
����������
�������

Citation: Narzary, D.; Veluvolu, K.C.

Multiple Sensor Fault Detection

Using Index-Based Method. Sensors

2022, 22, 7988. https://doi.org/

10.3390/s22207988

Academic Editors: Dong Wang,

Shilong Sun and Changqing Shen

Received: 8 September 2022

Accepted: 14 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multiple Sensor Fault Detection Using Index-Based Method

Daijiry Narzary and Kalyana Chakravarthy Veluvolu *

School of Electronics and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
* Correspondence: veluvolu@ee.knu.ac.kr

Abstract: The research on sensor fault detection has drawn much interest in recent years. Abrupt, in-
cipient, and intermittent sensor faults can cause the complete blackout of the system if left undetected.
In this research, we examined the observer-based residual analysis via index-based approaches for
fault detection of multiple sensors in a healthy drive. Seven main indices including the moving mean,
average, root mean square, energy, variance, first-order derivative, second-order derivative, and
auto-correlation-based index were employed and analyzed for sensor fault diagnosis. In addition,
an auxiliary index was computed to differentiate a faulty sensor from a non-faulty one. These
index-based methods were utilized for further analysis of sensor fault detection operating under
a range of various loads, varying speeds, and fault severity levels. The simulation results on a
permanent magnet synchronous motor (PMSM) are provided to demonstrate the pros and cons of
various index-based methods for various fault detection scenarios.

Keywords: fault detection; fault detection index; residuals analysis; permanent magnet synchronous
motor; multi-sensor faults

1. Introduction

Sensors are frequently employed to gather data and signals, in particular in the moni-
toring of electrical devices and drives, the environment, and human health [1,2]. For in-
stance, sensors are used in electrical motor drives to measure and detect changes in position,
temperature, displacement, electrical current, as well as many other characteristics [3,4].
However, industrial sensors’ applicability relies on the applications and conditions in
which they are utilized. They are required to perform under challenging situations, such
as severe and extreme environments with extremely low or high temperatures, vibrations,
excessive humidity, etc. [5].

Any industrial drive’s efficiency is entirely dependent on the output of the sensor’s
readings. An unexpected variation in the measured signal output, however, may be referred
to as a sensor malfunction [6]. There are several causes of sensor faults, including poor
manufacturing practices, long-term use wear and tear, and incorrect calibration. This fre-
quently leads to physical divergence from the sensor body’s design parameters, producing
misleading and incorrect outputs [7]. Bias, drift, scaling, noise, and hard faults including
signal loss are the main causes of sensor malfunction [8]. Different sensors, including
voltage, current, temperature, pressure, and position sensors, are typically used in fault
detection and diagnosis schemes [9]. The gathered sensor data reveal important details
about the system’s health, including whether it is functioning normally or not. Sensor
fault diagnosis can be broadly divided into two main categories: hardware method and
software method [10]. The hardware method uses multiple components and the same
input signals, which are further utilized for comparison, and specific methods such as
voting and limit test, etc., are utilized for fault detection. On the other hand, the soft-
ware method is subdivided into model-based [11], signal-processing-based [12,13], and
knowledge-based detection methods [14]. Any type of sensor fault can deteriorate the
overall performance of an industrial drive by reducing its reliability. Therefore, it is neces-
sary to investigate the sensor fault diagnosis of the drives, in order to ensure continuous
drive operations [15,16]. Model-based methods [17–20] detect sensor faults by monitoring
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the residual signal, which is the difference between the real process and the analytical
redundancy under normal working conditions. They are considered as the most common
techniques in industrial applications. The common residual generation methods include
observer-based methods [21,22], parity space methods [23], and parameter identification
methods for effectively detecting the sensor faults in satellite control systems and industrial
motor drives. However, in signal processing methods for sensor fault detections, a faulty
sensor signal of a motor is analyzed with signal processing techniques such as the fast
Fourier transform (FFT) [24], wavelet transform (WT) [25], and Hilbert transform [26].
In [27], the STFT and WT methods were used for fault diagnosis such as demagnetization,
rotor eccentricity faults, and sensor faults of the servo drive. Recent studies have used
the signal processing fault diagnosis techniques focusing on the current, motor vibration,
and voltage signals. In [28], the short-time-Fourier-transform (STFT)-based inverter fault
detections were used for spectral analysis to detect open-circuit faults in a wind power
converter. The knowledge-based method uses the summary of prior knowledge to describe
the relationship between the fault and symptom. Interturn short-circuit faults in a drive
were detected by using support vector machines (SVMs) and convolutional neural net-
works (CNNs) in [29]. In [30], bipolar transistor faults, single current sensor fault, and rotor
position faults were diagnosed by the FDI algorithm designed by using the SVM technique.
In [31], the demagnetization fault was identified using noise and torque information fusion
technologies. Similarly, in [32], a Kalman-filter-based sensor fusion method was used to
simultaneously measure the three-degree-of-freedom angular displacements and velocity
of a ball-joint-like permanent magnet spherical motor.

