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Abstract: sEMG-based gesture recognition is useful for human–computer interactions, especially for
technology supporting rehabilitation training and the control of electric prostheses. However, high
variability in the sEMG signals of untrained users degrades the performance of gesture recognition
algorithms. In this study, the hand posture recognition algorithm and radar plot-based visual
feedback training were developed using multichannel sEMG sensors. Ten healthy adults and one
bilateral forearm amputee participated by repeating twelve hand postures ten times. The visual
feedback training was performed for two days and five days in healthy adults and a forearm amputee,
respectively. Artificial neural network classifiers were trained with two types of feature vectors: a
single feature vector and a combination of feature vectors. The classification accuracy of the forearm
amputee increased significantly after three days of hand posture training. These results indicate
that the visual feedback training efficiently improved the performance of sEMG-based hand posture
recognition by reducing variability in the sEMG signal. Furthermore, a bilateral forearm amputee
was able to participate in the rehabilitation training by using a radar plot, and the radar plot-based
visual feedback training would help the amputees to control various electric prostheses.

Keywords: surface electromyography; forearm amputee; hand posture; visual feedback training;
pattern recognition; artificial neural network

1. Introduction

Surface electromyography (sEMG) records the electrical biosignals generated by the
action potentials that occur during the contraction of muscle fibers [1]. Various information
in sEMG signals has been used to estimate and diagnose a user’s condition or recognize a
user’s motion and intention [2]. In particular, sEMG-based gesture recognition was sug-
gested to be a promising technology for human–computer interactions (HCIs) [3]. Indeed,
sEMG-based gesture recognition technology has already been applied to both healthy
adults and various patients for rehabilitation training and control of electric prostheses [4].

Electric prostheses have been developed to improve patients’ quality of life following
a limb amputation with the importance of their control [5]. An sEMG-based control system
is the most direct protocol for controlling electric prostheses, and there exist two different
types: non-pattern recognition algorithms and pattern recognition algorithms [6,7]. Non-
pattern recognition algorithms using the magnitude of the sEMG signal and threshold
values have the advantages of ease of use and fast response time, but they work for only a
few hand gestures. As the number of recognized gestures for a non-pattern recognition
algorithm increases, it becomes increasingly slow and difficult to use due to its complexity
and the multiple stages involved in muscle contractions [8]. Therefore, many previous stud-
ies have developed pattern recognition algorithms to classify various gestures. However, it
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has been reported that the muscles of the amputees were lost or weakened, depending on
the surgery and the period of amputation [9]. The differences in the amputees’ muscles
increase the variability in sEMG signals, i.e., different signal patterns appear even when
the same gestures are repeated, and that variability in sEMG signals critically decreases the
classification performance [10]. These results indicate that user training is as important as
optimizing the recognition system.

1.1. Related Work
1.1.1. sEMG-Based Gesture Recognition

Many studies have been performed to recognize hand gestures using multichannel
sEMG sensors. Emayavaramban et al. developed a recognition algorithm for twelve hand
gestures by using five sEMG sensors on the forearm [11]. sEMG signals were measured
in ten healthy adults, and the best classification accuracy (95.1%) appeared with a pattern
net neural network classifier and an autoregressive Burg feature vector. Shi et al. used
two-channel sEMG sensors to measure signals from thirteen healthy adults and develop a
recognition algorithm for four hand gestures to control a bionic hand [12]. MAV and WL
were selected as the feature vectors with the best classification accuracy (93.8%) with the
k-nearest neighbor (k-NN) classifier. However, it was difficult to apply those algorithms
to amputees because the sEMG signals were measured in healthy adults. Adewuyi et al.
developed a hand gesture recognition algorithm by using multichannel sEMG sensors
on sixteen healthy adults and four partial hand amputees [13]. Four classifiers (linear
discriminant analysis [LDA], quadratic discriminant analysis, linear neural network, and
multilayer perceptron artificial neural network [MLPANN]) and five feature sets (time
domain and autoregressive, time domain, sequential forward searching [SFS], separability
index, and all feature vectors) were used to recognize the hand gestures. The healthy adults
showed fewer classification errors than the amputees, and the combination of the MLPANN
classifier and SFS feature vector was the best option for recognizing the hand gestures of
all subjects. Betthauser et al. measured sEMG signals using eight sEMG sensors on eight
healthy adults and two forearm amputees to recognize five hand and wrist gestures [14].
Seven classifiers (LDA, artificial neural network [ANN], regularized LDA, support vector
machine [SVM], non-negative least squares, sparse representation classification [SRC], and
extreme learning machine with adaptive SRC [EASRC]) were trained with three feature sets.
The classification performances of the healthy adults were higher than those of amputees,
and the EASRC classifier showed the fewest classification errors. Most previous studies
suggested that the classifier and feature vectors be optimized using multichannel sEMG
sensors to improve gesture recognition. In addition, the classification performance in the
previous studies was better in healthy adults than in amputees. Variability in the sEMG
signal was increased by muscle loss in amputees, which is a critical factor that decreases the
performance of sEMG-based gesture recognition [10]. For these reasons, rehabilitation and
user training are as important to patients as improvements in the hardware and software
of sEMG-based gesture recognition devices.

