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Abstract: A novel portable low-cost Arduino-controlled photo- and fluorimeter for on-site mea-
surements has been developed. The device uses LEDs as a light source and a phototransistor as
a light sensor. The circuit is based on the discharge of a capacitor with the photocurrent from the
phototransistor. Validation experiments for absorbance measurements were performed by measuring
protein concentration using the Bradford method and measuring phosphate ions in water using a
commercial test kit. The emission light of the excited fluorescent dyes rhodamine 6G and calcofluor
white was measured to validate the usability of the device as a fluorescence photometer. In all
validation experiments, similar correlation coefficients and limit of detection could be achieved with
the portable photo- and fluorimeter and a laboratory spectrometer and fluorimeter. Real sample
analysis was performed, measuring phosphate concentration in freshwater and concentration of
green fluorescent protein, extracted from Escherichia coli.
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1. Introduction

In the last few decades, many photometric assays were established for a wide range
of parameters. The demand for inexpensive portable photometers is high, especially in
areas where laboratory equipment is not available due to high cost and space requirements,
or where unstable parameters must be determined quickly on-site. Therefore, a growing
trend towards the use of portable analysis systems can be observed. Portable photometers
have already been developed for utilization in different areas of application, for example
health [1–5], food quality control [6–11], environmental monitoring [12–20] and citizen
science and education [21,22].

There are two main types of portable photometric analysis systems. The first type
involves the use of dispersing elements, for example the use of diffraction gratings [23] or
prisms [24,25]. The light, usually coming from a broadband light source, passes through
the sample, and is then dispersed into individual wavelengths by the dispersing element.
This light is then often focused by lenses [4,13,25–37]. These optical elements are expensive
and have to be arranged accurately for a precise, reproducible measurement. Furthermore,
an elaborate calibration to determine the light intensity at a specific wavelength is neces-
sary [38,39]. To make such systems accessible to a broad range of users, easy arrangement
of the components and ubiquitous applicability is important. Many photometric assays
are evaluated at one specific wavelength and thus render acquiring a complete absorption
spectrum abundant. Because of that, light of a specific wavelength can be used, which
enables the usage of an inexpensive external light sensor, for example a photodiode, photo-
transistor or photoresistor. Light-emitting diodes (LEDs) of a specific wavelength [10,40],
or a broadband light source in combination with optical filters [12,41], can be used as
single-wavelength light sources. The application of these components has the advantage
that other optical elements are superfluous. Furthermore, the output value, for example the
voltage at the light sensor, can be used directly without further processing. Such devices
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are ubiquitous usable as a stand-alone system and inexpensive. There are already some
portable photometers and fluorimeters available. They can be smartphone-based [42] or
controlled by a microcontroller [11,14–20,40,43–47]. Nearly all of them are to be used either
as a photometer or as a fluorimeter. There are only a few devices that can be used for both
applications. One of them is the smartphone spectrometer by Hossain et al. [48].

Arduino-regulated systems without implementation of a smartphone have been de-
veloped for different applications, for example for pH measurements in seawater [20]. The
photometer is based on a combination of a photodiode and a transimpedance amplifier,
integrated into a single component, TSL257. Another portable Arduino-based photometer,
which uses the color sensor TCS230, was developed by Morais et al. [11]. Laganovska et al.
developed an Arduino-controlled spectrometer which integrates a commercially available
mini spectrometer [46]. Existing Arduino-based fluorimeters use UV LEDs or flashlights
and emission filters in combination with photodiodes [49–51] or phototransistors [52].

By using a photodiode, phototransistor or photoresistor, the voltage at the sensor can
directly be correlated with the light intensity in the measuring chamber and thus with the
analyte concentration. However, there are other measurement methods. For example, there
are systems which use the capacitance of LEDs for light measurements [53,54]. In these
investigations, the discharge time of the p/n-junction is measured, which depends on the
photocurrent. LEDs as light sensors have the advantage that they are low-cost and easily
available. On the other hand, LEDs are less sensitive in comparison to a photodiode or
phototransistor and their measurement wavelength is restricted, which could be considered
both an advantage and a disadvantage.