Nevertheless, so far, the majority of the detection techniques rely only on data from
one or more sensors. In the above methods, simultaneous or sequential faults in multiple
sensors such as abrupt, incipient, and intermittent faults [33] were not discussed. Hence,
in this work, three types of sensor faults such a abrupt, incipient, and intermittent faults
are detected by the response of the indices generated from the fusion of speed, current,
and voltage sensor residuals. Abrupt faults are modeled as a sudden step-like deviation in
which the component value abruptly changes from its nominal value to an unknown faulty
one. Incipient faults develop slowly, and intermittent faults usually manifest themselves
intermittently in an unpredictable manner. Usually, abrupt faults and incipient faults
have a persistent nature, while intermittent faults do not. In this paper, an intermittent
fault [34,35] was considered to be periodic with a fixed value. Existing studies employed
multiple sensors for the same sensor channel to reduce the noise and improve the fault
detection accuracy by sensor fusion. Our proposed approach fundamentally differs in the
way that we rely on a single sensor for one sensor channel. As a fault in one sensor channel
affects the other sensor channels, we employed the index-based methods to analyze and
identify the faulty and healthy channel.

In this work, finite time observers were employed for residual generation for analysis
with various index-based methods. The drive was assumed to be healthy, and the issue of
faults in multiple sensors was studied in the paper. Multiple sensors’ fault detections based
on indices were designed by using the moving root mean square index (MRI), moving-
average-based index (MAI), moving-variance-based index (MVI), moving-energy-based
index (MEI), first-order-derivative-based index (DBI1), second-order-derivative-based
index (DBI2), and auto-correlation-based index (Ac I). An auxiliary index (AI) was also
developed to select the accurate index values for faulty sensor detections. These index-
based techniques provide quick and accurate fault detection. Cost effectiveness was also
achieved by the extremely low computational burden of these index-based methods. For
evaluation, the index-based fault detection methodology was tested on a permanent magnet
synchronous motor (PMSM) with multiple sensors that were employed for speed, current,
and voltage measurement. The simulation results are presented together with descriptions
of the index-based detections for various defective and noisy settings. A comparative result
is also presented to show the efficacy of the proposed method.
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2. Index-Based Methods

To achieve accurate fault detection in multi-sensor faults, the following indices were
considered for the analysis.

2.1. Moving-Average-Based Index

The moving average for a signal p(t) can be calculated as follows:

MAIi =
1
Ts

i

∑
n=i−Ts

pi(t) (1)

where MAIi is the mean of the signal in the ith window. Ts is the number of samples in one
cycle, and t is the time step of one sample. Each second moving average for each sample of
a signal for the mean of a window of 1 s was calculated on the sample. The transients of
the sensor residuals were analyzed by using the index-based methods. The MAIi value
remains constant during the PMSM motor’s healthy sensor conditions, but it changes
immediately after the fault occurs. Because of this, a threshold was used to compare the
MAIi and determine whether the index indicated the presence of faulty sensors. The value
of the threshold for this index was considered as 0.5, by using Otsu’s thresholding method.

2.2. Moving-RMS-Based Index

For abrupt and incipient sensor faults, the faults on one sensor affect the residuals of
the other sensors. Hence, to detect the actual faulty sensor, the moving-RMS-based index is
calculated as follows:

MRIi =

√√√√ 1
Ts

i

∑
n=i−Ts

p2
n (2)

where MRIi is the root mean square of the signal p(t) in the nth window. In this article,
the root mean square was applied to the residuals of the stator currents, speed, and stator
voltage values, with the number of samples in one cycle denoted as Ts and the time step of
one sample as t. The object calculates the root mean square (RMS) of the windowed data
at each iteration through the window. It can also be seen that the energy of the signal is
directly proportional to the MRI values of the residuals, considering a constant window
length. Like the behavior of the MAI, the MRI exhibits smooth fluctuations during the
healthy sensor state, but it indicates a change during abrupt and incipient faults. The
index for MRI, like the index MAI, was compared with a threshold designed using Otsu’s
thresholding. The threshold’s considered value was 0.5.

2.3. Moving-Variance-Based Index

A variance-based index was used to separate the faulty sensor from the non-faulty
ones by comparing it with the set threshold. Utilizing the formula of the moving average,
MVIi is considered as follows:

MVIi =
1
Ts

i

∑
n=i−Ts

(pn − p̄n)
2) (3)

where pn denotes each sample of the sensor residual and p̄n is the average of the samples
of the residuals in the specified window.

The moving variance calculates the variance of the signal around the mean in the
given window. When a fault occurs, the abrupt changes cause large deviations, and this
affects the variance of the signal.

