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Abstract: In direct line with the evolution of technology, but also with the density of vehicles that
create congestion and often road accidents, traffic monitoring systems are parts that integrate intelli-
gent transport systems (ITS). This is one of the most critical elements within transport infrastructures,
an aspect that involves extremely important financial investments in order to collect and analyze
traffic data with the aim of designing systems capable of properly managing traffic. Technological
progress in the field of wireless communications is advancing, highlighting new traffic monitoring
solutions, and the need for major classification, but proposing a real-time analysis model to guide
the new systems is a challenge addressed in this manuscript. The involvement of classifiers and
computerized detection applied to traffic monitoring cameras can outline extremely vital systems for
the future of logistic transport. Analyzing and debating vehicle classification systems, examining
problems and challenges, as well as designing a software project capable of being the basis of new
developments in the field of ITS systems are the aim of this study. The outline of a method based on
intelligent algorithms and improved YOLOv3 can have a major impact on the effort to reduce the
negative impact created by chaotic traffic and the outline of safety protocols in the field of transport.
The reduction of waiting times and decongestion by up to 80% is a valid aspect, which we can deduce
from the study carried out.

Keywords: traffic modelling; vehicle classification; intelligent system transportation model; traffic
congestion; critical transportation infrastructure; transportation safety

1. Introduction

The expansion, in terms of the high number of vehicles, increases the degree of
saturation and exceeds the capacity of the existing transport networks, reaching a severe
congestion factor in several countries of the world [1]. In addition to this aspect, over 1.3
million victims are killed and another 50 million are injured annually due to road accidents,
a pressing problem in our society. These aspects involve extremely high costs in terms of
the country’s economy, with estimates showing that between 1 and 3% of the domestic
product is affected [2]. However, building new additional infrastructure is a solution in
most cases, but high costs and limited building space are defining factors of the current
situation. It can be said that delays increase prohibitively when it comes to providing safety
to service providers in the field of highway construction, additional facilities in order to
maintain a high standard and decongest traffic throughout the duration of the works, and
also to divert traffic to alternative routes. Approximately 90% of road accidents are caused
by the error of human factors, through lack of attention, fatigue, delayed reactions, and
lack of distributive attention [3]. Thus, a traffic monitoring system becomes an effective
alternative in the process of warning of traffic congestion. Being an integral component
within intelligent transport systems (ITS), it is used in the collection of traffic data, such
as the number of vehicles, their types, or the speed of travel. Based on this collected
information, traffic analyzers are carried out, later they are transmitted to the integrated
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systems at the road infrastructure level in order to predict future transport and improve
transport [4]. In terms of safety and traffic monitoring applications, we have to consider
the need for low latencies, reaching up to 20 ms, in order to detect collisions and pre-crash.

These aspects have highlighted that the delivery of data packets and communication
according to standards varies up to approximately 300 m [5]. Even if national transport
agencies are actively involved and invest huge amounts of money in order to develop,
implement, and maintain traffic-monitoring systems [6,7], it is not enough, and new alter-
natives are needed. It can be said that one of the main functionalities of a traffic monitoring
system is vehicle classification. This aspect is essential in view of the extremely significant
technical challenges of investigating problems of a mechanical nature or cataloging certain
vehicles as dangerous due to their age. The research carried out on the formation and
spread of congestion or accidents also led to a first response, whereby vehicles with serious
technical problems cause the loss of human lives and traffic congestion through the defects
they have. Another important finding is that more than 93% of deaths caused globally
occur in low- and middle-income countries that do not automatically have adequate road
infrastructure and are unable to provide the best conditions for road users, although these
countries contribute only about 60% of the total number of vehicles in the world [8]. In
other words, the precise classification of vehicles into several types is an extremely crucial
aspect in order to operate the traffic efficiently, but also to plan it according to a predeter-
mined algorithm according to the road sector. For example, information on the number
of oversized vehicles on a highway section can be used to estimate the capacity of that
section, and to plan part of the roadway maintenance processes. An important aspect
dictated by the types of vehicles that use the running surface is the appearance and the geo-
metric design that it must respect. Current developments and progress achieved through
the implementation of automatic detection or learning technologies, as well as wireless
communications, have given birth to new types of innovative systems in terms of vehicle
classification and analysis.

