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Abstract: This paper presents a single-axis angular rate sensor that is robust to variations in its
operating voltage and frequencies. The sensor is developed to overcome the shortcomings of con-
ventional mode-matched Micromachined Vibratory Gyroscopes in open loop operations, namely
narrow frequency bandwidths and unstable scale factors. The developed sensor utilizes inherent
forcing and inertial nonlinearities from electrostatic forces and fabrication imperfections to auto-
parametrically excite the sense mode via 2:1 auto-parametric resonance, which yields a broader
bandwidth frequency response for the sensor’s sense mode. The experimental results demonstrated
−3 dB frequency bandwidth of 500 Hz, a scale factor of 50 µV/◦/s, and a dynamic range of ±330◦/s.

Keywords: Microsensors; angular rate sensor; nonlinear sensing; auto-parametric resonance

1. Introduction

Micromachined Vibratory Gyroscopes (MVGs) [1] or angular rate sensors are used
in various motion-sensing applications, including automotive stability control [2], image
stabilization in cameras, and inertial measurement units (IMUs) of wearable devices [3,4].
They are often designed as mode-matched sensors to maximize the scale factor sensitivity
of the MVG’s output [1] by using identical drive and sense mode resonant frequencies.
However, perfect mode matching is difficult to achieve due to fabrication imperfections and
fluctuations in operating conditions, such as variations in actuation voltage. Further, MVGs
are designed to gain high-quality factors, or Q factors, in drive and sense modes to achieve
higher scale factors and resolution of the sensor, yielding the modal resonance responses
with narrow frequency bandwidths. Although a high Q factor amplifies the sensor’s output
dramatically, it also leaves its output vulnerable to variations in either operating frequency
or the sense mode resonant frequency. However, if a broader frequency response for the
sense mode can be obtained, then scale factor sensitivity to those variations would decrease.
This paper demonstrates the utility of the nonlinear resonance phenomenon known as
the 2:1 auto-parametric resonance (AR) in broadening the designed sensor’s frequency
response for its sense mode.

Recent studies [5–9] have revealed that for an oscillatory system, such as an MVG,
if two or more of its linear resonant frequencies are commensurate, those corresponding
modes could be strongly coupled depending on the order of nonlinearities in the system.
Notably, for a multi-degree of freedom system with quadratic nonlinearities, a linear natural
frequencies’ commensurability of ωj ≈ 2ωi for any of the system’s two modes i and j, could
cause a special kind of resonance, known as a 2:1 internal resonance or 2:1 AR [10] between
those two modes. For such a nonlinearly coupled system, when its higher frequency mode,
mode j, is externally excited via a harmonic force, such as Fe = F0 sin(Ωet), at its primary
resonance, Ωe ≈ ωj, and the forcing amplitude is greater than some threshold amplitude
(F0 > F∗0 ) then due to quadratic coupled nonlinearities, mode i gets internally or auto-
parametrically excited via 2:1 AR, as shown in Figure 1. The black and green arrows in
the figure represent the direction of the frequency sweep. The frequency bandwidth of the
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mode i, due to 2:1 AR, is both considerably wider and flatter compared to the conventional
linear resonance response. Figure 1 also demonstrates the nonlinear jump phenomenon
and readers are encouraged to refer to the references [5,6] for detailed behavior of 2:1 AR.
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Figure 1. Typical frequency response of a 2 DOF, nonlinearly coupled oscillator for the primary
resonance of mode j at 2:1 AR.

There are many sources of nonlinearities in the micro-systems. Examples of sources
of nonlinearity in MEMS include material nonlinearities in piezoelectric materials [11],
geometric nonlinearities due to micro-cantilevers experiencing large deformations [8,9],
addition of coupled motion in the given mode of oscillation or non-conformity leading to
irregular mass distribution [12], damping nonlinearity from inherently nonlinear squeeze
film damping in MEMS [13], and forcing nonlinearities from inherently nonlinear electro-
static forces in parallel plate electrodes [14–16]. MVGs comprise multiple-beam springs and
actuation drives and, hence, are susceptible to inertial, damping and forcing nonlinearities
among the aforementioned sources.

Due to modal interactions through AR, the nonlinearities and commensurable linear
resonant frequencies in MEMS resonators may cause the resonator response in correspond-
ing modes to be strongly coupled and dramatically amplified yet bounded by the damping
and nonlinearities present in the system. Different cases of AR, including 1:1, 1:2, 2:1,
1:3, and 3:1 based on electrostatic actuation have been demonstrated in various studies
of MEMS resonators [14–28]. We present some of these relevant AR studies in MEMS
resonators and the challenges to successfully implementing AR.

A study by Daqaq et al. [14] focused on nonlinear modal interactions, due to both
1:2 and 2:1 AR, in a micromirror. They modelled the micromirror with two torsion and bending
nonlinearly-coupled modes via electrostatic forces using the lumped mass parameter model.
They found that upon electrostatically exciting the mirror’s lower frequency mode—its torsional
mode, with a range of DC bias voltage above some threshold voltage, the non-externally excited
higher frequency mode, bending, is auto-parametrically excited via 1:2 AR. They concluded
that accidentally operating the micro scanner at the critical DC voltage while resonating the
torsional mode could cause the scanner’s movements in the bending mode. While this study
intended to avoid 2:1 AR, the following studies focus on utilizing 2:1 AR.