1.1.2. Rehabilitation Training for the Amputees

Previous clinical research used two types of rehabilitation training for amputees:
(1) mirror therapy, which trains both the amputated side and the intact side at the same
time; and (2) mental imagery, in which the amputee imagines movements without actually
moving the residual limb [15]. However, neither of those procedures allows the subjects to
check their movements themselves in real time. Few studies have quantitatively examined
the effect of rehabilitation using mirror therapy or mental imagery [16]. In addition, patients
with bilateral amputations cannot participate in rehabilitation with mirror therapy because
they lack an intact side. Powell et al. tested repetitive training with sixteen sEMG sensors
on four amputees to improve the consistency and distinguishability of nine hand and wrist
gestures [17]. The amputees repeated the gestures in a random order by following the
image of a virtual prosthesis on a screen. That study reported that classification accuracy
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for the amputees improved from 77.5% to 94.4% during ten days of training. Rehabilitation
training with a screen could be used for both unilateral and bilateral amputees because only
the amputated side was involved in the rehabilitation. However, that rehabilitation training
was still inefficient, so a way of training that improves the gestures on the amputated side
is still needed.

In this study, sEMG-based ANN classifiers were developed to recognize the hand
postures for the control of myoelectric prostheses. In addition, the radar plot-based visual
feedback training was suggested to improve the performance of hand posture recognition
considering the bilateral forearm amputee. The sEMG signals of healthy adults and a
bilateral forearm amputee were measured by multichannel sEMG sensors. Radar plot-based
visual feedback training, which can be applied to bilateral amputees, was performed by the
healthy adults for two days and by the forearm amputee for five days, respectively. Those
sEMG signals were then used to develop ANN classifiers that could be used with two types
of feature vectors. t-distributed stochastic neighbor embedding (t-SNE) and the silhouette
coefficient (SC) were used to analyze changes in the variability of the sEMG signals during
posture training. In addition, classification accuracy was determined according to the type
of feature vector and the hand postures. The classification accuracies of the healthy adults
and a forearm amputee increased by the visual feedback training and optimized feature
vectors. In particular, the visual feedback training was more effective than the optimization
of the feature vectors to improve the classification performance of the forearm amputee.

2. Materials and Methods
2.1. Participants

Ten healthy adults (HA, seven males and three females, 24.1 ± 1.2 years) and one bi-
lateral forearm amputee (FA, male, 45 years) were recruited to participate in this study. The
healthy adults had no neurological or musculoskeletal disorders. The amputee had no cog-
nitive problems and had lost both his left and right forearms 21 years before participation
in this study. The forearm amputee used a cosmetic prosthesis on the right forearm, which
was shorter than the left side, and an electric prosthesis on the left forearm. At the time of
this study, he had used a three-finger electric prosthesis with two degrees of freedom (DoFs)
for 20 years and a five-finger electric prosthesis with multiple DoFs for 18 months. All
participants were fully informed of the risks associated with the experiments, and they gave
their written consent to participate in this study. The experimental procedures for healthy
adults and a forearm amputee were approved by the Yonsei University Mirae Institutional
Review Board (1041849-202002-BM-018-02) and the Institutional Review Board of the Korea
Orthopedics & Rehabilitation Engineering Center (RERI-IRB-210915-2), respectively.

2.2. Equipment

A commercial sEMG system, Delsys Trigno wireless sEMG system (Delsys Inc., Natick,
MA, USA), was used to measure sEMG signals at a sampling rate of 1926 Hz with the
amplification factor of 909 in the analog mode (Figure 1a) [18]. Baseline hand dynamometers
(Fabrication Enterprises, Inc., White Plains, NY, USA) were used to minimize the effects
of muscle fatigue and the confounding factor of grasp force (Figure 1b) [19]. The bilateral
forearm amputee, who could not use the hand dynamometers, performed the hand postures
with their preferred power, and the radar plot from the sEMG signal was used to monitor
their present power.

The forearm muscles used for sEMG-based hand posture recognition were selected
from previous studies [12,20–24]. Nine sEMG sensors were positioned on the healthy
adults’ muscles: flexor digitorum superficialis (FDS), extensor digitorum (ED), extensor
digitorum minimi (EDM), extensor pollicis (EP), flexor carpi radialis (FCR), flexor carpi
ulnaris (FCU), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), and brachioradi-
alis (BR). Magnetom Skyra MRI (Siemens Healthineers AG, Erlangen, Germany) recording
and 3D reconstruction (Mimics Research 20.0, Materialise NV, Leuven, Belgium) were
performed at Chungnam National University Hospital to analyze the residual muscles of
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the amputee, and eight forearm muscles were selected on the amputee: BR, FCR, ECR, ED,
ECU, flexor digitorum profundus (FDP), FDS, and FCU (Figure 2). The muscle bellies were
found for the right place of the electrodes based on the human anatomy, the amputee’s 3D
reconstruction data, and palpation.
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Figure 2. The amputated limb of the forearm amputee: (a) 3D reconstruction data of the forearm
amputee, (b) position of the sEMG sensors on the forearm amputee.