These new systems approaches, which classify vehicles with much greater precision,
use advanced sensor units and hardware components to operate over extremely long
distances. Within the manuscript, an exact analysis of the stage reached by the vehicle
classification techniques and ways of approaching the problem is carried out, as well as the
realization of some simulation scenarios that highlight an emerging solution on which the
existing ITS systems could be based. The method of classification, the problems arising in
the studies carried out, and the development of a new approach that increases the accuracy
of classification will be systematically analyzed. The analyses and classifications will be
carried out on three categories of approaches, those of the in-road-based, over-road-based,
and side-road-based types, although in these situations, the systems developed up to this
moment have reached the stage of revolutionary technologies and implemented direct
communication between the road units and the infrastructure. The implementation of ITS
systems that are based on intelligent algorithms for monitoring and streamlining traffic is
another approach within the manuscript. It can be said that many intelligent systems based
on V2X or 5G communications are installed in the testing phase in several areas of the world,
including those responsible for analyzing some standard traffic monitoring and congestion
loop detection networks [9], observing an appetite for vision-based vehicle classification
techniques [10,11], and neglecting urgent classification solutions. The main purpose of
the article is to highlight the need and usefulness of vehicle classification solutions in
order to implement, at the infrastructure level, some devices that address and remedy
current problems. Neglecting the aspects that lead to road accidents or traffic congestion
leads to a precedent in terms of loss of human life. We consider relevant the study of
the classification of vehicles, and depending on their category, their dimensions, or the
speeds they reach, they should be directed differently according to certain classifiers. A
comprehensive study of the approaches from the last decade is analyzed, and to lead to a
result, a traffic monitoring solution via RF and Wi-Fi installed at the road infrastructure
level will be proposed.
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We must not neglect the main aspect, that most of the current road infrastructures
benefit from cameras installed at the level of traffic lights. This aspect can accurately
analyze and measure the density of vehicles at each time interval, day and night. This
can also help with designing simulation methods to validate models that analyze the
similarities of the simulated traffic compared to the real one. All these aspects were not
carried out in the same study; therefore, we consider the proposed approach through which
classification methods are proposed, and this is carried out on the basis of captures made
in real-time directly from video sensors mounted both in high-density urban areas, but
also at the entrance to the suburbs of the cities, constitutes another point of view in this
direction. The involvement of road infrastructure within an ITS system based on video
processing and emerging communications between infrastructure and vehicles outlines a
favorable framework for the development of complex autonomous systems. The simulation
in critical conditions and environments with real training data that highlights an extremely
exhaustive manner nevertheless creates a process through which future research in the
direction of autonomous driving can be carried out. The component that differentiates the
current approach from others consists of the analysis of vehicles according to their type
according to the elements that define the frontal area such as headlights or the light grid,
these being much more feasible in processing with the help of video cameras installed at
the level of the infrastructure.

Through these elements, we can later extract characteristics related to homogeneity,
and entropy, but also contrast, validating the experimental method through increased
accuracy. It can be said that by including the negative events that cause traffic accidents, the
collision with other vehicles can be identified through such procedures. The importance of
classifying a characteristic region that belongs to the contour of the vehicle can sometimes
lead to false detection. By approaching with the help of YOLOv3 and going through LS
in multi-layer with filtering of anchor points according to the centroid of the image, the
accuracy in the external environment is much higher. The experience gained in projects
that addressed road safety issues and the implementation of systems based on visible light
communications, as well as radio frequency, is extremely useful in the approach to the
field presented. The fusion that can be created at the infrastructure level by combining
the data received from different sensors is reflected by the quantity and complexity of the
performed calculations. It can be said that the results presented in the article highlight the
importance and necessity of implementing a system based on classifiers, with the mention
of the implementation within an intelligent system that provides real-time information to
both traffic participants and the road infrastructure, with the aim of reducing congestion,
accidents, but also the density of vehicles in urban areas. The structure of the article is
organized as follows.