Although many portable photometers are already available, very few are designed
for universal use without additional components. Furthermore, especially when used
in small- or medium-sized companies and in the citizen-science sector, the reduction of
costs incurred is another important point. In order to achieve these goals, a low-cost
portable Arduino microcontroller-controlled photo- and fluorimeter which is based on
the desklab photometer [55] was developed in this study. Due to its higher sensitivity in
comparison to a photodiode, a phototransistor was used as a light sensor. However, the
voltage at the phototransistor was not directly used, but a capacitor was discharged via the
phototransistor instead. The discharge time of the capacitor was used as a reference for
the light intensity. This measuring method enables the detection of weak light, which is
especially necessary for fluorescence measurements, which were not possible without the
use of this circuit. The newly developed device is called Portuino (Portable Arduino-based
photo- and fluorimeter). To show the applicability of the device in different relevant fields
like biotechnological industry or environmental monitoring, absorbance measurements
were validated by measuring protein concentration using the Bradford method and by
measuring phosphate ions in water using a commercial test kit. To validate the fluorescence
measurement, the emission light of the fluorescent dyes rhodamine 6G and calcofluor white
were measured in different concentrations. For all validation experiments, a comparison
with the results of commercially available laboratory equipment was made. The developed
system combines a stand-alone usability, a simple design, inexpensive and easy-to-use com-
ponents and, in addition, a circuit that is not only simple, but also suitable for measuring
weak fluorescent light. Furthermore, it can be used for variable applications in the visible
and IR region due to the interchangeability of the LEDs. Therefore, the system is highly
suitable for universal measurements on site.

2. Materials and Methods
2.1. Creation of 3D Models

3D models of the measuring chamber were created with the open-source software
FreeCAD (Version 0.18, Jürgen Riegel, Werner Mayer und Yorik van Havre, Germany).
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2.2. Protein Quantification Using a Colorimetric Method after Bradford

Protein concentration measurement was done according to the Bradford method [56].
Protein standards were prepared with bovine serum albumin (BSA) (Carl Roth, Karlsruhe,
Germany) in phosphate-buffered saline solution with a pH of 7.3 in a concentration range
from 0 to 1000 µg mL−1. Coomassie protein assay reagent (Thermo Fisher Scientific,
Waltham, MA, USA, ready-to-use) was used for the analysis. 30 µL of the respective protein
solution was mixed with 1500 µL of the reagent solution. After 10 min, absorption at 595 nm
was measured with a laboratory spectrometer (Cary 60 UV-Vis, Agilent Technologies, Santa
Clara, CA, USA). A 590 nm LED was used as a light source for the absorption measurement
with the Portuino. The transmitted light was measured at a 180-degree angle. With
the laboratory spectrometer, the same wavelength was used. All measurements were
performed in triplicate.

2.3. Phosphate Quantification with a Commercially Available Test Kit

Phosphate in aqueous solution was quantified with the help of a commercially avail-
able test kit, designed for aquarium water analysis (JBL PRO AQUATEST, JBL GmbH &
Co., KG, Neuhofen, Germany). The kit contains reagents for the colorimetric detection of
phosphate. The results can be evaluated by color comparison with printed color dots. The
phosphate concentration was varied from 0.1–10 mg L−1 to cover the complete measure-
ment range specified in the test kit, using a stock solution of sodium phosphate (Carl Roth,
Karlsruhe, Germany) in distilled water. The standards were treated as indicated in the kit.
For photometric evaluation, absorption spectra were recorded from the colored solutions
in the range from 300 to 800 nm with a laboratory spectrometer (Cary 60 UV-Vis, Agilent
Technologies, Santa Clara, CA, USA) and the absorption maximum was determined, which
was located at 590 nm. The concentration of the analyte was evaluated with a laboratory
spectrometer and the Portuino at the absorption maximum of 590 nm. With the Portuino,
the transmitted light was measured at a 180-degree angle. With the laboratory spectrometer,
the same wavelength was used. All measurements were performed in triplicate.

