each
feature by associating a specific weight to it to generate a probability of being classified to a
specific class. Larger weights represent more variation in a feature and have a larger impact
on the algorithm. Binary responses can be predicted by making use of binary logistic
regression. Spark 3.2.1′s pyspark.ml.classification.LogisticRegression implementation was used
in this study, and the parameters are specified in Table 13.

Table 13. Parameters specified for machine learning algorithm implemented in PySpark.

Machine Learning Algorithm Parameters Used

Logistic Regression

featuresCol: str = ‘features’, labelCol: str = ‘label’,
predictionCol: str = ‘prediction’, maxIter: int = 10, regParam:
float = 0.3, elasticNetParam: float = 0.8, tol: float = 1 ×10−6,
fitIntercept: bool = True, threshold: float = 0.5, thresholds:
Optional[List[float]] = None, probabilityCol: str = ‘probability’,
rawPredictionCol: str = ‘rawPrediction’, standardization: bool
= True, weightCol: Optional[str] = None, aggregationDepth:
int = 2, family: str = ‘auto’, lowerBoundsOnCoefficients:
Optional[pyspark.ml.linalg.Matrix] = None,
upperBoundsOnCoefficients:
Optional[pyspark.ml.linalg.Matrix] = None,
lowerBoundsOnIntercepts:
Optional[pyspark.ml.linalg.Vector] = None,
upperBoundsOnIntercepts:
Optional[pyspark.ml.linalg.Vector] = None,
maxBlockSizeInMB: float = 0.0

Naïve Bayes

featuresCol: str = ‘features’, labelCol: str = ‘label’,
predictionCol: str = ‘prediction’, probabilityCol: str =
‘probability’, rawPredictionCol: str = ‘rawPrediction’,
smoothing: float = 1.0, modelType: str = ‘multinomial’,
thresholds: Optional[List[float]] = None, weightCol:
Optional[str] = None

Random Forest

featuresCol: str = ‘features’, labelCol: str = ‘label’,
predictionCol: str = ‘prediction’, probabilityCol: str =
‘probability’, rawPredictionCol: str = ‘rawPrediction’,
maxDepth: int = 5, maxBins: int = 32,
minInstancesPerNode: int = 1, minInfoGain: float = 0.0,
maxMemoryInMB: int = 256, cacheNodeIds: bool = False,
checkpointInterval: int = 10, impurity: str = ‘gini’, numTrees:
int = 20,
featureSubsetStrategy: str = ‘auto’, seed: Optional[int] = None,
subsamplingRate: float = 1.0, leafCol: str = “,
minWeightFractionPerNode: float = 0.0, weightCol:
Optional[str] = None, bootstrap: Optional[bool] = True
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Table 13. Cont.

Machine Learning Algorithm Parameters Used

Gradient Boosted Decision
Tree

featuresCol: str = ‘features’, labelCol: str = ‘label’,
predictionCol: str = ‘prediction’, maxDepth: int = 5, maxBins:
int = 32,
minInstancesPerNode: int = 1, minInfoGain: float = 0.0,
maxMemoryInMB: int = 256, cacheNodeIds: bool = False,
checkpointInterval: int = 10, lossType: str = ‘logistic’, maxIter:
int = 20, stepSize: float = 0.1, seed: Optional[int] = None,
subsamplingRate: float = 1.0, impurity: str = ‘variance’,
featureSubsetStrategy: str = ‘all’, validationTol: float = 0.01,
validationIndicatorCol: Optional[str] = None, leafCol: str = “,
minWeightFractionPerNode: float = 0.0, weightCol:
Optional[str] = None