A graphic user interface (GUI) was developed using LabVIEW (National Instruments
Corp., Austin, TX, USA) for real-time monitoring and recording of the sEMG signals. The
GUI was designed with a radar plot (Figure 3), and the radar plot was useful to directly
visualize the patterns of sEMG signals. The participants controlled their muscle contractions
by following the displayed sEMG patterns for each hand posture.

2.3. Experimental Protocol

Twelve hand postures (Figure 4) were suggested in the previous study considering
the hand function and the frequency of use in daily life [25–36]. All participants performed
each hand posture for five seconds in a random order during one session. The sessions
were repeated ten times each training day. The healthy adults used hand dynamometers
to maintain 20% of their maximum voluntary contraction, and the experiments were
performed for two days. On the first day of the experiment (the untrained session), the
participants performed the postures without visual feedback training. On the second day of
the experiment (the trained session), the sEMG signals were measured during the sessions
with the radar plot-based visual feedback training. Participants tried to control the patterns
in the sEMG signals to match those on the radar plot. The forearm amputee participated in
the experiments for five days because they needed more time for hand posture training to
control the pattern of the sEMG signal. For the amputee, the first day of the experiment
was defined as the untrained session, and the other days of the experiment were defined as
trained sessions.
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Sensors 2022, 22, x FOR PEER REVIEW 5 of 20 
 

 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 3. The radar plots of the forearm amputee on LabVIEW GUI: (a) rest, (b) spread, (c) finger 

pointing, (d) scissor sign, (e) V sign, (f) O.K. sign, (g) thumb up (hook), (h) cylindrical grasp, (i) 

spherical grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch. 

2.3. Experimental Protocol 

Twelve hand postures (Figure 4) were suggested in the previous study considering 

the hand function and the frequency of use in daily life [25–36]. All participants per-

formed each hand posture for five seconds in a random order during one session. The 

sessions were repeated ten times each training day. The healthy adults used hand dy-

namometers to maintain 20% of their maximum voluntary contraction, and the experi-

ments were performed for two days. On the first day of the experiment (the untrained 

session), the participants performed the postures without visual feedback training. On 

the second day of the experiment (the trained session), the sEMG signals were measured 

during the sessions with the radar plot-based visual feedback training. Participants tried 

to control the patterns in the sEMG signals to match those on the radar plot. The forearm 

amputee participated in the experiments for five days because they needed more time 

for hand posture training to control the pattern of the sEMG signal. For the amputee, the 

first day of the experiment was defined as the untrained session, and the other days of 

the experiment were defined as trained sessions. 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 4. Hand postures for the sEMG-based posture recognition: (a) rest, (b) spread, (c) finger 

pointing, (d) scissor sign, (e) V sign, (f) O.K. sign, (g) thumb up (hook), (h) cylindrical grasp, (i) 

spherical grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch. 

  

Figure 4. Hand postures for the sEMG-based posture recognition: (a) rest, (b) spread, (c) finger
pointing, (d) scissor sign, (e) V sign, (f) O.K. sign, (g) thumb up (hook), (h) cylindrical grasp,
(i) spherical grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch.

2.4. Feature Vectors and Classifier

sEMG signals were filtered using the fourth-order Butterworth bandpass filter with a
bandwith of 10–500 Hz, and the filtered sEMG signals were used to calculate the feature
vectors. As suggested in a previous study [37], the mean absolute value (MAV) and
Hudgins’ set (MAV, waveform length [WL], zero crossing [ZC], and slope sign change
[SSC]) were selected as the time-domain feature vectors. The previous studies reported that
these feature vectors were useful to provide various information, such as MAV and WL for
amplitude information and ZC and SSC for frequency information in the time domain for
the pattern recognition algorithms [25,37–43]. The threshold values used to calculate the
ZC and SSC feature vectors were selected following the optimization method of a previous
study [21]. Table 1 shows the formulas for the feature vectors.

The ANN classifiers were developed using the Matlab software (Mathworks, Inc.,
Natick, MA, USA). Ten session data of each participant were divided into the training
sessions and the testing sessions. The ANN classifiers were trained and validated using the
automatically partitioned data within the training session data (yellow boxes in Figure 5) in
the Deep Learning Toolbox of Matlab. The recognition performances of the ANN classifiers
were evaluated following the ten-fold cross-testing protocol with the remained session data
(blue boxes in Figure 5). The number of training data ranged from one session (TRN1) to



Sensors 2022, 22, 7984 6 of 19

nine sessions (TRN9) among the ten session data, and the remaining session data were
used for the testing of the classifier.