Vyas et al. [15,16] analyzed, both analytically and experimentally, a T-beam micro-
resonator with a frequency ratio of close to 2:1 between the higher, in-plane flexural mode
and the lower, out-of-plane torsional mode. They demonstrated that when the flexural
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mode is excited at its resonance by electrostatic forces with its AC voltage amplitude greater
than a threshold voltage of 5 mV, the torsional mode gets auto-parametrically excited due
to 2:1 AR. Their study demonstrated that 2:1 AR could amplify the response of indirectly
excited mode, and wider frequency bandwidths can be obtained to enhance the resonator’s
sensing performance. In the studies by Sarrafan [18] and Noori [19], electrostatically-
actuated and capacitively-sensed MEMS resonators based on the 2:1 AR were developed,
and experimental tests demonstrated frequency response curves for the auto-parametrically
excited mode with wider frequency bandwidths. Sarrafan [18] proposed an H-shaped,
2:1 AR-based MEMS resonator and tested it for angular rate sensing applications. Although
the −3 dB bandwidth values for the sensor’s sense mode frequency response are not
reported, the overall bandwidth of the sense mode response at 2:1 AR appears to be
about 3.5 kHz, which is a remarkably broader bandwidth response. They did not conduct
in-depth testing to evaluate all gyroscope performance parameters for their sensor, but
they tested its scale factor and full-scale range to be 11 µV/◦/s and ±200◦/s, respectively.
Kumar et al. [22] studied, analytically and through the Finite Element Method (FEM), all
possible AR cases for the first three modes of a micro-resonator consisting of a clamped-
clamped beam. Their unique finding was that out of all potential AR cases for the first
three modes of the beam, only 2:1 AR between the third and the first modes can exhibit
modal coupling that allows the transfer of energy between those two modes.

On the other hand, studies in [25,27–29] demonstrated how AR could be utilized in
designing self-sustaining MEMS oscillators with nonlinearly coupled modes to output
the desired reference frequency with fewer fluctuations. In [25], a fixed-fixed microbeam
capable of resonating at 2:1 AR was experimentally tested using a closed loop system,
and frequency stability of 13 ppm was achieved for the designed MEMS oscillator. These
studies indicate AR-based MEMS resonators’ potential to achieve very low-frequency
noise performance while operating them in the nonlinear regime. In recent times, AR is
has also been utilized in a mass sensor for sensitivity enhancements of the sensor [30],
in energy harvesters for achieving wider frequency bandwidths than linearly resonating
harvesters [20,31,32], and in atomic force microscopy for Young’s modulus sensitivity en-
hancements [21]. Gobat et al. [33] proposed a nonlinear Model Order Reduction technique
to convert the high-fidelity finite element models to a model of a few degrees of freedom
only. They validated their proposed numerical tool through analytical and experimental
investigation of 1:2 internal resonance in a tuning fork MEMS gyroscope. Marconi et al. [34]
demonstrated the exploitation of nonlinearities in designing frequency-matched MEMS
gyroscopes. They showed that the sensor’s angular rate sensitivity could be boosted by
sweeping the drive amplitude, which in turn causes the drive and sense mode frequencies
to match up.

The test and characterization procedures to obtain MVG’s performance measures have
been well developed and can be found in IEEE standard 1431 [35] and other literature [36,37].
Amplitude Modulated (AM) MVGs could be broadly classified as either mode-matched
MVGs or mode-split MVGs. The former type employs the necessary design and opera-
tional strategies to match the drive and sense mode’s resonant frequencies to maximize
the sensor’s angular rate sensitivity and noise performance at the expense of a narrow
frequency bandwidth for the sense mode. On the other hand, few manufacturers and
researchers developed robust MVGs of the second type by splitting the drive and sense
mode resonance frequencies to detect angular rates in a wider frequency spectrum but via
sacrificing gain or scale factor of the sensor. Table 1 summarizes performance parameters
of state-of-the-art MVGs with the last three rows of commercial single-axis MVGs. We first
review mode-matched MVGs and different closed-loop strategies that could mitigate their
bandwidth problems.

Ideally, mode-matched MVG’s drive and sense modes should be decoupled in the
absence of angular rate; however, fabrication imperfections cause additional elastic and
damping couplings that lead to quadrature error of the sensor. Zaman [38] designed a
z-axis (yaw rate) mode-matched tuning fork MVG with dedicated quadrature compen-
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sation electrodes that apply torque to proof masses to reduce their fabrication-induced
misalignment, nulling the quadrature error. Their sensor demonstrated a scale factor of
88 mV/◦/s with other performance parameters listed in Table 1. However, without an
auto-tuning of some kind for mode-matching, the sensor becomes vulnerable to losing
its angular rate. In a real-life application, a mismatch of >0.5 Hz could be caused by a
high-frequency input rate or environmental temperature fluctuations. Further, due to
narrower bandwidth, the sensor also experiences a limited full-scale range of ±50◦/s.

Table 1. Performance summary of MVGs.

Ref. MVG Type
Sense
Axis/
Axes

Scale Factor
Full-
Scale
(◦/s)

Nonlinearity
(ppm of

Full-Scale)

Bandwidth
(Hz)

Noise
Density
(◦/s/
√

Hz)

Angle
Random

Walk (◦/
√

h)

Bias
instability

(◦/h)

[38] Mode matched Z 88 mv/◦/s ±50 50 k 0.5–10 < 1 – 0.32

[39] Mode matched X 22 mv/◦/s ±200 21.9 k – 0.02 – –

[40] Mode matched Z 80 µv/◦/s ±60 – 4 0.37 6.67 95

[41] Mode matched Z 88 mv/◦/s ±10 – 1–10 0.0023 1 0.003 0.16

[42] Mode matched Z 15.4 mv/◦/s ±50 – 42 0.0007 2 0.036 1.6

[43] Mode matched X, Y, Z – ±100 500 80 0.0039 0.23 1.2

[44] Mode matched Z 3.79 mv/◦/s ±100 28 15 – 4.96 39.54

[45] Mode split X, Y 1.71 mv/◦/s ±300 3.1 k 160 0.012 – 72

[46] Mode split digital Z 47.3 LSB/◦/s ±500 770 120 0.0075 2 0.45 9.6

[47] Mode split Z 2 mv/◦/s ±300 1.8 k 95 0.25 1 0.008 0.08

[48] Mode split Z 9.29 mv/◦/s – 59.3 104 – 0.0416 0.445

[18] AR-based Z 11 µv/◦/s ±200 – – – – –
1 Actual values are given in nV/

√
Hz but using corresponding scale factor the values are converted to ◦/s/

√
Hz.

2 Actual values are given in ◦/h/
√

Hz.