2.4. Moving-Energy-Based Index

Abrupt and incipient faults are also detected by another index, called the moving-
energy-based index. The index is calculated and then compared with a threshold.
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This index can be calculated as follows:

MEIi =
1
Ts

i

∑
n=i−Ts

p2
n (4)

where MEIi is the moving energy of the signal denoted by Sn. This index, like the MVI,
exhibits the same behavior as the previous three indices. The comparison threshold was set
at 0.2 and was created using Otsu’s thresholding technique [36]

2.5. First-Order-Derivative-Based Index (DBI1)

In this work, residual-based fault analysis was performed by designing a first-order-
derivative-based index. It can be calculated as follows:

DBI1i = lim
x2→x1

f (x2)− f (x1)

x2 − x1
(5)

The idea behind using a (DBI1)-based index is to amplify the very slight changes in
the faulty sensor values, as well as the noises present in the sensor residual transients. This
index was compared to a threshold of 0.5 calculated using Otsu’s thresholding method.

2.6. Second-Order-Derivative-Based Index (DBI2)

A second-order-derivative-based index was also designed for the analysis of residuals
for fault detections. It can be calculated as shown below:

DBI2i = lim
x2→x1

d
dx f (x2)− d

dx f (x1)

x2 − x1
(6)

The DBI2 index method, like the DBI1 index method, analyzes the transients of noisy
abrupt and incipient faults. The threshold was set to 0.5 and was created with Otsu’s
thresholding method.

2.7. Auto-Correlation Index

Another index utilized here for sensor fault detection was the auto-correlation index.
This index was used for analyzing the residuals for intermittent faults. The mathematical
expression for (Ac I) is shown as

Ac I =
∑n

i=k+1(yi − ȳ)(yi−k − ȳ)
∑n

i=1(yi − ȳ)2 (7)

where Ac I is the auto-correlation of the signal for time series of the signal yi, and it lies
between −1 and +1. ȳ is the overall mean; n is the total number of samples; yi is the value
of the signal at sample i.

2.8. Auxiliary Index

In order to detect the sensor faults more accurately and preserve the reliability of the
index-based methods, an auxiliary condition was considered by using an auxiliary index
(AI). The mathematical representation of the auxiliary index is as follows:

AI = Vindices( f ) > Vindices(n f ) (8)

where Vindices are MRI, MAI, MVI, MEI, DBI1, DBI2, and Ac I, respectively; f indicates the
faulty and n f indicates the non-faulty value of the indices.
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Moreover, for the quantitative analysis of the proposed indices, the two following
criteria, the accuracy (Acc) and dependability (Dep) of the indices, were calculated by using
the formulae as follows:

Acc% =
Number of correctly detected cases

Total number of cases
(9)

Dep% =
Total number of detected faults by the indices

Total number of faults
(10)

3. Multi-Sensor Fault Diagnosis

In this paper, for the evaluation, we employed the proposed methodology for multi-
sensor fault diagnosis in a (PMSM) motor. The dynamics of a PMSM can be modeled as
follows: 

diα
dt = − R

L iα − 1
L bα +

1
L Eα

diβ

dt = − R
L iβ − 1

L bβ +
1
L Eβ

dωe
dt = − P

J φe(− sin θeiα + cos θeiβ)− Fe
J ωe − ∆e

J
dθe
dt = ωe

(11)

where iα and iβ are the stator currents, Eα and Eβ are the stator voltages, and bα and bβ are
the back EMFs given as bα = −Keωe sin θe and bβ = Keωe cos θe, respectively. In the above
equations, R is the stator resistance, L is the synchronous inductance, P is the number of
pole pairs, J is the moment of inertia, Ke is the back EMF constant, φe is the rotor flux, Fe
is the viscous friction, ∆e is the load torque, and θe and ωe are the position and speed of
the motor, respectively. The specifications of the motor parameters are defined in Table 1,
and the functional block diagram of a PMSM is shown in Figure 1. In this work, abrupt,
incipient, and intermittent faults were considered in the speed, current, and voltage sensors
of a PMSM. Higher-order sliding mode (HOSM) observers were designed to generate the
residuals of the speed and voltage sensors, respectively. However, a Luenberger observer
was designed to generate the residuals of the current sensors. The main objective lied in the
multi-sensor fault detection of a PMSM. The second objective was to validate the proposed
method accordingly.

e

E

E

4

5

Auxiliary index
f nf > => faulty 

f nf < => non-faulty 

MRI

MAI

MVI

MEI
DBI

DBI
A Ic

2

1

A B C

Figure 1. Functional block diagram for multi- sensor fault detection in a PMSM; (A): Finite time
observer block; (B): Indices based detections using the residuals; (C): Fault Identification with the AI.
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Table 1. Specifications of the PMSM.