Table 1. Formulas for the feature vectors.

N : window size, i : data sample, EMGi: sEMG signal

MAV = 1
N

N
∑

i=1
|EMGi|

ZC =
N−1
∑

i=1
[ f (xi × xi+1) ∩ |xi − xi+1| ≥ threshold]

SSC =
N−1
∑

i=2
[ f [(xi − xi−1)× (xi − xi+1)]]

WL =
N−1
∑

i=1
|EMGi+1 − EMGi| f (x) =

{
1, i f x ≥ threshold
0, otherwise

Threhold value = R× RMSsEMG at rest, R = 0.0:0.5:10.0
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2.5. Performance Evaluation

t-SNE and the SC were used to analyze changes in the sEMG signals according to
the radar plot-based visual feedback training. Most previous studies used a principal
component analysis (PCA) to reduce the dimensions of the data or feature vectors [44–47].
A PCA is an unsupervised linear transformation algorithm that provides new features by
determining the maximum variance of the data, and it can visualize data as a scatterplot [48].
However, a PCA is difficult to apply to nonlinear data processing and is affected by the
scale of data when selecting the maximum variance axis [49]. For these reasons, some
previous studies suggested using t-SNE, which uses Student’s t distribution to compute
the similarity between two points in a low-dimensional space, to solve the problems of the
PCA [50]. t-SNE is effective for nonlinear data processing and shows better visualization
results than a PCA. In the sEMG signals, the number of dimensions was decided by the
number of channels in the sEMG system. Furthermore, sEMG signals depend on the muscle
size and power. Therefore, in this study, the t-SNE function in Matlab software was used
to reduce the dimensions of multichannel sEMG data and to visualize clusters of sEMG
signals. In addition, the SC was calculated to quantify changes in the sEMG signal clusters
according to the visual feedback training.

The SC quantifies data clustering by comparing inter- and intracluster similarity [51].
In this study, the Mahalanobis distance was used to calculate the similarity of a cluster by
considering the relationships within the multivariable data [52]. The calculation of the SC
is as follows:

a(i) =
1

|CI | − 1 ∑j∈CI , j 6=i d(i, j) ; b(i) = min
J 6=I

1∣∣CJ
∣∣ ∑j∈CJ

d(i, j) (1)

s(i) =

{ b(i)−a(i)
max{a(i), b(i)} , i f |CI | > 1

0, i f |CI | = 1
(2)
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SC = max
1≤J≤K

š(J) (3)

where a(i) is the average distance between data points within a cluster (intracluster similar-
ity). CI is the number of sample data points in the Ith cluster, and d(i, j) was the distance
between the ith data point and the jth data point. b(i) was the average distance between
cluster CI and cluster CJ and indicates intercluster similarity. s(i) was the Silhouette value
for the specific data in a cluster, and š(J) was the average Silhouette value for the Jth cluster.
The SC was defined as the maximum Silhouette value in each cluster. A high SC indicates
good clustering, with high intracluster similarity and low intercluster similarity, and the
SC range is from −1 to 1.

The performance of sEMG-based hand posture recognition in healthy adults and
a forearm amputee was evaluated using classification accuracy and confusion matrixes.
Significant differences (p < 0.05) between the classification performance results were sta-
tistically analyzed using the Kruskal–Wallis H test and pairwise comparison in IBM SPSS
Statistics (IBM, Corp., Armonk, NY, USA).

3. Results
3.1. t-SNE and SC with Visual Feedback Training

In this study, the effects of radar plot-based visual feedback training on variability in
the sEMG signal were visually analyzed using t-SNE and quantified using the SC.

The t-SNE results show that the clusters of both the healthy adults and the forearm
amputee were improved by the visual feedback training (Figure 6, Figure 7 and Figures
S1–S9). In particular, the sEMG signals of the forearm amputee were well-clustered after
Day 3, compared with those from Days 1 and 2.
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Figure 6. t-SNE visualization of variability in the sEMG signals of a healthy adult (subject 1): (a) Day
1, (b) Day 2.

The SCs of all participants increased with the visual feedback training, and these
results correlate well with the t-SNE visualizations (Figure 8). Most of the healthy adults
had SCs higher than zero before the visual feedback training (Day 1: 0.000021 ± 0.000115),
and those SCs were improved by the hand posture training (Day 2: 0.0001 ± 0.000159). In
the forearm amputee, the SCs were higher than zero after Day 3 (Day 1: −0.000198, Day 2:
−0.000033, Day 3: 0.000004, Day 4: 0.000018, Day 5: 0.000010).
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3.2. Classification Accuracy

Tables 2 and 3 show the classification accuracy with MAV only and Hudgins’ feature
vector set. The classification accuracies of both the healthy adults and the forearm amputee
improved as the number of training sessions increased. Significant improvements in the
classification performance appeared after six and five training sessions in the healthy adults
and forearm amputee, respectively.