Liu et al. [39] developed a single-axis mode-matched MVG with a doubly decoupled
structural design that encompasses three resonating masses to further decouple the drive
and sense modes from each other. Their sensor’s circuit included a close loop drive mode
operation, and the readout mode demonstrated better full-scale range and control over
scale factor nonlinearity, as shown in Table 1. Wang et al. [40] developed a mode-matched
SOI-based tuning fork MVG with multiple beams to achieve high Q factors, 255.55 k and
103.39 k for the drive and sense modes, respectively. Their sensor was tested with a closed-
loop drive and an open-loop sense mode, and its performance parameters are listed in
Table 1. Sharma et al. [41] developed a CMOS application-specific integrated circuit (ASIC)
to control the bandwidth (1–10 Hz) of their MVG electronically. They proposed an electronic
sensor control that allows the user to select either a wider frequency bandwidth (10 Hz)
operation or a higher scale factor (88 mV/◦/s) operation. Sonmezoglu et al. [42] developed
an automatic mode matching closed-loop system for their fully decoupled MVG. Their
sensor showed tactical-grade level noise performance and broader sensor bandwidth as
compared to other mode-matched MVGs. The mechanical bandwidth of their sensor was
only 8 Hz, but they were able to develop the system bandwidth of 42 Hz via a low pass
filter for their sensor. A group of researchers at Robert Bosch published a mode-matched
3-axis MVG fabricated via a 20 µm structural poly-Si layer [43]. They employed closed-loop
electronics to achieve low noise and offset drift performance of the sensor by suppressing
electromechanical quadrature, and their measurements demonstrated bandwidth of 80 Hz.
Jia et al. [44] developed a z-axis, automatically tuning mode matched MVG that utilizes a
frequency tuning method based on a quadrature modulation signal. Their sensor showed a
great degree of control over the scale factor linearity error of 28 ppm.
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Aaltonen et al. [45] designed a 2-axis (x, y) low power (2.2 mA) compact MVG with
drive and sense mode frequencies split. They developed a high aspect ratio sensing element
with capacitive actuation and capacitive pseudo-continuous time readout to reduce the
chip area. The performance parameters of their sensor’s x-axis sensing element are listed
in Table 1. They achieved a wider bandwidth of 160 Hz without significantly decreasing
noise performance. Wu et al. [46] developed a decoupled structure for their MVG on a
30 µm SOI substrate. Their sensor demonstrated the angular rate output to be above the
drop of −3 dB in its amplitude for angular rate inputs up to 120 Hz, thus widening the
sensor’s bandwidth. They employed a high resolution 16 bits analog to digital converter
(ADC) to digitize the sensor’s output and measured a scale factor of 47.3 LSB/◦/s with a
considerably better full-scale range of ±500 ◦/s. Similarly, the MVGs reported in [47,48]
also show wider frequency bandwidths than any mode-matched MVGs listed in Table 1.

To summarize, mode-matched MVGs improve the sensor’s scale factor and noise perfor-
mance at the cost of sensor bandwidth, which could still be marginally widened via either
lowpass filters through external passive components or closed-loop control. However, to
gain even wider sensor bandwidth and broader sensor’s full-scale range, mode split de-
signs should be considered, which come at the expense of worsened scale factor and noise
performance. On the other hand, AR-based sensing for an MVG in [17,18] has shown the
potential of obtaining unusually wider sense mode frequency bandwidths which, according
to the study in [27], could achieve higher stability of sense mode amplitudes and thus better
noise performance. This paper presents a Robust Angular Rate Sensor (RARS) architecture
encompassing AR-based sensing for angular rate measurements. Demonstrating a noise per-
formance comparable to mode-matched MVGs, the sensor offers wider frequency bandwidth
that results in simpler control electronics at the expense of a modest loss of scale factor.

2. Sensor Design and Fabrication

The sensor architecture of RARS is intended to employ all the requirements for achiev-
ing 2:1 AR in the sensor design. These requirements are: (i) the two orthogonal modes of
interest must be nonlinearly coupled, (ii) natural frequency commensurability between the
modes must be ω2 ≈ 2ω1, and (iii) the forcing amplitude of the directly excited drive mode
should be higher than some threshold to cause an energy transfer to the auto-parametrically
excited sense mode [5]. The first requirement, in this case, is met because of three types of
nonlinearities, i.e., inertial nonlinearities arising from the microfabrication imperfections,
the damping nonlinearities via nonlinear squeeze film damping, and excitation nonlin-
earities because of inherently nonlinear electrostatic forces. The required frequency com-
mensurability is ensured by intentionally designing the modes of interest with ω2 ≈ 2ω1
and the needed threshold electrostatic force amplitude is achieved via a smaller gap of
1.75 µm between the resonating mass and steady electrodes. It should be noted that this
frequency commensurability is also fine-tuned through electrostatic softening by adjusting
the applied DC bias voltage to the device. Further, each fabricated sensor chip includes
nine instances of the RARS with varying beam dimensions to yield the frequency ratio,
R f = ω2/ω1, in the range of [1.98 2.02] through finite element simulations. This design
strategy ensured multiple instances of the sensor that demonstrated 2:1 AR at different
DC bias voltage threshold values. Sensor instances with R f = 2.04 also demonstrated 2:1
AR by adjusting the applied DC bias voltage. Unlike mode-matched MVGs which require
precise control for matching modal frequencies of drive and sense modes, the proposed
strategy in this paper does not require such precise control and, thus, offers robustness to
both fabrication imperfections and operating voltages.

The CAD model of the sensor is shown in Figure 2, and the labelled dimensions are
given in Table 2. Two identical rectangular proof masses are modelled as two tines of a
tuning fork, connected to a common anchor in the center via four identical fishhook flexure
systems. The fishhook design is employed to ensure the flexure system is compliant in the
desired resonating modes of the proof mass and yet offers high stiffness in undesirable
modes. The design utilizes two in-plane orthogonal modes, in X and Y directions, for its
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operation, as shown in the figure. RARS utilizes its in-plane X mode as sense mode and its
in-plane Y mode as drive mode. Each proof mass plate is surrounded by six (two sense
and four drive) stationary electrodes. For the anti-phase drive operation of RARS, the
AC excitation voltage is applied to two pairs of drive electrodes, DE-I & DE-II (shorted)
and DE-VII & DE-VIII (shorted). Further, as shown in Figure 2, every electrode is isolated
from other electrodes by the silicon in a grey colour to reduce the interference from other
electrodes and the sensor’s cross-axis sensitivity.
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Table 2. Dimensions and properties of the RARS.