2.4. Quantification of the Fluorescence Dye Rhodamine 6G

The fluorescence light of rhodamine 6G (Carl Roth, Karlsruhe, Germany) was mea-
sured in ethanolic solution in a concentration range from 0 to 15 mg L−1. When excited at
490 nm with a laboratory fluorimeter (LS 55, PerkinElmer, Waltham, MA, USA), the dye
shows an emission maximum at 552 nm. For quantification of Rhodamine 6G with the
Portuino, a 490 nm UV-LED was used as light source. The emitted light was measured at a
90-degree angle to the LED. All measurements were performed in triplicate.

2.5. Quantification of the Fluorescence Dye Calcofluor White

The fluorescence light of calcofluor white (Sigma Aldrich, St. Louis, MO, USA) was
measured in aqueous solution in a concentration range from 0 to 8 µL mL−1. When excited
at 355 nm with a laboratory fluorimeter (LS 55, PerkinElmer, Waltham, MA, USA), the dye
shows an emission maximum at 430 nm. For quantification of calcofluor white with the
Portuino, a 355 nm UV-LED was used as a light source. The emitted light was measured in
a 90-degree angle to the LED. All measurements were performed in triplicate.

2.6. Real Sample Analysis

To show applicability of the Portuino for real sample analysis, we used redox-sensitive
green fluorescent protein 2 (roGFP2). The roGFP2 was provided by the cell biology group
at the Technical University of Kaiserslautern. It was extracted by Escherichia coli BL21 and
purified. The concentration of roGFP was measured according to the Bradford method and
by fluorescence measurement. When excited at 488 nm, the protein shows an emission
maximum at 507 nm [2]. Standard curves were measured, using commercially available
GFP (Sigma Aldrich, St. Louis, MO, USA). For quantification of the protein with the
handheld fluorimeter, a 488 nm LED was used as light source. The emitted light was
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measured at a 90-degree angle to the LED. Standard curves with BSA in 10 mM Tris-
EDTA buffer (TE) for Bradford assay and with commercially available GFP from jellyfish
Auquorea Victoria in TE were recorded.

Furthermore, phosphate measurement was performed in a freshwater sample with a
commercially available test kit, as described in Section 2.3. The water sample was collected
in Kistnerweiher in Neuhofen, Germany. To validate the results, phosphate was also
measured by ion chromatography.

2.7. Data Evaluation

The connection between the analyte concentration and the discharge time of the
capacitor is not linearly correlated. This is due to the fact that there is no linear correlation
between the light intensity and the photocurrent at a phototransistor. To linearize the
measurement data, the ladder of power has been used [57], meaning that the data is
transformed by potentiation depending on the shape of the curve (see Figure 1).
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Figure 1. Latter of powers after Tukey [57]. Potentiation of x− and y− values for data linearization
depending on the shape of the curve. A distinction is made between increasing (A,D) and decreasing
(B,C) function values, and increasing (B,D) and decreasing (A,C) magnitude of slope.

For the best linear regression, the x and y values were potentiated up or down depend-
ing on the shape of the curve. The transformation with the best linear correlation coefficient
was picked to compare the data with the data of the laboratory device.

The transformation depends on the light intensity range of the performed measure-
ments. The larger the differences in light intensity, the more the non-linearity of the
photosensor affects the measured standard series. Furthermore, the photocurrent is also
affected by the wavelength of the light. The highest sensitivity of the phototransistor can
be seen in the infrared region, in the range of 900 nm [58]. In the more sensitive region, the
deviation from a linear standard curve will also be higher. The more the standard curve
deviates from a linear one, the further the data must be transformed up or down the ladder
of power.