Table 2. Classification accuracy with visual feedback training using MAV only (bold: p < 0.05).

Classification Accuracy (%): Mean (Standard Deviation)

TRN1 TRN2 TRN3 TRN4 TRN5 TRN6 TRN7 TRN8 TRN9

Healthy
Adults

Day 1 70.6 (7.7) 77.2 (6.9) 80.1 (6.3) 82.0 (6.2) 83.7 (5.7) 85.4 (5.5) 85.9 (6.1) 86.8 (6.3) 87.7 (6.5)

Day 2 75.0 (6.8) 81.7 (6.8) 84.8 (6.8) 86.4 (6.4) 87.6 (6.0) 88.4 (5.9) 89.1 (5.7) 89.9 (5.4) 90.3 (4.7)

Forearm
Amputee

Day 1 28.1 (4.3) 30.4 (4.6) 31.4 (3.0) 30.8 (2.1) 31.8 (2.3) 31.3 (2.7) 30.7 (3.7) 31.2 (6.0) 32.8 (5.7)

Day 2 34.5 (4.9) 36.9 (5.0) 40.3 (4.2) 40.3 (2.6) 42.0 (2.1) 43.6 (3.6) 44.5 (4.8) 44.5 (9.1) 48.3 (9.5)

Day 3 45.3 (3.8) 48.6 (4.7) 50.0 (3.9) 49.2 (5.4) 49.4 (4.6) 51.8 (4.8) 54.1 (2.2) 56.4 (3.9) 59.7 (10.6)

Day 4 67.0 (3.1) 70.0 (2.3) 68.3 (3.0) 71.9 (3.4) 72.1 (2.6) 74.0 (3.2) 75.5 (4.2) 78.4 (5.4) 80.7 (11.9)

Day 5 58.5 (5.0) 61.3 (5.5) 61.7 (4.8) 62.2 (6.1) 63.9 (2.9) 65.2 (4.1) 70.3 (3.2) 72.0 (5.4) 76.5 (11.1)

Table 3. Classification accuracy with visual feedback training using Hudgins’ set (bold: p < 0.05).

Classification Accuracy (%): Mean (Standard Deviation)

TRN1 TRN2 TRN3 TRN4 TRN5 TRN6 TRN7 TRN8 TRN9

Healthy
Adults

Day 1 75.2 (7.1) 81.5 (5.8) 84.4 (4.8) 86.1 (4.8) 87.5 (4.6) 88.9 (4.4) 89.7 (4.4) 90.9 (4.3) 91.2 (4.3)

Day 2 82.5 (6.7) 87.4 (5.7) 89.7 (5.1) 91.2 (4.8) 92.1 (4.6) 92.9 (4.3) 93.5 (4.3) 94.3 (4.0) 95.1 (3.4)

Forearm
Amputee

Day 1 29.4 (4.2) 31.2 (4.5) 32.2 (3.6) 32.2 (2.6) 32.1 (2.4) 32.5 (2.4) 31.2 (3.5) 32.0 (7.2) 30.9 (8.9)

Day 2 36.3 (4.2) 41.0 (4.5) 43.0 (3.5) 45.2 (2.7) 45.5 (1.8) 46.9 (4.7) 47.7 (5.0) 47.3 (7.3) 49.5 (9.0)

Day 3 46.3 (3.9) 50.8 (4.9) 52.7 (3.9) 53.2 (4.1) 55.8 (2.6) 56.5 (3.9) 58.8 (3.9) 60.2 (3.1) 64.3 (9.8)

Day 4 71.0 (4.4) 72.5 (3.0) 72.7 (2.7) 74.1 (3.9) 75.3 (3.1) 75.9 (3.4) 78.2 (4.0) 81.1 (5.7) 85.5 (9.8)

Day 5 64.8 (4.0) 68.2 (3.5) 69.3 (4.2) 70.6 (5.8) 72.6 (6.0) 74.9 (5.3) 77.9 (3.1) 80.1 (5.7) 84.2 (6.7)
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The radar plot-based visual feedback training effectively increased the classification
accuracy of all participants (Figure 9). In the healthy adults, visual feedback training
improved the accuracy of the ANN classifiers from 87.7 ± 6.5% to 91.2 ± 4.3% and from
90.3 ± 4.7% to 95.1 ± 3.4% when using MAV only and Hudgins’ set, respectively. However,
the classification accuracy did not differ significantly between Day 1 and Day 2. For
the forearm amputee, the classification accuracy changed from 32.8 ± 5.7% (Day 1) to
76.5 ± 11.1% (Day 5) with MAV only and from 30.9 ± 8.9% (Day 1) to 84.2 ± 6.7% (Day 5)
with Hudgins’ set. The forearm amputee showed significant improvements in classification
accuracy on Day 3 and Day 4 with MAV only and Hudgins’ set, respectively. In addition,
most of the classification results, excluding Day 1 of the forearm amputee, show that
the classification accuracies with Hudgins’ set were higher than those with MAV only.
However, a significant difference on Day 2 occurred only for the healthy adults. The
classification results with MAV only and Hudgins’ set did not differ significantly for the
forearm amputee.
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Figure 9. Classification accuracy according to the feature vectors and visual feedback training
(*: p < 0.05).