Parameter Value Parameter Value

lp 240 µm b4 300× 16 µm2

wp 380 µm tp 30 µm

b1 313× 7 µm2 ρSi 2330 kg/m3

b2 28× 11 µm2 g 1.75 µm

b3 40× 5 µm2 ε0 8.854 pF/m

lv 40 µm wv 40 µm

The actuation mechanism chosen for RARS is electrostatic because of two reasons,
(i) a smaller gap, as variable gap actuation operation generates a higher electrostatic force
required for 2:1 AR, and (ii) its ease of implementation. Variable gap actuation is employed
rather than variable area actuation because the former actuation provides the more signifi-
cant force per unit area required in RARS to achieve energy transfer from the drive mode
to the sense mode via 2:1 AR. However, the pull-in behavior associated with the variable
gap actuation may cause a snapping of the proof mass on an electrode. Pull-in voltages
are calculated and simulated using finite element analysis (FEA) to avoid this. For similar
reasons, variable gap capacitive detection is utilized for sensing operations of the RARS.

The dimensions annotated in Figure 2 are listed in Table 2. In the table, bn represents
the surface area, bn = ln × wn, of beam n. The square vents on either proof mass are
40× 40 µm2 in size.
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A modal analysis using the FEA module of CoventorMP® is conducted on the meshed
model of RARS, and the results are shown in Figure 3. The simulated sense and drive
mode natural frequencies are fs = 17.04 kHz and fd = 34.238 kHz, respectively, with the
frequency ratio of R f = 2.009. For calculating the spring constant of one fishhook flexure
system, the following formulae, as given in [49,50], are utilized.

Kx =
2EI(2lt lb−l2

y)
2lb lc lt−lc l2

y+2la lx ly−2lt l2
a−lb l2

x

Ky =
2EI(2lt lc−l2

x)
2lb lc lt−lc l2

y+2la lx ly−2lt l2
a−lb l2

x

(1)

where
I =

wpt3
p

12

la = −l1l2
2 − 2l1l2l3 + l2l2

3 − 2l1l2l4 − l1l2
4 + 2l2l3l4 + l3l2

4

lb = 2
3 l3

1 + 2l2l2
1 + 2l3l2

1 +
2
3 l3

3 − 2l1l2
3 + 2l4l2

1 + 2l4l2
3 − 4l1l3l4

lc = 2
3 l3

2 + 2l3l2
2 + 2l4l2

2 +
2
3 l3

4 + 2l2l2
4

lt = l1 + l2 + l3 + l4

lx = l2
2 + 2l2l3 + 2l2l4 + l2

4

ly = −l2
1 − 2l1l2 − 2l1l3 − 2l1l4 − 2l3l4 + l2

3

(2)

Here li represents the length of the beam i = 1 . . . 4. The calculated natural fre-
quencies, by substituting the values from Table 2 in fishhook flexure stiffness equations,
Equations (1) and (2), of the sense and drive modes are 17.124 kHz and 33.991 kHz, respec-
tively, which are close to the natural frequencies found from modal analysis. Further, the

pull-in voltage of the sense mode is calculated from [51], VPI,x =

√
8Kx g3

27ε0tpwp
= 68.12 V. Here,

Kx is the stiffness in x direction, and ε0 is the vacuum permittivity, and its value is 8.85 pF/m.
To achieve the higher sensitivity of the proof mass displacements in the sense mode to

applied angular rate inputs, the drive and sense mode’s quality factors, or shortly Q factors,
must be high. Since vacuum packaging of the sensor allows low damping and hence
high and stable Q factors over the sensor’s lifetime, the RARS devices are fabricated using
the MEMS Integrated Design for Inertial Sensors (MIDIS) fabrication process of Teledyne
DALSA. MIDIS offers a high vacuum with a minimum feature size of 1.5 µm, allowing us
to design the gap between the static electrode and the moving proof mass to be in the range
of 1.75 µm to 2 µm. The smaller gap in RARS causes higher electrostatic forces for the same
applied voltage, which would actuate 2:1 AR.

The MIDIS process In Figure 4 is a wafer-scale vacuum encapsulation technology with
an inner pressure of 1.5 Pa or 11.2 mTorr [52]. The device layer of RARS, including the res-
onator and its surrounding electrodes, is on a 30 µm thick N-type doped silicon (100) wafer,
referred to as the device wafer. A P-type doped silicon (100) wafer, referred to as the handle
wafer, acts as the substrate and creates the device wafer’s bottom cavity. The third wafer is
N-type doped silicon (100) wafer, known as TSV (through silicon via) wafer, which creates
the top cavity and TSV for the device layer. The vacuum is created by fusion bonding the
TSV wafer and the handle wafer on either side of the device wafer. The TSVs in Figure 4
include SiO2 liners as insulators and in-situ doped polysilicon (ISDP) as conductors.

Figure 5 shows the pictures of the RARS fabricated package. The vacuum-sealed chip
is observed on the bottom of the package with its lid removed, as shown in Figure 5c.
Its zoomed view, along with the wire bonding, is shown in Figure 5a. Notice that the
84 connections to the pads that are visible in Figure 5a correspond to the total of nine
instances of the RARS on one vacuum encapsulated sensor chip. The top view of the
package with 84 pins is shown in Figure 5b. Notice that these pictures were taken from the
chip that served its purpose and was no longer required for further experiments.
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3. Modeling of Sensor Dynamics

This section describes an intuitive understanding of how the RARS achieves angular
rate sensitivity via nonlinear 2:1 AR by explaining its motion equations.