Section 2 aims to debate current approaches, but also briefly presents some reference
works for specialized literature in the field of vehicle classification. These classifications are
extremely important in terms of utility and applicability within applications dedicated to
road infrastructure, traffic optimization, but also management and management systems.
It will also include the presentation of sensory solutions implemented at the level of the
road infrastructure, but also on the road surface. Section 3 presents the efficiency of using
classification solutions through neural networks, simulation models, and characteristics of
the training sets. Section 4 refers to the aspects related to the performance of the training
sets, the outline of the experimental results, but also comparisons with other approaches.
In Section 5, the conclusions and highlights of the article are presented, as well as future
directions, and implementation.
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2. Debates Regarding the Taxonomy of Vehicle Classification and Applied
Technological Approaches

It can be said that the subject addressed needs a thorough study and a breakdown
of the vehicle classifications and a taxonomy of these systems, the details of each one, the
technical description, and their performances are necessary. The classification of these
systems is performed in three classes, and they differ according to the area in which they
are implemented. Classification of vehicle analysis systems, systems based on sensors, and
modules that analyze the infrastructure, and systems that can be installed at the level of
the road surface, at the level of curbs or traffic lights. Implementation of systems based
on piezoelectric sensors [12], magnetometer [13,14], vibration sensors [15]. Data extraction
is performed incrementally, optimizing each set of information received from the sensors,
including vehicle size or length, number of axles, and unique characteristics rendered by
the received signal or waveform. Some of the systems installed at the level of the road
infrastructure present results that highlight the high accuracy of vehicle classification,
an aspect supported by the close contact between the area where they are installed and
the vehicles in motion, memorizing the signs and the way the vehicles move. One of
the most important factors that disadvantage these systems is the high installation and
maintenance cost, since the road surface requires stripping in the area where these sensors
are installed. Costs increase significantly in terms of disruptions created in traffic due to
traffic restrictions, but also many other aspects. Instead, the systems installed at the road
infrastructure level address the cost problem through vehicle classification schemes by
analyzing the traffic through sensors installed at the edge of the roadway. Some of these
systems use magnetometers, accelerometers [16], but also acoustic sensors [17].

The [18] studies used advanced sensors, such as LIDAR (Light Detection and Ranging)
and infrared sensors [19,20], but also Wi-Fi receivers and transmitters [21]. In addition to
these approaches, the benefits of such a much simpler intervention at low costs cannot be
precisely highlighted in terms of performance or analysis accuracy, since, for increased
accuracy, the sensors must be installed at certain distances from the road segments and
in certain positions so that they facilitate an analysis as accurately as possible. Figure 1
presents the diagram of vehicle classification systems.
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Perhaps one of the problems that is difficult to solve with standard application con-
cerns is the accurate classification of overlapping vehicles. The need for a calibration
algorithm for the data received from the sensors is imperative, reducing the impact cre-
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ated by the background noise, these are also disturbing elements. The last category of
systems that are installed at the upper level of the roads are either satellite or aerial, and
their capacity is to cover several lanes on extended surfaces. For example, in the case of
unmanned aerial vehicles (UAVs) or satellites they have a greater weight to be used in
such applications than the standard variants [22]. The most widespread technology to
deal with the highlighted problem is the one based on cameras [23,24]. Although this
camera-based approach offers extremely high accuracy in the classification process, its
performance decreases in direct proportion to mobility, weather conditions, but also noise
and lighting sources. The technological advance in addition to coming with extremely
many challenges in terms of automation and digitalization, at the same time new problems
arise, one of them concerns the privacy of the driver, maintaining their integrity, and a
factor of discretion. In this direction, various sensor packages, infrared [25], laser scanners,
and GPS guidance systems [26] have been incorporated into the systems. It can be said that
following the presentation of the taxonomy of systems dedicated to vehicle classification,
which provides an overview of the field, the following sections will focus on research and
development issues, technical challenges, contributions from other research groups, but
also design aspects, hardware and software capable of approaching the problem at hand in
a different way.