3.3. Confusion Matrix

Figures 10 and 11 are the confusion matrixes showing the classification accuracy
for each hand posture in the healthy adults and forearm amputee, respectively. With
MAV only, the healthy adults showed high misclassification rates for cylindrical grasp
vs. spherical grasp (14.5 ± 0.2%) and palmar pinch vs. tip pinch (15.0 ± 0.3%). Those
misclassifications improved when Hudgins’ set was applied (cylindrical grasp vs. spher-
ical grasp: 13.1 ± 1.7%, palmar pinch vs. tip pinch: 10.2 ± 1.8%) and following visual
feedback training (cylindrical grasp vs. spherical grasp: 11.7 ± 0.8%, palmar pinch vs. tip
pinch: 11.7 ± 1.1%). The fewest misclassifications (cylindrical grasp vs. spherical grasp:
6.4 ± 0.9%, palmar pinch vs. tip pinch: 5.7 ± 0.7%) were found when Hudgins’ set and
visual feedback training were used together.

In the forearm amputee, only the hand postures of rest (MAV: 95.1%, Hudgins’ set:
99.8%) and spherical grasp (MAV: 94.1%, Hudgins’ set: 86.0%) were well-recognized with
either feature vector on Day 1, which was the experiment before visual feedback training.
The classification accuracies of each hand posture were improved by the visual feedback
training, and most of the hand postures were recognized with a classification accuracy of
higher than 70.0% on Day 4. In the data from Day 5, the last day of visual feedback training,
MAV only showed many misclassifications of scissor sign vs. tip pinch (32.3 ± 6.2%) and
cylindrical grasp vs. lateral pinch (21.7 ± 1.1%). Those misclassifications remained high
with Hudgins’ set (scissor sign vs. tip pinch: 22.3± 2.0%, cylindrical grasp vs. lateral pinch:
11.1 ± 0.8%).
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4. Discussion

An electric prosthesis can perform some of the functions of a lost limb by using
electromechanical motors and structures; it is an essential device for improving the quality
of life for amputees [53]. The hand is an especially important body part that is used to
perform many gestures in daily life, so amputees who lose a hand need a multiple DoF
electric hand prosthesis. Many previous studies have reported the development of various
electric hand prostheses with improved motors or newly designed structures [53–57].
However, few studies have designed algorithms to control electric prostheses. Therefore,
despite advances in the hardware of electric prostheses, hand amputees have had access
to only a few functions because the control algorithms have recognized only a few hand
gestures [19].

This study was performed to develop a multichannel sEMG-based gesture recognition
algorithm for twelve hand postures using data from healthy adults and a bilateral forearm
amputee. In addition, it reports the design of a radar plot-based visual feedback training
protocol that was usable by all subjects, even the bilateral amputee, to reduce variability
in the sEMG signals. The visual feedback training effectively improved classification
performance with data from both the healthy adults and the forearm amputee. These
findings could help to efficiently improve sEMG-based gesture recognition for amputee
rehabilitation and the control of electric prostheses.

Various training protocols have been tested for amputee rehabilitation in the previous
studies. However, most of them show low training effects due to a lack of feedback,
and few studies have quantified the effects of rehabilitation [15,16]. Furthermore, most
published rehabilitation training protocols involve comparison with an intact side, which
excludes bilateral amputees. Powell et al. suggested a rehabilitation protocol that uses only
the amputated side with sixteen-channel sEMG sensors and a virtual electric prosthesis
on the screen [17]. After ten days of rehabilitation training, the classification accuracy
for data from the amputees increased from 77.5% to 94.4%, and that performance was
maintained beyond the end of training. However, Powell’s training protocol still lacked
real-time feedback to suggest methods for improving the gestures. Fang et al. used sixteen
sEMG sensors to measure signals for nine hand gestures in twelve healthy adults, and they
analyzed the effects of visual feedback training on sEMG-based gesture recognition [58].
Their training protocols were divided into three types: no feedback, label feedback, and
clustering feedback. No feedback was the only repetition without any feedback option,
and its classification accuracy was 74.3%. Label feedback involved gesture repetition with
the classification results provided as feedback, and it had a classification accuracy of 75.1%.
The clustering feedback used a PCA algorithm to provide the visualized sEMG pattern,
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and it had the highest classification accuracy of 82.6%. These results indicate that visual
feedback that includes real-time changes in the sEMG pattern improved the classification
performance more effectively than the label feedback training. Therefore, in this study,
a radar plot visualizing the sEMG pattern was used in the visual feedback training, and
the effects of that radar plot-based visual feedback training were analyzed in both healthy
adults and a bilateral forearm amputee.