Figure 6 shows a simplified two degrees of freedom, in-plane translation and torsional,
lumped mass model of the RARS dynamics. For modelling the dynamics of both systems,
the following assumptions are employed. (i) The left and right side resonators, proof
mass–beam systems, are decoupled from each other through anchors. (ii) Since the sensor
architectures are symmetric about the vertical axis connecting two anchors, studying only
the left-side resonator dynamics is sufficient. (iii) Since the displacements of only the proof
mass are utilized to both drive and sense the RARS, the proof mass, M, is assumed to
be a rigid body that is anchored to the substrate via multiple mass-less flexible beams
and anchors. The beams are modeled as mass-less springs and energy dissipation is
assumed viscous and modeled as mass-less dampers. (iv) The system has two independent
coordinates, r(t) for in-plane horizontal translation mode, sense mode, and θ(t) for in-plane
torsional mode, drive mode. (v) The sensor is subjected to a constant angular rate, Ωz, with
respect to the Z axis.
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Figure 6. Lumped parameter model of RARS dynamics. (a) Undisplaced proof mass, (b) Proof mass
displaced by r(t) in sense mode, (c) Proof mass displaced by θ(t) in drive mode.

In Figure 6a, M represents the left side resonator’s proof mass of RARS. It is sur-
rounded by two parallel plate capacitive electrodes, X-Electrode and Y-Electrode, in
X and Y directions respectively, with a gap of g between each electrode and the proof
mass. The length and width of the proof mass are lp and wp respectively. The fixed refer-
ence frame, OXYZ, has unit vectors î, ĵ and k̂ in X, Y and Z axes, respectively. Further, l1 is
the radius of rotation of M from the origin of OXYZ frame.



Sensors 2022, 22, 7889 10 of 25

Figure 6b shows the translation mode’s displacement, r(t), of M in X direction, its
equivalent modal stiffness, kr, and damping coefficient, cr of all the beams connected
to the proof mass, M. Similarly, Figure 6c shows the in-plane torsional mode’s angular
displacement, θ(t), of M from the previously displaced position and kθ and cθ represent its
equivalent torsional stiffness and damping respectively.

The detailed derivation of the sensor’s motion equations and their numerical simula-
tions is outside the scope of this paper. Using an energy approach, Lagrange’s equations
are employed to derive the system’s motion equations as follows.

Ml12
..
θ + Cθ

.
θ + Kθθ =

[
−2Ml1Ωz

.
r
]

︸︷︷︸
Linearly coupled Coriolis

−
[
2Ml1r

..
θ + 2MΩzr

.
r + 2Ml1

.
r

.
θ
]

︸ ︷︷ ︸
Quadratic coupled terms

−
[

Mr2
..
θ + 2Mr

.
r

.
θ
]

︸ ︷︷ ︸
Cubic coupled terms

+
[
V2

YE

(
η1 + η2θ + η3θ2

)]
︸ ︷︷ ︸

Electrostatic force

(3)

M
..
r + Cr

.
r + Krr =

[
Ml1Ωz

2
]

︸ ︷︷ ︸
Constant Centrifugal

+

 2Ml1Ωz
.
θ︸ ︷︷ ︸

Coupled Coriolis

+ MΩz
2r︸ ︷︷ ︸

Decoupled Centrifugal


︸ ︷︷ ︸

Linear terms

+

[
Ml1

.
θ

2
+ 2MΩzr

.
θ

]
︸ ︷︷ ︸
Quadratic coupled terms

+

[
Mr

.
θ

2
]

︸ ︷︷ ︸
Cubic coupled terms

+
[
V2

XE

(
α1 + α2r + α3r2

)]
︸ ︷︷ ︸

Electrostatic force

(4)

where VYE and VXE are applied voltages to the Y and X electrodes, respectively. CYE and CXE
are variable gap capacitances between M and Y electrode in θ mode and between M and X
electrode in r mode, respectively. Following Figure 6, we can write CXE and CYE as follows.

CXE =
ε0tpwp

g−r

CYE =
ε0tp{lp−l1(1−cos θ)}

g−l1 sin θ

(5)

In Equation (5), ε0 is vacuum permittivity, 8.85 pF/m, and tp is the thickness of the
proof mass or the thickness of the silicon device layer, 30 µm. Notice that capacitances
are nonlinear functions of modal variables r and θ. Since we bias the device layer or the
proof mass with a DC voltage of Vdc and apply the AC voltage of Vac cos(ωet) to the drive
electrode, VXE and VYE are given by,

VYE = Vdc + Vac cos(ωet)
VXE = Vdc

(6)

Further, the constants ηi and αi in (3) and (4), resulting from Taylor series expansion of
capacitances in (5) up to third order, are given by,

η1 =
ε0tp lp l1

2g2

η2 =
ε0tp l1(2lp l1−g2)

2g3

η3 =
ε0tp l1(6l2

1 lp−3l1g2−lpg2)
4g4

α1 =
ε0tpwp

2g2

α2 =
ε0tpwp

g3

α3 =
3ε0tpwp

2g4

(7)
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Next, we discuss the characteristics of motion equations given in (3) and (4).
Equations (3) and (4) describe a system of two second-order coupled nonlinear ordinary
differential equations. The only kind of linear coupling between two modes is the Coriolis
coupling due to external angular rate, Ωz. Further, there are two kinds of nonlinearities,
inertial and elastic. The nonlinear terms containing the time derivatives of dependent vari-
ables, θ and r, are inertial nonlinearities, and the ones not containing the time derivatives
of dependent variables are elastic nonlinearities, as referred to in [6]. In addition, when
Ωz = 0, the Equations (3) and (4) are coupled via only nonlinear terms.

Equations (3) and (4) also estimate the pull-in voltage expressions for both modes.
For example, the DC component of V2

XEα2r is V2
dcα2r, which causes electrostatic spring

softening by changing the equivalent spring constant of the r mode and thus changing its
modal natural frequency, ωr, as well. This term, V2

dcα2r, when moved to the left hand side
of Equation (4) and then using Equation (7) yields the net spring force as

Fnet =

(
Kr −V2

dc
ε0tpwp

g3

)
r (8)

It is known that at the pull-in voltage, VPI,r, the gap becomes gPI = 2
3 g and causes

Fnet = 0. Substituting this condition for pull-in in (8) yields,

Kr −V2
PI,r

ε0tpwp

g3
PI

= 0 (9)

At pull-in, the equilibrium between the spring force due to the beams’ stiffness and the
electrostatic force in (9) is lost, and the resonating proof mass snaps on the X electrode and
the sensor is shorted. Using (9), the pull-in voltage for r mode, VPI,r, can be given as follows,

VPI,r =

√
8Krg3

27ε0tpwp
(10)

Notice that (10) is the same as the pull-in voltage equation in the literature, e.g., in [51].
Similarly, the pull-in voltage for θ mode, VPI,θ , changes the natural frequency of mode θ,
ωθ , and it can be given as follows,

VPI,θ =

√
24Kθ g3

9ε0tpl1
(
9lpl1 − 2g2

) (11)

Notice in Equation (4), for non-zero angular rate input, Ωz, the term 2MΩzr
.
θ (quadratic

coupled) causes resonance in the sense mode. Since this term is linear in Ωz, the sense
mode of the RARS experiences angular rate sensitivity.