Decision Tree

featuresCol: str = ‘features’, labelCol: str = “label_bin”,
predictionCol: str = ‘prediction’, probabilityCol: str =
‘probability’,
rawPredictionCol: str = ‘rawPrediction’, maxDepth: int = 30,
maxBins: int = 100, minInstancesPerNode: int = 1, minInfoGain:
float = 0.0, maxMemoryInMB: int = 256, cacheNodeIds: bool =
False, checkpointInterval: int = 10, impurity: str = ‘gini’, seed:
Optional[int] = None, weightCol: Optional[str] = None,
leafCol: str = “,
minWeightFractionPerNode: float = 0.0

SVM

featuresCol: str = ‘features’, labelCol: str = ‘label_bin’,
predictionCol: str = ‘prediction’, maxIter: int = 100, regParam:
float = 0.0, tol: float = 1 ×10−6, rawPredictionCol: str =
‘rawPrediction’, fitIntercept: bool = True, standardization: bool
= True, threshold: float = 0.0, weightCol: Optional[str] = None,
aggregationDepth: int = 2, maxBlockSizeInMB: float = 0.0

5.2.2. Naïve Bayes

Naïve Bayes (NB) is a popular machine learning algorithm that uses the Bayes rule of
classification and assumes independence of features [10]. The model is easy to build and
intuitive [10], and studies have shown that it works with high accuracy for smaller datasets.
Spark 3.2.1′s pyspark.ml.classification.NaiveBayes implementation was used in this study, and
all parameters used are default values, as shown in Table 13.

5.2.3. Random Forest

Random forest (RF) is an ensemble method; multiple decision trees are constructed,
with each tree being built from a limited number of the available features. The classification
is performed by polling the collection of trees, and a majority vote is used for this. Spark
3.2.1′s pyspark.ml.classification.RandomForestClassifier was used in this study, with the default
settings shown in Table 13.

5.2.4. Gradient Boosted Tree

Gradient boosted tree (GBT) is another class of ensemble methods with many popular
implementations. Gradient boosted tree is based on constructing multiple decision trees
in sequence, with each decision tree being made in such a way as to minimize the classifi-
cation error rate of the previous tree(s). Spark 3.2.1′s pyspark.ml.classification.GBTClassifier
implementation was used in this study (this is an implementation of stochastic gradient
boosting [30]), and the default parameters were used, as shown in Table 13.

5.2.5. Decision Tree

A decision tree (DT) is a set of nodes that partitions the data and returns a binary decision
(yes or no) given the node’s condition. Based on the decision made, the corresponding child
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node is given the input vector. This continues until a leaf node is reached, and the final decision
is made. The Spark implementation supports decision trees for binary and multi classification
and for regression. The creation of the Spark’s decision tree is based on information gain and
works through a greedy algorithm that performs recursive binary partitioning.

Spark 3.2.1′s pyspark.ml.classification.DecisionTreeClassifier implementation was used in
this study. Most default parameters were used, as presented in Table 13, except for maxBins
and MaxDepth. Due to the binning methods used, none of the features used in the training
and test phases contained more than 60 unique values. A max bin value was set for 100, just
in case any of the nominal attributes had significantly more in larger datasets. To further
account for this possibility, the potential depth of the resulting classifier tree was increased
from 5 to 100, at the expense of performance, to ensure a large degree of granularity.

5.2.6. Support Vector Machines

Support vector machines (SVM) is a supervised machine learning algorithm used for
regression and classification. The goal of the SVM algorithm is to find an optimal hyperplane
(also known as a classification vector) in a multi-dimensional space, which allows for the
classification of data points relative to their position to the hyperplane. Linear SVM in Spark
machine learning supports binary classification. Internally, it optimizes the hinge loss using
the OWLQN optimizer. Spark 3.2.1′s pyspark.ml.classification.LinearSVM implementation was
used in this study, and the default settings were used, as shown in Table 13.

6. Results

The results are presented in two parts. The first part presents the results for testing the
various Spark parameters in the big data environment, and the second part presents the
results of the machine learning classifiers run with the best-performing Spark parameters
(determined in the first part).