Quantity Symbol Value

PMSM Rating Pw 50 (kW)
Rating speed ωe 628 (rad/s)

Stator inductance L 0.47 (mH)
Stator resistance R 0.79 (Ω)

Magnetic flux linkage Ke 0.2709 (Vs/rad)
Number of poles P 4

3.1. Generation of Speed Sensor Residuals

In this section, stator voltages (Eα, Eβ) and currents (iα, iβ) are considered as known
quantities and speed (ωe) is considered as an unknown quantity.

dîα1

dt
= −R

L
îα1 +

1
L

Eα +
1
L

λ1 (12)

dîβ1

dt
= −R

L
îβ1 +

1
L

Eβ +
1
L

λ2 (13)

where λ1 and λ2 are the higher-order terms of STA and can be written as:{
λ1(t) = −Ks1 ζ1(αs(t))− Ks2

∫ t
0 ζ2(αs(t))dτ

λ2(t) = −Ks1 ζ1(βs(t))− Ks2

∫ t
0 ζ2(βs(t))dτ

(14)

where αs and βs are the selected sliding surfaces and

ζ1(αs(t)) = αs(t) + Ks3dαsc
1
2 (15)

ζ2(αs(t)) = αs(t) +
K2

s4

2
sign(αs(t)) + 1.5dαsc

1
2 (16)

where Ks1 , Ks2 , Ks3 , and Ks4 are properly designed constant terms. Similarly, the terms
ζ1(βs(t)) and ζ2(βs(t)) can be designed by replacing αs with βs. The estimation error
dynamics can be defined as αs(t) = îα−iα and βs(t) = îβ−iβ and can be computed similar
to [37].

Using the estimated back EMF voltages, the speed of the PMSM can be computed as
follows:

ω̂e =
1

Ks

√
b̂2

α + b̂2
β (17)

where b̂α = Ks2

∫ t
0 ζ2(βs(t))dτ and b̂β = Ks2

∫ t
0 ζ2(βs(t))dτ, respectively. The speed sensor

residuals can be computed as ωres = ω̂e −ωe.

3.2. Generation of Voltage Sensor Residuals

In this section, the stator currents (iα, iβ) and speed (ωe) are treated as known quantities
and voltages (Eα, Eβ) are treated as unknown quantities. By using the STA-based HOSM
observers, the stationary voltages are estimated in the α and β axes, respectively.

dîα2
dt = − R

L îα2 − 1
L bα +

1
L λ3(t)

dîβ2
dt = − R

L îβ2 −
1
L bβ +

1
L λ4(t)

(18)

where λ3(t) and λ4(t) are the gains of the STA observer and can be defined as follows:{
λ3(t) = −Kv1 ζ3(V1s(t))− Kv2

∫ t
0 sign(V1s(t))dτ

λ4(t) = −Kv1 ζ4(V2s(t))− Kv2

∫ t
0 sign(V2s(t))dτ

(19)
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with
ζ3(V1s(t) = V1s(t) + Kv3dV1se

1
2 (20)

ζ4(V1s(t) = V1s(t) +
K2

v4

2
sign(V1s(t)) + 1.5dV1se

1
2 (21)

where V1s and V2s are the sliding surfaces, respectively, and Kv1 and Kv2 are the STA gains.
The estimation error dynamics from Equations (11) and (18) can be computed from [37].

The unknown voltages can be estimated as follows:{
Êα = −Kv2

∫ t
0 ζ2(V1s(t)dτ

Êβ = −Kv2

∫ t
0 ζ2(V2s(t)dτ

(22)

Hence, the voltage sensor residuals can be computed as Eαβ, res=Êαβ − Eαβ.

3.3. Generation of Stator Current Sensor Residuals

In this section, the stator currents (iα, iβ) are treated as unknown quantities and speed
(ωe) and voltages (Eα, Eβ) are treated as known quantities. By using the Luenberger
observer, the unknown stator currents are estimated in both the α and β axes. We utilize
the PMSM model in the stationary reference frame as{

dx
dt = A1x(t) + B1u(t)
y(t) = C1x(t)

(23)

where x=[iα, iβ, ωe, θs]T is the state vector. u = [Eα, Eβ, Tl ]
T and y = [ωs, θs] are the voltages

and the input vector, respectively.

A1 =


− R

L 0 1
L Pksinθs 0

0 R
L − 1

L Pkcosθs 0
− P

J φmcosθs − F
J 0 0

0 0 1 0



B1 =


− 1

L 0
1
L

0 1
L 0

0 0 − 1
J

0 0 0


C1 =

[
0 0 1 0
0 0 0 1

]
Th Luenberger observer can be designed as follows:

dx̂
dt

= A1 x̂ + B1u + Lt(y− Cx̂) (24)

where x̂ = [îα, îβ, ω̂e, θ̂s]T is the state estimation vector and Lt is the observer gain matrix.
The current sensor residuals can be computed as iαβ,res = îαβ − iαβ.

4. Results and Performance Evaluation

This section presents the simulation results to evaluate and demonstrate the effective-
ness of the proposed index-based multi-sensor fault detections under different conditions.
The specification of the parameters of the PMSM is mentioned in Table 1. The gain values
of the HOSM observers for residual generations were selected as shown in [38]. The Lu-
enberger observer (LO) gain matrix, Lt, can be selected from [39]. As shown in Figure 1,
A represents the output of the finite time observers. The generated residuals as shown
in Figure 1, B were further used for fault analysis. Hence, the indices MAI, MRI, MVI,
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MEI, DBI1, DBI2, and Ac I were used for multiple sensors’ fault detections. As shown
in Figure 1, C an auxiliary index was used to differentiate the faulty sensor indices ( f )
from the non-faulty sensor indices (n f ). The indices mentioned above can individually
detect the sensor faults. Moreover, to improve the reliability and accuracy of the proposed
method, the AI was used by collectively considering the indices and differentiating it
based on the higher number of either faulty or non-faulty indices. The sensor faults in the
PMSM motor can be classified as abrupt faults, incipient faults, and intermittent faults. In
order to accurately detect the faults in the sensors, index-based analysis was performed by
considering different types of sensor faults.