The last two terms of electrostatic force in Equation (3), V2
YEη2θ and V2

YEη3θ2, are para-
metric excitation terms and V2

YEη1 is an explicit time dependent term causing
Equations (3) and (4) to be a nonautonomous system for RARS. Moreover, mode r is a
non-externally excited mode because Equation (4) has no explicit time dependent terms. In
fact, the only way mode r could be excited is through coupling terms, linear and nonlinear.
The terms on the right-hand side of Equations (3) and (4) are labelled underneath based on
the order of nonlinearity and are self-explanatory.

Lastly, notice that in (4), the non-zero Ωz, makes the centrifugal term, MrΩ2
z , non-zero,

and thus decreases, via spring softening, the natural frequency, ωr, of the mode r. However,
in real-life applications Ωz � ωr. For example, an input rate of Ωz = 360 ◦/s has an
ordinary frequency of 1 Hz whereas a typical gyroscope’s sense mode natural frequency
is in the order of kHz. This could still limit the frequency bandwidth performance of a
conventional mode-matched gyroscope, especially for input rates greater than a couple
of Hz. However, unlike a conventional mode-matched MVG that has a pointed frequency
response with a narrow frequency bandwidth, the RARS has a flatter and wider (bandwidth)
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nonlinear frequency response curve and, therefore Ωz could safely be assumed to have
negligible effects on the shifting of ωr.

4. Characterization of Sensor’s Nonlinear Dynamics

Although RARS operates at 2:1 AR instead of linear resonance, its Q factor charac-
terization is essential for several reasons. Firstly, the operation of RARS requires a linear
resonance, or primary resonance, of its drive mode. The sense mode response at 2:1 AR
is directly proportional to the drive mode amplitude. Secondly, the drive mode Q fac-
tor, Qd, also indicates the mode’s frequency bandwidth at its linear resonance, ∆ fd,LR, by
Qd = fd/∆ fd,LR where fd is the linear resonant frequency of the drive mode. There is a
trade-off between Qd and ∆ fd,LR. Since the sense mode of RARS is designed only to be
excited via 2:1 AR, its frequency bandwidth is not bounded by the sense mode’s Q factor,
Qs. Finally, the modal damping coefficients could be estimated by characterizing RARS for
its Q factors and linear resonant frequencies.

The experimental schematic for the Q factor and natural frequency characterization of
the sense mode of RARS is shown in Figure 7. The resonator is biased with DC voltage,
Vdc, applied at the anchor via a source measurement unit or SMU (Keysight B2901A). An
AC drive voltage of Vac cos(2π fet) is applied to the sense electrode SE-1 via the impedance
spectroscope (HF2IS by Zurich Instruments). The drive voltage frequency, fe, is swept
around the simulated resonant frequency of the sense mode, and the resulting proof mass
motion is sensed via the parallel plate capacitance change between the moving proof mass
and the stationary electrode, SE-2. Notice that SE-2 detects the small motional current,
is2, which is directly proportional to the capacitance change. A transimpedance amplifier
or a current amplifier (Femto DHPCA-100) with a variable gain (R) then converts and
amplifies the motional current to a detectable voltage signal, Vs = Ris2. Vs is then analyzed
by HF2IS and displayed on a computer via ZI control software. The recorded Qs and the
linear resonant frequency of the sense mode, fs are listed in Table 3.

Table 3. Q factor and resonant frequency characterization of RARS.

Parameter Type Parameter Values

Input
DC bias voltage, Vdc(V) 12

AC voltage amplitude, Vac

(
mVpk

)
150

Amplifier gain, R(kV/A) 100

Output

Drive mode resonant frequency, fd(kHz) 30.607
Sense mode resonant frequency, fs(kHz) 15.197

Drive mode Q factor, Qd 13,780
Sense mode Q factor, Qs 12,920

For the 2:1 AR characterization of RARS, we mount the sensor on PCB and use a
lock-in amplifier by Zurich Instruments (either HF2IS or HF2LI) along with its ziControl
software for signal processing. The 2:1 AR characterization is done with the application
of DC bias voltage, Vdc, to the device and an AC signal, Vac cos(2π fdt) at the drive mode
resonant frequency, fd, to the drive electrodes. The sensor’s response in the orthogonal
sense mode is differentially sensed at the sense mode resonant frequency, fs ≈ fd/2,
via the sense electrodes. Since in HF2LI we are only able to track a signal at its output
excitation frequency, we set the output AC excitation signal in HF2LI to Vac cos(2π fst).
This would allow us to track the frequency response of the signal in real-time at the sense
mode resonant frequency fs. However, to realize the primary resonance of the drive
mode, we must excite the drive electrodes at Vac cos(2π fdt) and, therefore, we employ an
analog frequency multiplier or simply a frequency doubler circuit, as shown in Figure 8,
that takes Vac cos(2π fst) as an input signal and outputs Vac cos(2π fdt) with a reasonable
attenuation of the output amplitude. The frequency multiplier circuit takes an input signal
and squares it using the parallel resonant LC circuits, made up of surface mount chip
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inductors, capacitors, and an NPN transistor. The squaring results in the signal with the
frequency components at DC and at the first and second harmonics. The signal is then high
pass filtered via a passive high pass filter built using a surface mount chip resistor and
capacitor to attenuate the first harmonic frequency and the DC component considerably.
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Figure 7. Experimental schematic for Q factor and natural frequency characterization of the sense
mode of RARS.