6.1. Testing Spark’s Configuration Parameters

Spark’s configuration parameters, as shown in Table 14, were declared during the creation
of the Spark session and dictated the available resources that the algorithms were allocated.

Table 14. Spark configuration parameters [31].

Configuration Spark Property Description

Driver
Cores spark.driver.cores Number of cores used for the driver process in

cluster mode.

Driver
Memory spark.driver.memory Amount of memory used for the driver process,

i.e., where Spark Context is initialized.

Executor
Cores spark.executor.cores Number of cores used on each executor.

Executor
Memory spark.executor.memory Amount of memory used per executor process.

Executor
Instances

spark.executor.instances
spark.dynamicAllocation.minExecutors

Initial number of executors run if dynamic
allocation is enabled, with upper and lower

bounds for the number of executors established.spark.dynamicAllocation.maxExecutors

Shuffle
Partitions spark.sql.shuffle.partitions Default number of partitions used when

shuffling data for joins or aggregations.

6.1.1. Performance Results with Various Executor Parameters

The decision tree classifier, with 18 attributes, was used to analyze the executor
parameters. Table 15 shows the effect of executor count, executor core count, total executor
cores, executor memory, and total executor memory on binning time and training time in
seconds. Table 16 shows the total time with additional parameters such as driver memory,
driver cores, and shuffle partitions and how they affect total time.
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Table 15. Effect on binning and training time for Spark’s configuration parameters.

Test
ID

Executor
Count

Executor
Core Count

Total Executor
Cores

Executor
Memory

Total Executor
Memory (GB)

Binning
Time

(seconds)

Training
Time

(seconds)

1 5 2 10 5 25 292.33 62.8
2 5 2 10 10 50 283.65 62.6
3 5 2 10 20 100 275.24 62.1
4 5 4 20 5 25 238.91 44.6
5 5 4 20 10 50 233.12 43.0
6 5 4 20 20 100 233.13 44.1
7 10 2 20 5 50 239.08 44.0
8 10 2 20 10 100 231.92 44.2
9 10 4 40 5 50 185.81 25.1

10 10 4 40 10 100 174.71 25.0
11 20 2 40 5 100 188.41 25.9
12 20 4 80 5 100 165.07 20.8
13 10 8 80 10 100 155.17 20.3
14 12 8 96 10 120 154.47 18.4
16 12 8 96 10 120 152.29 19.1
17 12 8 96 10 120 145.76 18.5
18 24 4 96 5 120 163.60 19.8
19 6 16 96 20 120 141.41 20.5
20 12 8 96 10 120 150.84 19.3
21 3 32 96 40 120 139.23 29.3
22 1 16 16 20 20 179.31 63.8
23 2 16 32 20 40 172.14 37.9
24 6 32 192 40 240 132.27 23.0
25 3 16 48 20 60 154.35 29.3

Table 16. Effect on total time with additional Spark configuration parameters.

Test
ID

Executor
Count

Cores Per
Executor

Memory Per
Executor

Total Exec.
Cores

Total Executor
Memory (GB)

Total Time
(Seconds)

Shuffle
Partitions

Driver
Cores

Driver Memory
(GB)

1 5 2 5 10 25 355.24 200 2 10
2 5 2 10 10 50 346.30 200 2 10
3 5 2 20 10 100 337.45 200 2 10
4 5 4 5 20 25 283.60 200 2 10
5 5 4 10 20 50 276.21 200 2 10
6 5 4 20 20 100 277.28 200 2 10
7 10 2 5 20 50 283.18 200 2 10
8 10 2 10 20 100 276.20 200 2 10
9 10 4 5 40 50 210.99 200 2 10