4.1. No-Fault Scenario

As shown in Figure 2, a speed reference of 1000 rpm was considered. The origi-
nal and the estimated signals of the iα and iβ currents, speed, and Eα, Eβ voltage sen-
sors are shown in Figure 2a(i), 2a(ii), 2a(iii), 2a(iv), and 2a(v), respectively. The cor-
responding residuals for the speed, stator voltages, and stator currents are shown in
Figure 2b(i), 2b(ii), 2b(iii), 2b(iv), and 2b(v), respectively.
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Figure 2. Illustration of current, speed, and voltage sensors’ observers during no-fault scenario;
(a) actual and estimated signals; (b) residuals.

4.2. Multi-Sensor Fault Scenario

In this section, multi-sensor faults are considered in the speed, current, and voltage
sensors of a PMSM motor. In the first case, low-severity α, β abrupt current sensor faults
with 15% load and low speed were introduced at t = 0.739 s and t = 1.52 s, as shown in
Figure 3a(i) and Figure 3a(ii), respectively. The responses of the speed and voltage sensors
are shown in Figure 3a(iii), 3a(iv) and 3a(v), respectively. The residuals of the α-, β-axis cur-
rent, speed, and α-, β-axis voltage are shown in Figure 3b(i), 3b(ii), 3b(iii), 3b(iv), and 3b(v),
respectively. It can be seen that the residuals cross the respective thresholds, indicating
a faulty sensor. The residuals of the speed and α-axis voltage lie below the threshold.
However, the residuals of the β-axis voltage cross the threshold and indicate a fault due
to α- and β-axis current faults. Hence, the residuals were further analyzed using various
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index-based methods to detect the faulty sensors. The index-based methods the moving
root mean square index (MRI), moving-average-based index (MAI), moving-variance-based
index (MVI), moving-energy-based index (MEI), first-order-derivative-based index (DBI1),
second-order-derivative-based index (DBI2), and auto-correlation-based index (Ac I) were
designed to detect the faulty sensors in a multi-sensor fault scenario.
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Figure 3. Illustration of current, speed, and voltage sensors’ observers during an abrupt iα and Iβ

fault scenario at t = 0.739 s and t = 1.52 s; (a) actual and estimated signals; (b) residuals.

As shown in Figure 4a(i), the MRI of the iα crosses its threshold and indicates that
iα is faulty at t = 0.739. However, the iα residual lies below the threshold, as shown in
Figure 4a(ii). The MAI failed to detect the low-severity current faults in the PMSM. The
MVI, MEI, DBI1, and DBI2, however, characterized the faulty condition, as shown in
Figure 4a(iii), 4a(iv), 4a(v), and 4a(vi), respectively, at t = 0.740 s, 0.7402 s, 0.391 s, and
0.7391 s. Using Equation (8), it is clear that n = 5 and n = 1, clearly indicating that the
number of fault detection indices was greater than the indices that failed to detect the faults.
From Figure 4, it can be seen that, due to the fault in the α-axis of the stator current, the
energies of the Iαres and the MRI values were proportionally related, for a constant number
of samples in the specified moving window. Hence, it can be seen that after the fault, the
residual value increased tremendously, leading to an increase in the energy and, hence,
and increase the MRI values also. Similarly, the residuals of iβ were analyzed by using
the index-based methods, as shown in Figure 4b. The depicted MRI for the iβ crosses the
threshold at t = 1.525 s and indicates a faulty iβ sensor, as shown in Figure 4b(i). However,
the depicted MAI lies below the threshold, as shown in Figure 4b(ii). The MVI, MEI, DBI1,
and DBI2 of the iβ residuals lie above the threshold and indicate a faulty iβ sensor, as shown
in Figure 4b(iii), 4b(iv), 4b(v), 4b(vi), respectively, at at t = 1.528 s, 1.526 s, 1.522 s, and
1.522 s. The AI of iβ also shows that f = 5 and n f = 1, hence indicating a faulty Iβ sensor.
Similarly, the indices for the ωe residual are plotted in Figure 5a. The depicted MRI of the ω
touches the threshold slightly, as shown in Figure 5a(i). The indices MAI, MVI, MEI, DBI1,
and DBI2 are shown in Figure 5a(ii), 5a(iii), 5a(iv), and 5a(v), respectively. The residuals
of Eα were also analyzed using the index-based methods of MRI, MAI, MVI, MEI, DBI1,
and DBI2, respectively as shown in Figure 5b(i), 5b(ii), 5b(iii), 5b(iv), 5b(v), and 5b(vi). The
MRI, MAI, MVI, MEI, DBI1, and DBI2 for the residuals of the Eβ voltage sensors lie below
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the threshold, as shown in Figure 6. From the AI analysis, it can be depicted that Eβ is
fault free.
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Figure 4. Analysis of residuals for (a) Iα and (b) Iβ using index-based methods ((i) MRI, (ii) MAI, (iii)
MVI, (iv) MEI, (v) DBI1 and (vi) DBI2) for the Iα and Iβ faults at t = 0.739 s and t = 1.52 .
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Figure 5. Analysis of residuals for (a) ω and (b) Vα using index-based method ((i) MRI, (ii) MAI, (iii)
MVI, (iv) MEI, (v) DBI1 and (vi) DBI2) for the Iα and Iβ faults at t = 0.739 s and t = 1.52 s.