For automation of this transformation step, an excel script in visual basic has been
developed which can be used to determine the best data transformation for the respective
calibration curve (see Supplementary Data). Measurement data can directly be copied into
the sheet. Care must be taken to insert six measurement data, which are needed due to the
programming of the sheet. The data can also be picked with the Excel Data Streamer Add-in.
After inserting a sample into the measurement chamber, a button (“Sample inserted”) can
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be clicked, which automatically transfers six data points to the sheet “Raw data”. After
automatic or manual insertion of the data, the calculation can be started by clicking the
button “Calculation”. Afterwards, the shape of the curve is determined, and transformation
of the measurement data is performed. The correlation coefficient for each transformation
is calculated and the transformation with the highest correlation coefficient is chosen
and plotted.

The limit of detection was calculated as described in DIN norm [59].

3. Results and Discussion
3.1. Measuring Chamber Design

In this study, a portable photo- and fluorimeter, called Portuino, has been developed.
It is based on the low-cost desklab photometer, developed for educational purposes [55].
The measuring chamber of the Portuino is 3D-printed in black acrylonitrile butadiene
styrene (ABS) (ABSplusTM, Stratasys GmbH, Frankfurt am Main, Germany).

Overall dimensions of the device are (L × W × H) 90 mm × 93 mm × 95 mm. To
perform absorption or fluorescence measurements, LEDs of different wavelengths can be
placed in LED mounting clips (Mentor GmbH & Co., Erkrath, Germany), which can be
found on three of four sides of the measuring chamber (see Figure 2 A2). The mounting clips
enable an easy exchange of the components, if required. For absorption measurements, the
light sensor, which is a phototransistor (SFH300, Osram GmbH, Herbrechtingen, Germany),
is placed opposite from the LED. For fluorescence measurements, the LEDs can be placed
at a 90-degree angle to the phototransistor to excite the sample and measure the emitted
light. The cuvette is placed in the middle of the chamber (see Figure 2 A4). The LEDs
and the phototransistor are connected to an Arduino Nano BLE microcontroller by jumper
cables. The cables can be guided into a bottom compartment of the measuring chamber
through a channel which is located below the LED-mounting clips (see Figure 2 A8). To
keep out ambient light, covers were constructed which can be placed above the LEDs and
the phototransistor. The wiring was soldered directly to a circuit board, which can be
placed in the compartment in the bottom part of the measuring chamber (see Figure 2B
A7). To ensure an even distribution of light, transparent matte labels were cut to size and
placed in front of the light sensor. This measuring chamber was used for all measurements
in this study.
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Figure 2. CAD-model of the developed measuring chamber of the portable photo- and fluorimeter.
(A) = Front view of the measuring chamber of the developed photo- and fluorimeter, (B) = Bottom
view of the measuring chamber. A1 = Cover for LED-inserts, A2 = LED insert and cutout for LED-
wiring, A3 = Place for a LED board, A4 = place for a 4 mL cuvette, A5 = Pathway for light from LED to
sample and from sample to phototransistor, A6 = Cover for measuring chamber, A7 = compartment
for storing of the circuit board, A8 = Cutout for guiding the jumper cables from the LEDs and the
phototransistor to the circuit board.
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3.2. Circuit Design and Arduino Program

To perform absorption and fluorescence measurements, a circuit based on the dis-
charge of a capacitor was developed (see Figure 3).
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Figure 3. Measurement-circuit of the Portuino; reference voltage is connected to the 5 V pin of the
Arduino to obtain a constant voltage supply of 3 V. An analog switch is used to turn the voltage on
and off for the rest of the circuit. It is controlled by an analog pin of the Arduino. A phototransistor
and a capacitor are connected to the analog switch. The voltage can be read out by an analog pin of
the Arduino. To avoid current to flow through the analog pin, an impedance amplifier is connected.