10 10 4 10 40 100 199.78 200 2 10
11 20 2 5 40 100 214.43 200 2 10
12 20 4 5 80 100 186.02 200 2 10
13 10 8 10 80 100 175.59 200 2 10
14 12 8 10 96 120 172.91 200 2 10
16 12 8 10 96 120 171.49 72 2 10
17 12 8 10 96 120 164.35 12 2 10
18 24 4 5 96 120 183.51 24 2 10
19 6 16 20 96 120 162.02 6 2 10
20 12 8 10 96 120 170.18 24 2 10
21 3 32 40 96 120 168.58 3 2 10
22 1 16 20 16 20 243.16 1 2 10
23 2 16 20 32 40 210.14 2 2 10
24 6 32 40 192 240 155.39 6 2 10
25 3 16 20 48 60 183.75 3 2 10
26 10 8 10 80 100 178.59 200 2 10
27 6 32 40 192 240 156.8 6 2 10
28 6 32 40 192 240 161.84 12 2 10
29 6 32 40 192 240 159.12 24 2 10
30 6 32 40 192 240 159.31 48 2 10
31 6 32 40 192 240 159.91 96 2 10
32 6 32 40 192 240 161.13 192 2 10
33 6 32 40 192 240 161.6 384 2 10
34 6 32 40 192 240 159.2 6 4 10
35 6 32 40 192 240 157.79 6 4 20
36 6 32 40 192 240 158.2 6 4 30
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For the rest of the figures in this section, the binning time, training time, and testing
time were combined into a single value called “process time”.

Figure 6 presents process times versus the memory per executor. Executor memory is
the amount of memory (in GBs) assigned to each executor for use with their assigned cores.
From Figure 6, there does not appear to be a strong correlation between the total executor
memory and processing time. While a necessary component for utilizing the executors, actual
performance improvements could be more accurately attributed to other parameter options.
Fine tuning of other parameters could involve reducing the amount of unnecessary memory
assigned to executors, hence increasing available resources on the server.
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There was a more noticeable effect on performance, albeit with diminishing returns,
with the number of executors instantiated and the number of cores assigned to each of
them. Multiplying these two values, we arrive at total executor cores. As can be seen in
Figure 7, increasing the number of cores available from 10 to 50 had a significant impact
on performance, with the aforementioned diminishing returns becoming readily apparent
beyond that count and especially after a total core count of 100.
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Figure 8 sheds light on the optimal number of executor instances given the total number
of cores assigned to the process. The smaller the circle, the less processing time (that is, binning
time + training time + testing time) it took to generate the results. The total number of executor
cores had a high impact on improving the processing time. This observation is born out here
as well, with higher values of total cores showing smaller circles.
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An interesting observation can be made along the horizontal line representing 96 total
cores (approx. 100). Along this axis are test results for executor counts at 3, 6, 12, and 24.
All other parameters being equal, the best results at this core count range were shown
with six executor instances. While the best performance in Figure 8 (based on the smallest
circle) is given by the lone results at a total core count of 196 (approx. 200), the 96 total core
count option with six executors was regarded as the best and hence used to test the overall
performance of the machine learning algorithms.

The shuffle partitions parameter was also tested. This is displayed with executor count
and performance in Figures 9 and 10. Trends at both 6 and 12 executors show that using
fewer shuffle partitions improves performance, with the fastest performance occurring
when the number of shuffle partitions is the same as the total number of executors. Values
for the shuffle partitions attribute lower than the total number of executors allocated were
not tested, as this would leave executors beyond the number of shuffle partitions idle.
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We elected to use the parameters detailed in Test ID 19 from Table 16. This is not the
fastest performance, but it was less than 3% slower than our fastest settings while using half
of the total resources. Tables 17 and 18 show these spark configuration parameter settings.

Table 17. Spark’s optimum configuration settings.

Config Setting Value

Driver Cores 2
Driver Memory 10 g

Executor Instances 6
Executor Cores 6

Executor Memory 6
Shuffle Partitions 6

Table 18. Spark’s optimum resource settings and total allocation.