2.1. Debating the Current State of In-Roadway-Based Vehicle Classifications

The discussion of the current stages and developments carried out by other research
groups in the direction of road-level vehicle classifications highlights certain aspects
through which we identify both key points for future studies and also the obstacles encoun-
tered by them. Reviewing each system at a theoretical level leads to a set of conclusions
regarding the approaches in this article. Although not part of the component developed in
this manuscript, loop detectors are used in the classification systems of vehicles traveling
on public roads. Thus, the components and results obtained by other researchers who
have developed vehicle classification systems using different types of sensors are briefly
presented. We address the characteristics between vehicle classification systems and briefly
highlight aspects from these manuscripts in Table 1.

Table 1. Presentation of systems dedicated to the classification of vehicles at the in-roadway based.

Equipment Type Authors Accuracy Vehicle Classes Characteristics

Magnetic sensors Xu et al. [27] 95.46% Sedans, buses,
hatchbacks, and others

It used advanced machine
learning techniques in order to
obtain a classification focused

on imbalance effects

Li et al. [28] 96.4% SUVs, buses, vans

It focused on sensor fusion of
magnetic waveforms being

collected from two magnetic
sensors located 80 m apart
from each other, but in the

same driving lane

Balid et al. [29] 97%
Single-unit trucks,

combination trucks,
and others

Made a classification based on
types of automatic learning

using the length of the vehicle
as the key feature

Vibration sensors Stocker et al. [30] 83% Light, heavy vehicles

Made a unique feature for
seismic signals used as key

features for feedforward
multilayer perceptron (MLP)

artificial neural networks
for classification
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Table 1. Cont.

Equipment Type Authors Accuracy Vehicle Classes Characteristics

Zhao et al. [31] 89.4% Bus, passenger cars,
and big tucks with axle

It used the number of axles
and the distance between them
as the key characteristic, thus
classifying two-axle cars that

have similar axle
configurations using a

multi-parameter classifier

Jin et al. [32] 92% Amphibian vehicle and
wagon

Based on the complexity of the
seismic signal, he used a

convolutional neural network
(CNN) with a long-scale

frequency cepstral coefficient
(LFCC) matrix, all identified by

the key feature type for
complex problems

Loop detectors Lamas et al. [33] 96% Vans, trucks, vehicles

The procedure based on the
spectral characteristics of

inductive signatures
using DFT

Liu et al. [34] 99.4% Regular cars and long
vehicles

Work that was based on the
analysis of the length of the

vehicle using a detector with a
single loop, using the theory of

speed estimation through
distinct classifications

Wu et al. [35] 99% Three length classes
with boundaries

Dealt with the problem of
acceleration from different

points and times 0 of the cars
transiting the analyzed area

In the case of an inductive loop type detector, it is extremely often found in traffic
monitoring systems, vehicle detection, traffic flow, but also in vehicle classification [36]. The
main component of this type of system consists of a coil of wire embedded in the running
surface, see Figure 2. It can be said that it captures the change in inductance, subsequently
generating a time-varying signal, only when a vehicle passes over it. Therefore, the
characteristics of the signal, such as amplitude, frequency spectrum, or phase, varies
according to the classes of vehicles passing by. In other words, these characteristics are
unique to the signal and are also known as magnetic profiles [37] for classifying vehicles.
Developments so far have led to the implementation of two types of loop detectors, in
the first phase depending on their installation method, loops are cut with a special device
or perforated loops. In the first one, the cut loops require a special tool that uncovers
the running path and embeds the loop wire, and then the stripped space is filled. The
second version does not require stripping the running surface and embedding the coils
in the asphalt. The wire is mounted through a PVC mold. These loop detectors can also
be classified according to the analysis modality, single and dual loop, which reflects the
number of detectors used for classification. Dual loop detectors can only measure the speed
and length of a vehicle based on the predetermined longitudinal distance between the two
dual loop detectors. Even the current developments that are based on automatic learning
technologies have produced new challenges through the appearance of devices of this
type with automatic learning for the analysis of the magnetic signatures of vehicles that
pass over such devices. There are studies [38] in which a backpropagation neural network
(BPNN) is adopted for the purpose of classifying vehicles. Thus, based on the observations
that low classification accuracy for loop detectors is attributed to data sampling of raw
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signals containing noises, a Discrete Fourier Transform (DFT)-based algorithm is used to
brush and eliminate background noise [39].
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When analyzing the principal components (PCA) it contains, we highlight that it is
used to reduce the size of data that does not contain noise. These PCA features highlight
the aspects of the variations in the heights of a vehicle train that traverses the area. Thus,
the initial PCA result is entered into BPNN with three classification streets in five classes,
identified as follows: motorcycle and bus, minibus/van, pick-up/truck, and vehicle/SUV.
These systems, as well as the processing method, reached an average accuracy of over 90%
in most studies.