Due to the fluctuating voltage supply of the Arduino Nano, the 5V-output of the micro-
controller is connected to a reference voltage (AD780AN, Analog Devices Inc., Nordwood,
MA, USA, see Figure 3) to obtain a constant voltage supply of 3 V. This voltage supply
can be turned on and off for the rest of the circuit by an analog switch (ADG619 BRMZ,
Analog Devices Inc., Nordwood, MA, USA), which is controlled by an analog output of the
Arduino Nano. A phototransistor serving as a light sensor is connected, as is a 0.022 µF
capacitor which is placed in parallel to the latter. The phototransistor was chosen because
of the inner amplification and the therefore higher sensitivity to lower light intensities. All
other capacitors are used to stabilize the voltage in the circuit. The measuring principle is
based on the discharge of the capacitor through the phototransistor. At the beginning of
a measurement, the analog switch is turned on. This is done by applying a 3.3 V voltage
at the logic control pin of it by the analog pin of the Arduino. This charges the capacitor.
Then, the analog switch is turned off again, cutting off the voltage supply at the capacitor.
Therefore, the capacitor discharges through the phototransistor. During this discharge,
the applied voltage is measured using an analog input of the Arduino. The time until a
voltage of 0.24 V is reached is determined. To prevent the current from flowing through the
Arduino pin and forcing it to flow through the phototransistor, an impedance amplifier
(OPA344PA, Texas instruments, Dallas, TX, USA) is connected between the capacitor and
the Arduino pin. Because the time required to discharge the capacitor depends on the
photocurrent at the phototransistor, and thus on the light intensity, this value can be used
as a reference value for light absorbed or emitted by a sample. A lower light intensity at
the phototransistor, resulting from a higher absorption or lower fluorescence of the sample,
leads to a lower photocurrent at the phototransistor and thus to a higher measurement
duration and vice versa. The Arduino is connected to a computer via USB cable and the
determined measurement duration is read out via a serial monitor. The USB cable also
serves as power supply for measurement chamber. It would also be possible to supply the
chamber via battery, tablet (with adapter), smartphone (with adapter) or powerbank to
improve field-portability. For usage without direct connection to a computer, a Bluetooth
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low energy (BLE) connection could be used for data readout. For this, a commercially
available BLE scanner can be used, or a custom app could be programmed.

To test the measurement circuit, the measurement duration of the capacitor has been
determined for different light intensities. For this purpose, a white-light LED was installed
in the measuring chamber, and the brightness of the LED was varied by installing series
resistors in the range from 0.1 to 600 kΩ (see Figure 4A). Furthermore, the discharge
of the capacitor was recorded with an oscilloscope (InfiniVision DSOX2004A, Keysight
Technologies, Santa Rosa, CA, USA) (see Figure 4B). When measuring the discharge of the
capacitor, a linear decrease in the voltage from 3 to 0.24 V can be observed (see Figure 4B).
There is a linear correlation of the forward resistor at the LED and the measurement
duration from 22 to 600 kΩ., with a correlation coefficient of 0.9967.
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Figure 4. Measurement duration of the Portuino with a circuit, based on the discharge of a capacitor.
The phototransistor was illuminated with a white light LED, which was connected with different
series resistors with values from 0.1 to 600 kΩ. (A). The discharge of the capacitor was measured
with an oscilloscope. The phototransistor was illuminated with the LED with a forward resistor of
560 kΩ (B). n = 3, and the error bars are hidden by the squares.

Considering this, care has to be taken in low absorption or high fluorescence applica-
tions because this circuit cannot measure too high light intensities. In this case, a higher
forward resistor for the LED should be used.