Resources Total Allocation

Driver Cores 2
Driver Memory 10 g

Executor Total Cores 96
Executor Total Memory 120 g

6.1.2. Effect on Training Time

As shown in Figure 11, the number of attributes used does not seem to strongly
correlate to model training time. The differences in training time between discovery
and reconnaissance can be attributed to the size difference between the training sets; the
discovery training set contains around 6000 records, while the reconnaissance training set
contains around 20,000,000 records.
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6.2. Machine Learning Performance

This section presents the results of binary classification performed on the Zeek Conn
Log data using the six machine learning algorithms (decision tree, gradient boosting tree,
logistic regression, naïve Bayes, random forest, and support vector machine) using the best
parameters determined from the previous section (as shown in Tables 17 and 18).

6.2.1. Evaluation Metrics

Results were collected for accuracy, precision, recall, false-positive rate (FPR), F-
measure, area under operating characteristics curve (AUROC), and training/testing times
in seconds. Next, these metrics are defined.

Accuracy: Accuracy is the number of correct classifications (i.e., true positives and
negatives) divided by the total number of classifications [32].

Accuracy = [True Positives + True Negatives]/
[True Positives + False Positives + True Negatives + False Negatives]

(4)

Precision: Precision, also known as confidence, is the proportion of predicted positive
cases that are correctly labeled as positive [33]. Precision by label considers only one class
and measures the number of times a specific label was predicted correctly, normalized by
the number of times that label appears in the output.

Precision = Positive Predictive Value =
[True Positives]/[True Positives + False Positives]

(5)

Recall: Intuitively, recall is the ability of the classifier to find all the positive samples,
i.e., the true-positive rate. Recall is also known as sensitivity and is the proportion of real
positive (RP) cases that are correctly predicted as positive (TP) [33].

All Real Positives = [True Positives + False Negatives] (6)

All Real Negatives = [True Negatives + False Positives] (7)

Recall = True Positive Rate = [True Positives]/[All Real Positives] (8)

False-positive rate (FPR): This is the proportion of negative labels that are predicted to
be positive.

False Positive Rate (FPR) = [False Positives]/[All Real Negatives] (9)

F-Measure: The F-measure is defined as the harmonic mean of a prediction’s precision
and recall metrics. It is another overall measure of the test’s accuracy [34].

F-Measure = 2 × [Precision × Recall]/[Precision + Recall] (10)

AUROC: A receiver operating characteristics (ROC) graph is a technique for visu-
alizing, organizing, and selecting classifiers based on their performance. ROC graphs
depict the relative tradeoffs between the true and false positives. They are two-dimensional
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graphs upon which classifiers are plotted, with the y-axis being the true-positive rate and
the x-axis the false-positive rate (FPR) [35].

The area under ROC (AUROC) is the percentage of the area under the resulting line
relative to the entire area of the graph [36].

Recall, sensitivity, and TPR connate the same measure.
Training and testing time: The time it took for an algorithm to complete its training

and testing processes (in seconds) is recorded in these two columns, respectively. All other
factors being equal, an algorithm is considered to have performed better than another if it
completed its calculations more quickly.

6.2.2. Machine Learning Classifier Results

Binary classification was performed using each of the six machine learning classifiers
for 6, 9, 12, and 18 attributes.

Machine Learning Classifier Results for Reconnaissance

Machine learning classifier results for the reconnaissance tactic for 6, 9, 12, and 18
attributes are presented in Table 19.

Table 19. Reconnaissance: Performance of the various machine learning classifiers.