2.2. Debating the Current State of Over-Roadway-Based Vehicle Classifications

A vehicle classification system at the roadway level requires the installation of sensors
and systems above the roadway, thus providing non-intrusive solutions without the need
for stripping and mounting equipment on the road surface. The capacity of these classifica-
tion systems is to cover many more lanes and, depending on the technology used, even
entire road segments. Discussing the current status of camera-based classification systems
using aerial technologies and platforms, drones, satellites, and overhead cameras. The
advantages of camera-based systems have many advantages, including the accuracy of the
classification process, and the extremely large coverage area; the disadvantage is related
to privacy issues. The presentation of privacy issues is seen through the use of infrared
sensors [40] or laser scanners [41]. The privacy aspect can also be seen in the case of the sys-
tems installed by the authorities of each country which monitor the speed on the highways,
but also the verification by the registration number of the periodic technical inspection. It
can be said that the most used sensor for vehicle classification systems is a camera [42,43].
Thus, a camera provides much more complete information in terms of classification, and
aspects, such as visual characteristics, dimensions, or geometric shapes that a car has [44].
In relation to the classic systems installed at the level of road infrastructures, those based on
video sensors come with a plus in terms of processing power and the way of classification.

Regarding the general operation of a vehicle classification system that is based on the
video camera, it has the role of capturing images of passing vehicles, and subsequently,
the process of extracting features from those images is carried out with the help of an
algorithm in order to achieve the classification. These camera-based systems can, in turn, be
classified according to the way in which the video/photo recording is carried out, namely
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through characteristics related to the exposure time, filtering, and cleaning of the image
of external noises. The trend of the last years is related to the improvement of automatic
learning techniques applying ways of automatic extraction of features through classification
models (Figure 3). Previously developed systems use simple classification models, based
on SVM and KNN processing and decision trees, machine learning algorithms, and deep
learning are also part of the current approaches. The research group of Chen et al. focused
on efficient vehicle image registration [45]. They adopt the Gaussian Mixture Model
(GMM) [46] and the shading removal algorithm [47] in order to reduce the negative impact
on the classification created by this type of noise, camera vibration, and lighting. The use
of Kalman filters is highly prevalent in vehicle tracking and their classification by SVM.
The practical experiments were carried out by research groups in the UK and classified
about five categories, such as vans, cars, motorcycles, and other unidentified vehicles. The
classification accuracy report achieved a percentage of approximately 95% accuracy.
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Approaches where images of vehicles were captured but required different interpreta-
tions, as they suffered from dynamic changes, having problems caused by lighting changes
or headlight reflection in order to improve accuracy. The application of methods by which
the chroma of the background is decreased, but also the reduction of the segmentation
thresholds, dynamically adjusting the process with the aim of keeping only the gradient
differential characteristics in the background. In this case, the approach has two steps to
derive the spatial and temporal characteristics of a vehicle. Therefore, 2D estimates of the
dimensions of the vehicle are generated, later they take shape and arrive at a 3D exposure in
order to obtain a much more accurate classification. The most common vehicles considered
for classification are two-wheelers and heavy and light vehicles. Accuracy in the case of
such processing and classifications reached 93%. Using pixel bands across periods creates a
spatial image. Therefore, vehicle detection and classification by multiple SITs increases the
degree of error due to the occlusion created.