3.3. Validation of the Measuring Principle of the Portuino

Validation of the measuring principle for absorption measurements was carried out
by protein measurement with the Bradford method and phosphate measurement in water
with the help of a commercial test kit. When measured with the laboratory spectrometer, a
linear correlation with high correlation coefficients above 0.99 between the concentration of
the analyte and the absorption could be seen for both measurements. When measured with
the Portuino, a slight flattening of both measurement curves was observed in the range
of high concentrations, which can be attributed to the non-linear relationship between the
light intensity and the resulting photocurrent at the phototransistor [58]. Because of that,
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the measurement durations were squared (phosphate measurement) and potentiated with
5 (protein measurement) to get a linear standard curve (see Figure 5A,B). The fact that
the transformation is different is due to the fact that a larger light intensity range from
absorbance 0 to 1 is covered for protein concentration measurement compared to phosphate
measurement. As described in Section 2.6, a larger deviation from a linear standard curve
can be observed, which is why higher exponentiation is required, i.e., the ladder of power
must be climbed further.
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Figure 5. Absorption and measurement duration (squared (A) or to the power of 5 (B)) for phosphate
measurement in water (A) and protein measurement in water with the Bradford method (B) with a
laboratory spectrometer (grey, triangles) and the Portuino (red, squares). The absorption has been
measured at 590 nm for both devices. The agreement of data was determined with the Portuino and
a laboratory spectrometer (C). Agreement for phosphate measurement (black, circles) was performed
with the help of a commercial test kit and, for the protein measurement of BSA, with the Bradford
method (black, not filled circles). n = 3, the error bars are partially hidden by the symbols.

These transformations resulted in correlation coefficients above 0.99, which were
similar to those of the measurements taken with the laboratory spectrometer. This means
that the developed Portuino is suitable for absorption measurements in the investigated
light ranges. The limit of detection (LOD) was calculated for both measurements. For
protein concentration measurement, LOD for the Portuino and the laboratory spectrometer
were 0.0086 and 0.012 mg mL−1. This means, that the LOD is better for Portuino in
comparison with the laboratory spectrometer. For the phosphate measurement, it was the
other way around. There, the LOD the Portuino and the laboratory spectrometer were 0.058
and 0.036 mg L−1. For both measurements, the LOD was in the same range, even if it was
sometimes lower for one system and sometimes for the other. In a last step, the agreement
between the Portuino measurement duration and the absorption of the laboratory device
was investigated (see Figure 5C). As described above, the absorption of the analyte solution
was correlated with the squared measurement duration. The agreement for all absorption
measurements achieved very high correlation coefficients above 0.99.

Emission light of rhodamine 6G and calcofluor white in different concentrations
was measured to validate the suitability of the Portuino for fluorescence measurements.
Since no optical filters were used, care must be taken to ensure that stray light at an
angle of 90 degrees did not influence the measurement. To test this effect, the absorption
of two dyes were measured—a dye with an excitation wavelength in the visible range
and a dye with an excitation wavelength in the ultraviolet range. The phototransistor
used in this case detects light in the visible and infrared range [58], so that stray light
should only affect the measurement of rhodamine 6G, if at all. When measured with the
laboratory fluorimeter, there was a linear relationship between the rhodamine 6G and
the calcofluor white concentration and the luminous intensity of the emitted light for all
investigated concentrations (see Figure 6A,C). When using the Portuino, there was a linear
relationship between the logarithmized rhodamine 6G concentration and the logarithmized
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measurement duration (see Figure 6B). For calcofluor white, the same transformation was
used (see Figure 6D).
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Figure 6. (A,B): Response of different devices for fluorescence measurement of calcofluor white. The
standards were excited with light with a wavelength of 355 nm. Emitted light was measured with a
laboratory fluorimeter (A) at a wavelength of 430 nm, and measurement duration was recorded with
the Portuino (B). Parameter laboratory fluorimeter: Excitation slit = 10, Emission slit = 10, Gain = Low.
n = 3; (C,D): Response of different devices for fluorescence measurement of calcofluor white. The
standards were excited with light with a wavelength of 488 nm using the laboratory fluorimeter
and with light of a wavelength of 490 nm using the Portuino. Emitted light was measured with a
laboratory fluorimeter (C) at a wavelength of 553 nm, and measurement duration was recorded with
the Portuino (D). Parameter laboratory fluorimeter: Excitation slit = 5, Emission slit = 5, Gain = High.
n = 3.