ML Algo. Attr. Accuracy Precision Recall F-Measure AUROC FPR Training Testing

DT 6 99.30% 99.09% 98.58% 98.84% 99.10% 0.39% 27.933 0.087

DT 9 99.31% 99.10% 98.60% 98.85% 99.11% 0.39% 28.878 0.088

DT 12 99.35% 99.20% 98.65% 98.92% 99.15% 0.34% 29.75 0.086

DT 18 99.40% 99.69% 98.30% 98.99% 99.08% 0.13% 28.365 0.071

GBT 6 99.26% 99.39% 99.56% 99.48% 99.07% 1.42% 80.639 0.077

GBT 9 99.29% 99.39% 99.60% 99.50% 99.09% 1.42% 80.178 0.076

GBT 12 99.30% 99.38% 99.62% 99.50% 99.08% 1.46% 79.599 0.075

GBT 18 99.37% 99.23% 99.88% 99.55% 99.03% 1.81% 59.147 0.087

LR 6 96.52% 94.02% 94.38% 94.20% 95.91% 2.57% 22.1 0.057

LR 9 96.52% 94.02% 94.38% 94.20% 95.91% 2.57% 22.265 0.051

LR 12 96.52% 94.02% 94.38% 94.20% 95.91% 2.57% 22.372 0.051

LR 18 96.52% 94.02% 94.38% 94.20% 95.91% 2.57% 23.375 0.052

NB 6 95.84% 92.11% 94.19% 93.14% 95.37% 3.46% 15.634 0.053

NB 9 95.85% 92.11% 94.22% 93.15% 95.38% 3.46% 16.078 0.091

NB 12 95.85% 92.11% 94.21% 93.15% 95.38% 3.46% 15.7 0.062

NB 18 95.86% 92.12% 94.27% 93.18% 95.41% 3.46% 15.234 0.056

RF 6 99.19% 98.95% 99.90% 99.42% 98.72% 2.47% 56.257 0.048

RF 9 98.11% 97.39% 99.98% 98.67% 96.86% 6.26% 56.276 0.075

RF 12 99.19% 98.92% 99.94% 99.43% 98.70% 2.55% 56.473 0.052

RF 18 99.22% 98.94% 99.96% 99.45% 98.73% 2.51% 47.286 0.054

SVM 6 70.01% 0.00% 0.00% 0.00% 50.00% 0.00% 39.053 0.031

SVM 9 96.87% 95.23% 94.28% 94.75% 96.13% 2.02% 68.317 0.036

SVM 12 97.36% 97.08% 94.02% 95.53% 96.41% 1.21% 64.397 0.036

SVM 18 97.93% 99.04% 94.00% 96.45% 96.80% 0.39% 66.216 0.036

From Table 19, for the reconnaissance tactic, it can be noted that, in terms of accuracy,
decision tree, gradient boosting tree, and random forest had the highest averages for all sets
of attributes. Naïve Bayes had the lowest accuracy, and logistic regression was only slightly
higher than naïve Bayes. In terms of recall, gradient boosting tree and random forest had
the highest recall, followed by decision tree. Naïve Bayes, support vector machine, and
logistic regression had lower recall rates. In terms of false-positive rates, it can be noted
that decision tree had the lowest false-positive rates, and support vector machine and
gradient boosting tree had the second lowest false-positive rates. Naïve Bayes had the
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highest false-positive rates. In terms of training time, random forest had the lowest training
time, followed by decision tree, for all attribute combinations. Gradient boosting tree had
the highest training times.

Machine Learning Classifier Results for Discovery

Machine learning classifier results for the discovery tactic for 6, 9, 12, and 18 attributes
are presented in Table 20.

Table 20. Discovery: Performance of the various machine learning classifiers.