t-SNE was a well-known visualization method with the dimension reduction, and SC
was useful to quantify the clustering of sEMG signals. Zhang et al., measured sEMG signals
in twelve healthy adults by using an armband-type sEMG sensor to recognize five hand
gestures [59]. The feature vectors were calculated with various window sizes in sEMG
signals. The best classification accuracy of 98.7% appeared with the selection of window size
based on the cluster of feature vectors through t-SNE. Those results indicate that dimension
reduction and data visualization through t-SNE were suitable for improving sEMG-based
gesture recognition algorithms. In this study, t-SNE was used to analyze the cluster of
sEMG signals in visualizations with dimension reduction. The visualized clusters of each
sEMG signal correlated well with the classification accuracies, which were themselves
improved by the visual feedback training. Likewise, the SC quantitatively showed that the
sEMG signals of healthy adults and the forearm amputee were well clustered by the visual
feedback training. The sEMG signals analyzed by t-SNE and the SC in this study seem to
have lower clustering than reported in previous studies because of the characteristics of
the muscles and sEMG sensors considered here. The sEMG signals visualized by t-SNE
showed dispersed clusters even after the visual feedback training, and the SCs were only
slightly higher than zero. These results were caused by the cocontractions of various
muscles required by the hand gestures used in this study, such as agonist muscles for the
main activity, antagonist muscles for the balance of tension with resistance, and synergist
muscles to assist in the activity [60]. Because the movements required complex muscle
activation, sEMG signals of all the muscles were measured during the movements, which
caused dispersed clusters of sEMG signals to appear. In addition, the crosstalk among
the sEMG sensors, which indicates that each sEMG sensor also measured signals from
other muscles through the skin, also increased complexity and variability in the sEMG
signals [61]. Nevertheless, the improved results in the t-SNE and SCs following the visual
feedback training show that the training effectively reduced variability in the sEMG signals
and improved the data clustering.

The previous studies measured the amputee’s sEMG signals to practically improve an
sEMG-based gesture recognition algorithm for the control of myoelectric prostheses. Benatti
et al., used four-channel sEMG sensors and an SVM classifier to develop a recognition
algorithm with four hand gestures for the control of multijoint prostheses [62]. They
reported a classification accuracy of 89.1% for four amputees. Ahmadizadeh et al., used
five force-sensitive resistor (FSR) sensors and two sEMG sensors to control a commercially
available bebionic hand (Ottobock SE & Co. KGaA, Duderstadt, Germany) [63]. Their
gesture recognition algorithms were developed based on k-NN, SVM, and LDA, and an
amputee participated in the training and testing of each one. The classification accuracies
were reported as 75.2%, 78.5%, and 81.6% for ten, six, and three hand gestures, respectively.
Most previous studies that enrolled amputees reported low classification accuracy when
recognizing various hand gestures, and they improved classification accuracy by applying
fewer hand gestures to the recognition system. However, the recognition of four or fewer
hand gestures significantly limits the control of a multijoint prosthesis, and non-pattern
recognition algorithms are more efficient when the number of hand gestures is small.
In this study, sEMG signals from forearm muscles were measured using nine and eight
sEMG sensors on the healthy adults and forearm amputee, respectively. ANN classifiers
were then developed to recognize twelve hand postures by using two types of feature
vectors, MAV only and Hudgins’ set. The healthy adults showed classification accuracies
of 87.7% with MAV only and 90.3% with Hudgins’ set. The classification accuracies for
the forearm amputee were 32.8% with MAV only and 30.9% with Hudgins’ set. Thus,
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the optimized feature vectors (Hudgins’ set in this study) improved the classification
performance in healthy adults, which agrees with the results of previous studies [11–14,19].
However, the classification accuracies for the forearm amputee decreased when using the
optimized feature vectors because of high variability and low consistency in the sEMG
signals. Those problems were solved by the radar plot-based visual feedback training.
After the visual feedback training, the healthy adults showed classification accuracies of
91.2% with MAV only and 95.1% with Hudgins’ set, and the forearm amputee showed
classification accuracies of 76.5% with MAV only and 84.2% with Hudgins’ set. Thus,
the radar plot-based visual feedback training successfully improved both classification
accuracy and the effect of the optimized feature vectors by reducing variability in the sEMG
signals. For these reasons, reducing variability in the sEMG signals was more important
for the amputee than the advanced hardware and software in the sEMG-based gesture
recognition system.