Further, for specific values of Vac, it will be shown in the subsequent section that the
sense mode signal due to 2:1 AR exhibits a parasitic feedthrough component at frequency
fe that may have a higher amplitude than the component at frequency fs. However, in
RARS, we set fe = 2 fs, which causes parasitic feedthrough at 2 fs while the 2:1 AR occurs
at fs. Although this eliminates the problem of parasitic feedthrough, it is still advisable
to attenuate it. Therefore, for the RARS device, we develop a notch filter to attenuate the
parasitic feedthrough at fe ≈ 2 fs from the sense signal. The picture of the notch filter
for RARS is shown in Figure 8. Figure 9 shows the circuit, modelled in Simulink, of a
passive twin-T notch filter. The upper part shown in the blue rectangle forms a low pass
filter, and the lower part in the red rectangle forms a high pass filter. A parallel resistor
circuit is chosen because it is easier to solder-stack SMD resistors than to solder them in
series. The values of resistors and capacitors are listed in the table as shown in Figure 9.
The maximum attenuation is achieved at the notch frequency, fN = 1/

(
4πReqCeq

)
, where

Req = Rh1||Rh2||Rh3
∣∣∣∣Rh4 and Ceq = Ch1.
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Figure 8. (a) Frequency doubler and (b) notch filter.

We now characterize the RARS for its 2:1 AR using the experimental setup shown
in Figure 10. We apply the DC bias voltage to the device at the anchor via an SMU. As
explained earlier, the AC voltage is applied using the frequency doubler to the drive
electrode pairs of DE-1 & DE-2 and DE-7 & DE-8. Notice that these pairs consist of two
shorted electrodes to maximize the electrostatic force to the proof mass and to optimally
utilize the number of available electrical pads for wire bonding on the chip. The sense
mode motions of the proof masses are differentially sensed using the sense electrodes SE-1
and SE-3. The notch filter attenuated the amplitude of parasitic feedthrough from the sense
signal before feeding it to HF2LI.
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Figure 10. Setup’s schematic for frequency response curves of RARS.

Next, we set the input parameters to Vdc = 12 V, R = 10 MV/A, and fe ≈ 2 fs while
varying Vac, to obtain the force response curves shown in the semi-log plot of Figure 11.
At Vac = 675 mVpk, 2:1 AR occurs, and the sense mode response jumps up from the noise
floor. For Vac < 675 mVpk, the drive mode amplitude linearly increases, and after 2:1 AR, it
saturates. For Vac > 675 mVpk, the sense mode amplitude steadily increases on a log scale,
which indicates considerable increment on a linear scale.
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Finally, to obtain the frequency response curves, we first vary Vdc for Vac = 1.2 Vpk,
and then vary Vac for Vdc = 12 V. Figure 12a,b show frequency responses of the sense mode
of RARS for different Vdc and Vac values, respectively. For Vdc = 12 V and Vac = 1.2 Vpk, a
maximum frequency bandwidth, at 2:1 AR, of ∆ fBW,AR = 1038 Hz is achieved. Both the
figures have two X axes. The bottom axis represents the excitation frequency fe and the top
axis indicates the resonant frequency of the sense mode, fs.
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5. Sensor Test Results

The RARS was tested according to the guidelines of IEEE std 1431 for its scale factor
performance [35]. The experimental setup used for these tests is shown in Figures 13 and 14.
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Figure 13 shows the schematic of the experimental setup to measure the scale factors
of RARS. The required additional circuitry, such as current-to-voltage conversion, is shown
in Figure 14. In Figure 13, the sensor-on-PCB is mounted on the base of the rate table (Ideal
Aerosmith 1621-200A-TL) with a rate accuracy of ±0.01%, which would subject the sensor
to angular rate input of Ωz with respect to the Z axis, the axis normal to the plane of the
sensor. The sensor is biased with the DC voltage Vdc supplied by a precision SMU (Keysight
B2901A). An AC voltage signal is first fed to the sensor’s two drive electrodes from HF2LI’s
signal output port, Out 1, to excite the sensor in anti-phase drive mode. The detected sense
mode signal is then fed back to the signal input port, In 1, of HF2LI, which outputs the
signal visually on a scope via ZI control software on a computer.

Now, we discuss the detailed experimental setup as shown in Figure 14. Notice that
the figure’s blue and black connection lines represent the sense-mode readout circuit and
the sensor actuation circuit, respectively. All components inside the purple rectangle of the
rate table chamber are securely mounted on the rate table’s rotating base using adhesives
and screws. Further, the connection lines crossing the rate table chamber block in the figure
indicate wires entering the rate chamber through a slip ring. HF2LI feeds an AC voltage
of Vac cos(2π fst) the frequency doubler which converts the signal to Vac cos(2π(2 fs)t) and
feeds to the drive electrodes to resonate the proof mass in anti-phase drive mode.

Figure 15 shows the pictorial description of the experimental setup demonstrated in
Figure 14. The RARS is first driven to a stable 2:1 AR, and then a constant angular rate
Ωz, a step input, for about 30 s is applied to the rate table via the control panel of the Aero
812 table controller. The filtered sense signal then carries the angular rate information at
fs and is measured by HF2LI via the demodulator 1. For each step input, the sensor’s
response is recorded via the spectroscope tab of HF2LI. Further, to precisely record the
sensor’s output due to angular rate signal at fs, we utilize the inbuilt low pass RC filter
of HF2LI at a bandwidth of 1 Hz. This allows us to reduce the noise in signal due to the
applied angular rate at the sense mode frequency fs.

The gyro scale factor, as mentioned in the IEEE std 1431 [35], in mV/◦/s for the sensor
is then computed by computing the slope of the straight line that can be fitted using the
method of least squares from the input-output (◦/s−mV) data of the sensor. The input
rate limits that confirm the sensor’s computed scale factor with a specific full-scale linearity
error, also known as the nonlinearity of scale factor, are also calculated for each sensor.
In addition, we calculate the asymmetry error of the scale factor, which is the ratio of the
difference in magnitudes of scale factor measured for positive and negative input rates to
one-half the sum of the magnitudes. Finally, to test the sensitivity of the scale factor due to
variations in operating voltage frequency, we test each sensor’s scale factor at three distinct
excitation frequencies. Notice that this last test demonstrates the robustness of RARS over
mode-matched MVGs, variations in operating voltage frequency or shift in modal resonant
frequencies due to electrostatic softening, aging of the sensor, fabrication imperfections, or
applied angular rate.