ML Algo. Attr. Accuracy Precision Recall F-Measure AUROC FPR Training Testing

DT 6 99.81% 100.00% 99.33% 99.67% 99.67% 0.00% 3.798 0.057

DT 9 99.77% 100.00% 99.17% 99.58% 99.58% 0.00% 3.812 0.04

DT 12 99.91% 100.00% 99.67% 99.83% 99.83% 0.00% 4.091 0.08

DT 18 99.95% 100.00% 99.83% 99.92% 99.92% 0.00% 4.152 0.047

GBT 6 99.86% 99.80% 100.00% 99.90% 99.76% 0.49% 20.359 0.062

GBT 9 99.86% 99.80% 100.00% 99.90% 99.76% 0.49% 20.617 0.062

GBT 12 99.91% 99.87% 100.00% 99.93% 99.84% 0.32% 20.802 0.071

GBT 18 99.86% 99.87% 99.93% 99.90% 99.80% 0.32% 11.871 0.066

LR 6 97.89% 93.02% 100.00% 96.39% 98.53% 2.94% 4.997 0.04

LR 9 97.89% 93.02% 100.00% 96.39% 98.53% 2.94% 4.749 0.042

LR 12 97.89% 93.02% 100.00% 96.39% 98.53% 2.94% 4.746 0.041

LR 18 97.89% 93.02% 100.00% 96.39% 98.53% 2.94% 4.81 0.045

NB 6 97.28% 91.19% 100.00% 95.39% 98.10% 3.79% 2.975 0.041

NB 9 97.28% 91.19% 100.00% 95.39% 98.10% 3.79% 3.14 0.039

NB 12 94.55% 83.80% 100.00% 91.19% 96.21% 7.59% 3.144 0.038

NB 18 94.55% 83.80% 100.00% 91.19% 96.21% 7.59% 3.03 0.038

RF 6 99.62% 99.47% 100.00% 99.73% 99.35% 1.30% 13.171 0.062

RF 9 99.86% 99.80% 100.00% 99.90% 99.76% 0.49% 12.802 0.037

RF 12 99.86% 99.80% 100.00% 99.90% 99.76% 0.49% 12.689 0.039

RF 18 99.91% 99.87% 100.00% 99.93% 99.84% 0.32% 4.218 0.04

SVM 6 97.09% 91.51% 98.83% 95.03% 97.62% 3.60% 21.834 0.03

SVM 9 99.48% 100.00% 98.17% 99.07% 99.08% 0.00% 27.668 0.027

SVM 12 65.29% 31.85% 20.33% 24.82% 51.63% 17.07% 27.61 0.03

SVM 18 19.96% 0.00% 0.00% 0.00% 13.90% 72.20% 30.897 0.036

From Table 20, for the discovery tactic, in terms of accuracy, it can be noted that,
decision tree, gradient boosting tree, and random forest had a higher accuracy for all sets
of attributes. In terms of recall, gradient boosting tree, naïve Bayes, and logistic regression
had higher recall for all sets of attributes, and decision tree was close behind. Support
vector machine performed poorly in terms of recall. In terms of the false-positive rates,
decision tree, gradient boosting tree, and random forest all had lower false-positive rates
for all combination of attributes although decision tree appeared to perform the best.

6.2.3. Overall Results for Reconnaissance and Discovery

Figure 12 shows that, for reconnaissance, on average, 6 attributes performed slightly
lower than 9, 12, and 18 attributes. However, a close look at Table 19 shows that this is
because the SVM results for six attributes are not consistent with the rest of the results;
hence, Figure 13 shows averages for reconnaissance without SVM (note that SVM was just
removed from the six attribute list). Without SVM’s six attributes, all the other results are
higher for six attributes.
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From Figure 11, we can also note that the training time was lower, on the average, for
six attributes. Therefore, for reconnaissance, the top six attributes (history, protocol, service,
orig_bytes, dest_ip, and orig_pkts) would be enough to classify the reconnaissance tactic
for any of the classifiers except SVM.

Figure 14 shows that, for discovery, on average, 18 attributes performed the lowest,
and though 6 and 9 attributes performed closely, 9 attributes had slightly higher averages.
However, since the top six attributes (history, protocol, service, orig_bytes, dest_ip, and
orig_pkts) had results so close to the top nine attributes, the case could be made to recom-
mend six attributes given that, in terms of training time as shown in Figure 11, six attributes
performed better than nine attributes.
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7. Conclusions

The objective of this paper was to see if the reconnaissance and discovery tactics, labelled
using the MITRE ATT&CK framework, could be identified from the Zeek Conn logs using
a newly created dataset, UWF-ZeekData22 [3]. In addition to looking at the performance of
these classifiers using Spark, scalability and response time were also analyzed.