Both correlations with the Portuino showed high correlation coefficients above 0.99.
Furthermore, the correlation coefficient of the measurement was similar to those reached
by the laboratory fluorimeter. That means that the Portuino can be used for fluorescence
measurements with excitation light in the ultraviolet as well as in the visible wavelength
range. Because the concentration of rhodamine 6G as well as the measurement duration
had to be logarithmized for the Portuino, no agreement between the measurement data of
the laboratory fluorimeter and the Portuino could be calculated. The LOD for calcofluor
white measurement for the Portuino and the laboratory spectrometer were 0.52 and 0.62 µg
mL−1. For Rhodamine 6G measurement, the LOD were 0.74 and 0.62 mg L−1. With this,
for fluorescence measurements, there were also similar limits of detection for both devices.

In summary, the Portuino is suitable for both absorption and fluorescence measure-
ments. A transformation of the measurement data of the Portuino should be done due
to the non-linear relationship between the light intensity at the phototransistor and the
resulting photocurrent and thus, the measurement duration. Care should be taken if flu-
orescence measurements are performed with cloudy matrices. In this case, the light of
the LED will be strayed by the sample, causing the light intensity at the phototransistor
to increase. An emission filter could be required to filter stray light of the LED. For the
above-shown applications, the Portuino is a simple, easy-to-build alternative for a costly
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and bulky laboratory device. Due to the simple design of the measurement chamber, which
can be 3D printed, and the Arduino microcontroller, it can be easily built and used for
point-of-care applications.

3.4. Real Sample Analysis

Phosphate is an important indication for the quality of freshwater. A too-high phos-
phate concentration leads to growth of algae and leads to eutrophication [3]. Because of
that, the measurement of phosphate concentration in freshwater is important. With the
Portuino, it would be possible to measure phosphate concentration directly on site without
the need to bring water samples to the laboratory (see Table 1). To show applicability of the
Portuino in-water analysis, phosphate is measured in freshwater.

Table 1. Real sample analysis with the Portuino in comparison with a laboratory spectrometer. Redox-
sensitive green fluorescent protein was measured either by fluorescence measurement or protein
measurement, conducted according to Bradford method. Phosphate concentration in a freshwater
sample was determined using a commercially available test kit.

Method Concentration roGFP2 with
Fluorescence Measurement/mg mL−1

Concentration roGFP2 with
Bradford Assay/mg mL−1

Phosphate Concentration
in Freshwater/ mg L−1

Laboratory spectrometer 0.503 ± 0.0167 0.534 ± 0.022 0.517 ± 0.058

Portuino 0.491 ± 0.0172 0.524 ± 0.031 0.505 ± 0.031

Ion chromatography - - 0.471 ± 0.029

The results of the Portuino agree with both the laboratory spectrometric method
and the ion chromatographic method. The phosphate concentration in the water sample
is relatively high. For “good ecological conditions”, defined by the ordinance for the
protection of surface water [4], the phosphate concentration should be under 0.22 mg L−1.
Because the limit of quantification for phosphate measurement with the test kit is 0.15 for
the Portuino and 0.10 for the laboratory spectrometer, water samples with good ecological
conditions can also be measured.

With its intense green fluorescence, GFP is an important biomarker molecule for
application in medicine and diagnostics. For measurement of roGFP2 concentration after
purification, fluorescence measurement was performed (see Table 1). To verify the result,
protein concentration was further measured by the Bradford method.

From the results, we can see a high accordance of the Portuino in comparison to the
laboratory spectrometer. Furthermore, the results of the fluorescence measurement and the
protein measurement are in agreement.

All in all, it can be seen that the Portuino is highly suitable for absorption and fluores-
cence measurements on-site and can replace laboratory equipment.

4. Future Work

In future work, there will be a smartphone application for data readout and automatic
data transformation with the ladder of power. Furthermore, a higher simplicity of the
device, including the use of smartphone-controlled surface-mounted LEDs on LED boards
will be investigated to prevent the need for LED exchange for different measurements.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22207916/s1, Excel Sheet S1: AutomaticDataTransforma-
tion_DiNonno_Ulber, STL-File S1: MeasuringChamber, STL-File S2: LidMeasuringChamber,
STL-File S3: LidLED.

https://www.mdpi.com/article/10.3390/s22207916/s1
https://www.mdpi.com/article/10.3390/s22207916/s1
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