In the second case, a combination of an incipient and an abrupt fault was also intro-
duced in iα and Eβ at t = 1.20 s and 1.60 s, respectively, as shown in
Figure 7a(i) and 7a(v). A load change of 50% was also considered while introducing
the iα and Eβ faults. Due to the faults in both sensors, iβ, Eα, and Eβ also were affected,
as shown in Figure 7a(ii), 7a(iii), and 7a(iv), respectively. The residuals of the iα current
sensor cross the threshold at t = 1.20 s, as shown in Figure 7b(i). Similarly, the residuals of
iβ, ωe, and Eα are shown in Figure 7b(ii), 7b(iii), and 7b(iv), respectively. The Eβ residual
crosses the threshold and indicates a faulty Eβ sensor, as shown in Figure 7b(v). A fur-
ther analysis was performed to detect the actual faulty sensor by using the index-based
analysis methods.
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Figure 6. Analysis of residuals for Vβ using index-based method ((i) MRI, (ii) MAI, (iii) MVI, (iv) MEI,
(v) DBI1 and (vi) DBI2) for the Iα and Iβ fault at t = 0.739 s and t = 1.52 s.
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Figure 7. Illustration of current, speed, and voltage sensors’ observers during the incipient iα fault
and abrupt Vβ fault scenario at t = 1.256 s and t = 1.60 s, respectively; (a) actual and estimated signals;
(b) residuals.

An interturn fault in the iα sensor can lead to a high fault current in the shorted circuit,
which can produce excessive heat and ripples in the torque. The MRI of the iα sensor
indicates a fault at t = 1.258 s, as shown in Figure 8a(i). However, the MAI lies below
the threshold, and hence, it was unable to detect the iα fault, as shown in Figure 8a(ii).
The depicted MVI touches the threshold, indicating a fault at t = 1.257 s, as shown in
Figure 8a(iii). The MEI, DBI1, and DBI2 of the iα residual increase and cross the threshold
at 1.257 s, 1.2563 s, and 1.2563 s, as shown in Figure 8a(iv), 8a(v), and 8a(vi), respectively.
The AI was calculated to check the faulty sensor, and it can be seen that n = 5 and n f = 1;
hence, iα was considered as a faulty sensor. The index-based analysis for the iβ sensor
is shown in Figure 8b. The indices (MRI, MAI, MVI, MEI, DBI1, and DBI2 lie below
the selected threshold, as shown in Figure 8b(i), 8b(ii), 8b(iii), 8b(iv), 8b(v), and 8b(vi)),
respectively.
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Figure 8. Analysis of residuals for (a) Iα and (b) Iβ using index-based methods ((i) MRI, (ii) MAI, (iii)
MVI, (iv) MEI, (v) DBI1 and (vi) DBI2) during the incipient iα fault and abrupt Vβ fault scenario at
t = 1.256 s and t = 1.60 s, respectively.

The speed (ωs) residual was also analyzed by using the index-based methods, as
shown in Figure 9a. The MRI, MAI, MVI, MEI, DBI1, and DBI2 lie below the threshold, as
shown in Figure 9a(i), 9a(ii), 9a(iii), 9a(iv), 9a(v), and 9a(vi), respectively. The analysis of
the Eα residual was also performed using the index-based methods. The depicted MRI,
MAI, MVI, MEI, DBI1, and DBI2 lie below the selected threshold, which indicates that Eβ

is non-faulty, as shown in Figure 9b(i), 9b(ii), 9b(iii), 9b(iv), 9b(v), 9b(vi), respectively.
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Figure 9. Analysis of residuals for (a) W and (b) Vα using index-based method ((i) MRI, (ii) MAI,
(iii) MVI, (iv) MEI, (v) DBI1 and (vi) DBI2 ) for incipient Iα fault and abrupt Vβ fault at t = 1.256 s and
t = 1.60 s.