To test the sensitivity of the scale factor to variations in operating frequency, fe, we
choose three distinct excitation frequencies. We obtain the scale factors of RARS at its
(i) peak resonant frequency, i.e., fe = fpeak = 30.255 kHz, (ii) the half resonance power (i.e.,
29.3% or −3 dB of amplitude drop from its peak) frequency, i.e., fe = f−3dB = 30.763 kHz
and (iii) the quarter resonance power (i.e., 50% or −6 dB of amplitude drop from its peak)
frequency, i.e., fe = f−6dB = 31.007 kHz of the sense mode’s 2:1 AR response, as shown
in Figure 16. The frequency shifts at the half and quarter resonance powers are 1.7% and
2.5% of the frequency at its peak resonance power. Notice that the frequency span on the
horizontal axis of Figure 16 is 2 kHz.
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Next, we test the sensitivity of RARS to angular rate inputs in the range of
Ωz =

[
−360 360

]◦/s with an interval of 30◦/s, and angular acceleration of Ωz
◦/s2 for 1 s.

Figure 17 demonstrates the sensor’s output at 330◦/s. The rise and settling time conform
with the input angular acceleration for 1 s. Further, Figure 18 shows the application of
RARS in detecting lower angular rates than 5◦/s.
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Figure 18. RARS output at fe = fpeak to a step input rate of +4◦/s.

By using the nominal scale factor value, at fe = fpeak, Figure 18 predicts the angular
rate with an accuracy of 4.06% at the peak response amplitude. Figure 19 demonstrates
the comparison of the linear fit of the sensor’s output to the full range of the positive input
rates (PIR) at fe = fpeak. It can be observed that the output of RARS for input rates up to
360◦/s are better fitted with a line. For input rates ≥ 360◦/s, however, the input-output
relationship becomes more nonlinear.
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Figure 19. Linear fit for RARS sensitivity measurement.

As shown in Figure 20, for the input rate range of Ωz =
[
−330 330

]◦/s the sensor’s
output could be fitted with a line using the least squares method. It should be noted that the
direction of rotation information is incorporated using an external accelerometer. The scale
factors of the sensor for PIR and NIR at fe = fpeak are 52.75 µV/◦/s and −53.49 µV/◦/s,
respectively, with an asymmetry error of 1.39%. At fe = f−3dB for PIR and NIR the
scale factors drop by 4.45% and 1.25%, respectively, from those at fe = fpeak with an
asymmetry error between them of 4.69%. Lastly, at fe = f−6dB the asymmetry error in
scale factors between PIR and NIR is 2.11%, with drops of 8.53% and 11.68% in their
respective scale factors from those at fe = fpeak. Therefore, RARS has better control over
the asymmetry errors across all three excitation frequencies. Further, RARS has a full-scale
range of

[
−330 330

]◦/s at all three excitation frequencies. Nominal scale factors of RARS
at three distinct excitation frequencies are computed. The drops in nominal factors at
fe = f−3dB, and fe = f−6dB from that at fe = fpeak are 1.82% and 10% which indicates
that in practice, RARS could handle the frequency shift, shift between its resonance and
excitation frequencies, of 1.06% within a total accuracy of 1.82% of its nominal scale factor.
The linearity errors in these nominal scale factors approach ±5.5◦/s, ±5.5◦/s, and ±6.5◦/s
at fpeak, f−3dB, and f−6dB, respectively. The full-scale linearity errors of RARS are 0.91%
at fpeak, and f−3dB, and 1.06% at f−6dB. The scale factor and full scale range of the sensor
developed by Sarrafan [18] were 11 µv/◦/s and ±200◦/s, respectively, whereas the RARS
demonstrated the maximum scale factor of 52.75 µv/◦/s for a full-scale range of ±330◦/s.

RARS demonstrated a stable sensitivity of its scale factor to the sensor’s variations in
operating frequency with better dynamic range or the input rate limits. In addition, the
asymmetry errors are well controlled while operating the sensor at full and half 2:1 AR
power. Overall, the sensor demonstrates a limited sensitivity of its output to the frequency
mismatch within the half 2:1 AR power.
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6. Conclusions

This paper presents a single-axis angular rate sensor that is robust to variations in its
operating voltage and frequencies, hence dubbed robust angular rate sensor (RARS). Its
architecture is designed to operate the sense mode at 2:1 AR to stabilize its scale factor over
a wider frequency band by utilizing inertial, damping, and excitation nonlinearities. The
sensor is electrostatically actuated in anti-phase drive mode and capacitively sensed using
differential sensing via the variable gap capacitive detection.

The in-plane tuning fork design of the sensor allows the induced Coriolis forces
experienced by either proof mass to be added to the sense mode response while the
common-mode inputs in the same direction are cancelled out. The employed fishhook
flexures offer high stiffness in undesired modes while keeping the sensor compliant in
drive and sense modes. The sensor structure was modelled analytically and numerically.
Pull-in voltage values were calculated to avoid operating the sensor above that voltage. To
attain high Q factors, the sensor was fabricated by the wafer-level vacuum encapsulated
MIDIS process of Teledyne Dalsa.

Before the angular rate performance tests, the experimental nonlinear characterization
of the sensor was carried out. A custom-built notch filter and a frequency doubler circuit
were used to attenuate the parasitic feedthrough from the sense signal and provide an AC
voltage excitation at the drive mode resonant frequency. The frequency bandwidth, due to
2:1 AR, of 1038 Hz was achieved for the sense mode of RARS. The angular rate performance
tests demonstrated that the maximum sensitivity of 52.86 µV/◦/s was achieved with a
full-scale nonlinearity of 0.91%. The RARS has a dynamic range of ±330 ◦/s, and −3 dB
bandwidth of 507.8 Hz.
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