In terms of optimizing classifier performance on the Spark cluster, we found that more
total cores provided to the Spark application make machine learning algorithms run faster
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but with diminishing returns. It can be noted that classifiers run fastest when the number
of shuffle partitions is the same as the total number of executors. There was no significant
correlation between runtimes and the total amount of memory allocated (though allocating
too little memory can cause executors to crash).

Machine learning results indicate that the tree-based methods (decision tree, gradient
boosting tree, and random forest) performed better on most metrics than the other three
algorithms in classifying this dataset for both the reconnaissance and discovery tactics.
These three algorithms all showed 99% + accuracy for both attack tactics, with similarly
higher scores in precision, recall, f-measure, and AUROC. Of the tree-based methods,
gradient boosting tree and random forest performed a little better than decision tree in
terms of recall for both the tactics, but in terms of the false-positive rate, decision tree had
the lowest false-positive rates for both reconnaissance and discovery (in fact, it was at 0%
for discovery). Gradient boosting tree and random forest also performed well in terms of
false-positive rate for discovery, but for reconnaissance, gradient boosting tree performed a
little better than random forest. Based on these results, it should also be mentioned that the
binning methods used in this study were also effective in the classification process.

With respect to the training times of the tree-based classifiers, random forest performed
the best for the reconnaissance tactic, followed by decision tree, and for the discovery tactic,
decision tree performed the best.

With respect to the number of attributes to be used, the top six attributes from informa-
tion gain (history, protocol, service, orig_bytes, dest_ip, and orig_pkts) can be considered
enough to provide the best classification results for both the reconnaissance and discovery
tactics for all the machine learning classifiers (except SVM with respect to reconnaissance),
and the training time of the top six attributes was also lower.

8. Future Work

This work analyzes Zeek network connections and classifies them based on the recon-
naissance and discovery tactics as defined by the MITRE ATT&CK framework. Although
we only labelled the attacks based on tactics, we will extend this work to reflect the attack
chain and techniques with corresponding IDs from the ATT&CK framework. Using the
ATT&CK framework tactics, techniques, and procedures, we intend to analyze more attack
traffic and label them with appropriate attack techniques. This will eventually provide a
rich dataset for the research community to conduct more in-depth and relevant research on
attack classification and pattern recognition using the MITRE ATT&CK mapping.
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Appendix A

Table A1. Attributes of Zeek Conn Logs Dataset.

Attribute Name Description of Attribute

ts Time of first packet
uid Unique identifier of connection
id.orig_h IP address of packet sender
id.orig_p Outgoing port number
id.resp_h IP address of packet receiver
id.resp_p Incoming port number
proto Transport layer protocol of connection
service Identification of application protocol being sent over connection
duration How long connection lasted
orig_bytes Number of payload bytes originator sent
resp_bytes Number of payload bytes responder sent
conn_state Possible connection states
local_orig If connection is responded to locally, value is T
local_resp If connection is responded to locally, this value is T
missed_bytes Number of bytes missed in content gaps, representative of packet loss
history Records the state history of connections as a string of letter
orig_pkts Number of packets originator sent. Set if: zeek:id:use_conn_size_analyzer = T
orig_ip_bytes Number of packets responder sent. Set if: zeek:id:use_conn_size_analyzer = T
resp_pkts Number of IP level bytes responder sent. Set if: zeek:id:use_conn_size_analyzer = T
resp_ip_bytes Number of IP level bytes responder sent
community_id
id Connection’s 4-tuple of endpoint addresses/ports

tunnel_parents If connection was over tunnel, indicates *uid* values for encapsulating parent(s)
connections used over lifetime of inner connection
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