However, the calculated MRI for the Eβ residual surpasses the threshold at t = 1.60 s,
indicating a faulty sensor, as shown in Figure 10i. The MAI and MVI, however, stay
below the threshold and discriminate the change as a healthy Eβ sensor, as shown in
Figure 10ii and 10iii, respectively. However, as shown in Figure 10iv, the MEI for the Eβ

residual slightly exceeds the threshold at t = 1.62 s and indicates that Eβ is faulty. The
DBI1 and DBI2 of the Eβ sensor residual also increase and cross the threshold at 1.605 s
and 1.605 s, as shown in Figure 10v and 10vi, respectively. The AI was thus calculated to
further analyze the index-based methods. It can be seen that n = 4 and n f = 2; hence, Eβ

was considered as a faulty sensor.



Sensors 2022, 22, 7988 13 of 19

Threshold
(i)

0 

0.6

1.2
M

R
I Threshold

(ii)

0 

0.6

1.2

M
A

I

Threshold
(iii)

0 

0.6

1.2

M
V

I

(iv)

0 0.6 1.2 1.8
Time(s)

0 

0.6

1.2

M
E

I

(v)

0 0.6 1.2 1.8
Time(s)

0 

0.6

1.2

D
B

I 1

(vi)

0 0.6 1.2 1.8
Time(s)

0 

0.6

1.2

D
B

I 2

Figure 10. Analysis of residuals for Vβ using index-based method ((i) MRI, (ii) MAI, (iii) MVI, (iv)
MEI, (v) DBI1 and (vi) DBI2) for incipient Iα fault and abrupt Vβ fault at t = 1.256 s and t = 1.60 s.

In the third case, the effect of the speed sensor fault in addition to the current sensor
fault was analyzed for accurate fault detections. In this regard, an incipient fault was
introduced in iα sensor and an abrupt fault in ωe sensor at t = 1.25 s and t = 1.50 s,
respectively, as shown in Figure 11. A random noise of 20% was also introduced in the
iα sensor. The actual and the estimated states are shown in Figure 11a, and the residuals
are shown in Figure 11b, respectively. The MRI, MVI, MEI, DBI1, and DBI2 lie above
the threshold and indicate a faulty sensor at 1.26 s, 1.28 s, 1.48 s, 1.253 s, and 1.253 s, as
shown in Figure 12a(i), Figure 12a(iii), Figure 12a(iv), Figure 12a(v), and Figure 12a(vi),
respectively. However, the MAI values lie below the threshold, as shown in Figure 12a(ii).
Furthermore, it can be seen that f = 5 and n f = 1. Hence, the iα sensor was concluded
to be faulty. Similarly for the iβ index analysis, all the indices, the MRI, MAI, MVI, MEI,
DBI1, and DBI2, lie below the threshold, as shown in Figure 12b. Hence, iβ is not faulty.
The analysis of ω was also performed in a similar manner.
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Figure 11. Illustration of current, speed, and voltage sensors’ observers during the 20% noisy incipient
iα fault and abrupt We fault scenario at t = 1.25 s and t = 1.50 s, respectively; (a) actual and estimated
signals; (b) residuals.
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Figure 12. Analysis of residuals for (a) iα and (b) iβ using index-based method ((i) MRI, (ii) MAI,
(iii) MVI, (iv) MEI, (v) DBI1 and (vi) DBI2) for the 20% noisy incipient iα fault and abrupt We fault
scenario at t = 1.25 s and t = 1.50 s, respectively.

As shown in Figure 13a, it can be seen that the MRI, MAI, MVI, MEI, DBI1, and
DBI2 cross the threshold, and hence, the abrupt ω fault can be detected, as shown in
Figure 13a(i–vi). However, in the case of index analysis method application for the Eα

sensor, the MRI showed a slow increase in its values and slightly touches the threshold, as
shown in Figure 13b(i). The other indices still remain below the threshold. Further utilizing
the AI analysis, it can be seen f = 1 and n f = 5, which implies that f < n f ; hence Eβ

is non-faulty. Similarly, the index method for Eβ sensor analysis is shown in Figure 14.
The calculated AI shows that f = 1 and n f = 5, and hence, f < n f indicates that Eβ is
fault free.
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Figure 13. Analysis of residuals for (a) ωe and (b) Eα using index-based method ((i) MRI, (ii) MAI,
(iii) MVI, (iv) MEI, (v) DBI1 and (vi) DBI2) for the 20% noisy incipient iα fault and abrupt ωe fault
scenario at t = 1.25 s and t = 1.50 s, respectively.
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Figure 14. Analysis of residuals for Eβ using index-based method ((i) MRI, (ii) MAI, (iii) MVI, (iv)
MEI, (v) DBI1 and (vi) DBI2) for the 20% noisy incipient iα fault and abrupt ωe fault scenario at
t = 1.25 s and t = 1.50 s, respectively.