The classification accuracies for each hand posture are shown as confusion matrixes
in this paper. Misclassifications appeared mainly for cylindrical grasp vs. spherical grasp
and palmar pinch vs. tip pinch, which had misclassification rates of 14.5% and 15.0%,
respectively. Those misclassifications occurred because those gestures are similar and
require cocontractions of the same muscles. We reported similar results in our previous
study of armband-type sEMG sensors [25]. Some of the misclassifications in our previous
studies, which appeared in palmar pinch vs. lateral pinch, finger pointing vs. scissor sign,
and thumb up (hook) vs. scissor sign, did not occur in this study because we minimized
the effects of crosstalk in the sEMG system by positioning the sEMG sensors on specific
muscles. In addition, misclassification of the movements of healthy adults was improved
by the optimized feature vectors (Hudgins’ set) and visual feedback training, with the mis-
classification rates after applying both Hudgins’ set and visual feedback training reduced
to 6.4% and 5.7% for cylindrical grasp vs. spherical grasp and palmar pinch vs. tip pinch,
respectively. In the forearm amputee, only the hand postures of rest and spherical grasp
were well-recognized, with classification accuracies of 95.1% and 94.1%, respectively. The
radar plot-based visual feedback training improved the classification accuracies of most
hand postures to be higher than 70.0%. However, misclassifications persisted for scissor
sign vs. tip pinch and cylindrical grasp vs. lateral pinch, which had misclassification rates
of 32.3% and 21.7%, respectively, even after five days of hand posture training. In the
healthy adults, misclassifications appeared between similar gestures, whereas the forearm
amputee showed misclassifications between dissimilar gestures because of muscle loss.
The forearm amputee had lost his extensor digitorum minimi and extensor pollicis muscles
on the amputated side. In particular, the loss of the extensor pollicis, which contracts to
move the thumb, caused information loss in the sEMG patterns that decreased classification
accuracy. Misclassifications for the forearm amputee remained high, even when the feature
vectors were optimized—22.3% in scissor sign vs. tip pinch and 11.1% in cylindrical grasp
vs. lateral pinch. These results indicate that the optimized feature vectors effectively rein-
forced the consistency of the sEMG pattern in healthy adults, but they were not effective for
the forearm amputee because of information loss in the sEMG patterns. Therefore, training
for users, such as visual feedback training, would improve the classification performance
for amputees more effectively than optimizing classifiers or feature vectors.

Many previous studies have suggested optimized classifiers and feature vectors and
advanced hardware to improve the performance of sEMG-based gesture recognition. How-
ever, other optimization is required to successfully increase the number of recognized
gestures or change users. In this study, the classification performance was efficiently im-
proved by reducing variability in the sEMG signals through visual feedback training. Our
method will not only reduce the time and cost of system optimization but also improve the
user accessibility of future systems.

This study has three limitations. The first is that only one forearm amputee participated
in the experiment. Amputees have larger individual differences in their sEMG patterns
than healthy adults because of variations in the size of their residual limbs and periods
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of amputation. Specifically, misclassifications will differ for each amputee depending on
which muscles have been lost. The second limitation is that the period for the hand posture
training was shorter than the rehabilitation periods reported in previous studies [15,16].
Typically, the amputee rehabilitation programs lasted for several months in previous
clinical research, whereas the visual feedback training in this study lasted for only five days.
Our visual feedback training was useful to improve the classification performance of the
bilateral forearm amputee dramatically within a short period. However, it is also important
to analyze whether the number of recognizable gestures could be increased by reinforcing
muscles through continuous posture training and whether the improved classification
performance would be maintained after the end of training. The third limitation is the
number of sEMG sensors used to recognize hand postures. A small number of sEMG
sensors is more efficient in rehabilitation protocols and the control of electric prostheses.
Specifically, the eight-channel sEMG sensors used in this study and their positions would
be difficult to apply to an electric prosthesis because of the size of the socket on the
amputated limb.

5. Conclusions

An sEMG-based hand posture recognition algorithm and radar plot-based visual feed-
back training were developed for the control of myoelectric prostheses and the amputee’s
rehabilitation in this paper. The classification accuracies for the healthy adults and a fore-
arm amputee were improved by the visual feedback training and optimized feature vectors.
The visual feedback training improved the classification performance of the healthy adults
and a forearm amputee by 2.6% and 43.7%, respectively. The optimization of feature vectors
(Hudgins’ set) increased the classification accuracy by 4.8% more in trained healthy adults
and 7.7% more in a trained forearm amputee, respectively. t-SNE and the SC both showed
that the visual feedback training reduced variability in the sEMG signals in both healthy
adults and the forearm amputee. The radar plot-based visual feedback training was very
effective to improve the classification performance of the bilateral forearm amputee by the
real-time monitoring of activation patterns of sEMG in the residual limb.

These findings could be used to improve the performance of sEMG-based hand posture
recognition, not only in rehabilitation and the control of electric prostheses for amputees,
but also in HCI systems for healthy adults. In future work, the measurement of sEMG
signals and visual feedback training will be performed with various forearm amputees,
and the number and positions of the sEMG sensors will be analyzed to develop an efficient
sEMG-based hand posture recognition algorithm.
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