To show the efficacy of the proposed method, an incipient fault in iα sensor was
considered at t = 1.25 s, and and intermittent fault was considered in the ωe sensor, with
the first fault occurring at t = 0.5 s and ending at t = 0.8 s. The second intermittent fault
occurred at t = 1.5 s and ended at t = 1.8 s, as shown in Figure 15a. The illustration of
the HOSM observer for the iα and ωe faults is shown in Figure 15b. The Ac I-based index
was calculated to analyze the residuals of the faulty sensors. Using this Ac I-based method,
it can be seen that the incipient fault in the iα sensor failed to be detected, as shown in
Figure 16i, whereas the intermittent faults in the ωe sensor were detected with a delay, as
shown in Figure 16iii.
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Figure 15. Illustration of current, speed, and voltage sensors’ observers during the incipient iα fault
at t = 1.25 s and intermittent Wω fault scenario at t = 0.5 s and t = 1.50 s, respectively; (a) actual and
estimated signal; (b) generated residuals.
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Figure 16. Ac I-based analysis for current ((i) Iα, (ii) Iβ), speed ((iii) ωe), and voltage sensors’ ((iv)
Vα, (v) Vβ) residuals during the incipient iα fault at t = 1.25 s and intermittent Wω fault scenario at
t = 0.5 s and t = 1.50 s, respectively.

5. Discussion

In this research, we took into account both sudden and incipient sensor faults in
industrial drives in order to perform multi-sensor fault detection. Different conditions were
considered by sequentially introducing the faults in each sensor. Indices (MRI, MAI, MVI,
MEI, DBI1, and DBI2) were designed to detect the faults by selecting a particular threshold.
The threshold for the indices was designed by using Otsu-based thresholding techniques.

Different cases such as low-severity current faults, sudden speed changes, and changes
in the load were considered on the basis of index analysis for detecting the single- and
multi-sensor faults. As shown in Figure 4a, during low-severity iα and iβ faults, the MRI,
MVI, and MEI detected the fault after a certain delay. However, the indices DBI1 and
DBI2 detected the faulty iα sensor with a minimum delay compared to the other indices.
Similarly, in Figure 4b, the MRI, MVI, and MEI experienced a certain delay in detecting the
iβ fault. On the other hand, DBI1 and DBI2 detected the faulty iβ sensor immediately after
the fault’s occurrence. The indices for ωe, Eα, and Eβ did not show any sudden change and
indicated fault-free sensor data, by holding the property of the auxiliary index.

In Figure 8a, due to the load change in the drive, the MRI, MVI, MEI, DBI1, and DBI2
detected the fault of the iα sensor data. The indices DBI1 and DBI2, however, detected the
fault with a minimum delay compared to the other indices. The Eβ sensor fault in Figure 8
also shows a variation and crosses the respective thresholds when the MRI, MEI, DBI1, and
DBI2 were utilized. The auxiliary index (AI) plays a vital role in selecting the accurate fault
without discriminating the outputs of the indices.

A random noise of 20% was also introduced in the iα sensor, as shown in Figure 11a(i).
Due to noise in the sensors, the MRI value detected the iα sensor fault at t = 1.26 s. The MVI
also detected the fault at t = 1.30 s with the maximum delay. The DBI1 and DBI2 detected
the noisy iα sensor at t = 1.26 s and t = 1.262 s, respectively. As shown in Figure 13, all
seven indices, MRI, MAI, MVI, MEI, DBI1, DBI2, and Ac I, detected the abrupt speed (ωe)
fault. As shown in Figure 17, the accuracies of the indices were calculated, and it can be
seen that the Ac I had the lowest accuracy for various fault conditions.
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Figure 17. Accuracies of the indices used in the proposed method.

Similarly, the dependability of the indices was calculated for the comparison of all the
indices under various conditions, as shown in Figure 18.
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Figure 18. Dependability of the indices used in the proposed method.

The indices were calculated for all five sensors under three different cases mainly,
low-severity current faults, sensor faults during sudden load changes, and impacts of
sensor speed changes along with other sensors. A random noise of more than 20% was also
tested in the sensors for multiple fault detections. However, due to increase in the noise,
the MRI increased and crossed the threshold, indicating a false faulty sensor. The proposed
index method can be improved by using a low-pass filter for signals with noises greater
than 20%, as the DBI1 and DBI2 became more sensitive to noise, compromising the fast
detection property compared with other indices. Hence, in this case, adaptive thresholds
can also be incorporated to prevent the system from false faulty sensor signal detection.

6. Conclusions

In this work, different types of sensor faults were analyzed for fault detection by
using multiple index-based methods for a healthy drive. Seven index-based methods were
analyzed for the identification of the changes that occurred in the faulty sensors and the
non-faulty sensors. The results showed that the MRI, MEI, MVI, DBI1, and DBI2 were able
to detect the low-severity faults. The combination of both incipient current and an abrupt
voltage fault during the load change could be detected by the MRI, MEI, DBI1, and DBI2
accurately. The seven index-based methods could also be used to identify variations in the
speed sensor when they were combined with a fault in the current sensor. A combination
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of an intermittent fault in the speed sensor and an incipient fault in the beta-axis of the
current sensor was also simulated, and the index-based methods were able to identify the
faulty sensors. The simulated results conducted on various fault scenarios showed that
index-based analysis can be employed for fast fault detection. Future work will focus on
experimental validation of the proposed method on a PMSM motor.
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