Thus, identifying effective features from an image containing vehicles is a new chal-
lenge in camera-based processing and analysis. Classifications made by HOG (Histogram
of Oriented Gradient) adjustment methods substantially adjust the results and classification
performance. More precisely, KNN is used in the analysis of features based on shapes,
features of the elongation type, shapes of any type, and SVM in the characterization of HOG.
These methods are used in a combinatorial mix, a summation, and product rules, the first
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method aims to determine the vehicle class so that the sum of the two creates probabilities
for maximized classifiers, and the product is determined by the result of multiplying the
two probabilities. Table 2 shows a number of the characteristics of the vehicle classification
systems installed above the taxiway.

Table 2. Presentation of systems dedicated to the classification of vehicles at the over-roadway based.

Equipment Type Authors Accuracy Vehicle Classes Characteristics

Camera Chen et al. [48] 94.6% Cars, vans, buses,
motorcycles, and others

GMM was used to eliminate
background noise and SVM

for classification

Karaimer et al. [49] 96.5% Cars, vans, and
motorcycles

A mixture of KNN and SVM
was used for shape-based
feature analysis, and for
general HOG features

Huttunen et al. [50] 97% Trucks, vans, and small
cars

DNN was used to extract
the features

Zhao et al. [51] 97.9% Cars, vans, trucks,
SUVs, and others

To create a visual attention
mechanism, they focus on a

single part of the car,
considering this approach

much more relevant

Aerial platforms Tan et al. [52] 80.3% Vans, pickups, sedans,
trucks

The use of aerial devices
equipped with infrared

sensors, and at the level of
algorithms Inception Model
and AlexNet were used in

order to achieve
the classification

Cao et al. [53] 90% Only detection It has no applicability in the
field of vehicles

Liu et al. [54] 98.2% Trucks and cars
Using HOG features together

with a neural network, this one
having only one hidden layer

Laser scanner Sandhawalia et al.
[55] 82.6%

Trucks, motorcycles,
trucks with one or two
trailers, vehicles with

passengers, and others

Analysis and representation of
profiles by laser scanning in

image form

Chidlovskii et al.
[56] 86.9%

Trucks, motorcycles,
trucks with one or two
trailers, vehicles with

passengers, and others

Characteristics specific to the
application area, analysis of

the shape of the vehicles,
extracted with the help of a

laser scanner for classification

CNNs are proposed for the design of unsupervised learning mechanisms and for
efficient filtering, managing to extract certain features that deform a vehicle. The second
stage of the classifier captures the same elements and forms comparison matrices between
the two instances. Using Softmax Pro 7 classifiers provides probabilities for each vehicle
type. The most important aspects regarding the mix used consisted of the processing of
over 10,000 images of vehicles with approximately six types, including trucks, sedans,
minivans, minibuses, and SUVs.

3. The Efficiency and Versatility of Classification Solutions through Neural Networks

According to the analysis of the specialized literature, several studies highlight that
classification and safety surrogate models have been performed because they have achieved
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data extraction capabilities even from microscopic traffic models, such as Paramics or
VISSIM (Verkehr In Städten—SIMulations Modell). Traffic simulation models are solid
foundations in the field of engineering and traffic safety compared to existing exposures,
notable results are seen in dedicated field projection in the extraction of vehicle trajectories.
Thus, the need to introduce an algorithm based on fine-tuned neural networks in order to
detect and subsequently classify vehicles in real-time can reach 6–7 identification classes
(bus, bicycle, pickup truck, trailer truck, taxi, and car) being only the first part of the
characteristics of such an algorithm. Its ability to measure individual speed, calculate
the average speed per time interval, track the movement of each vehicle, and also count
them [57]. To summarize the general method, video streams are received from road
infrastructure surveillance cameras using 4G/5G broadband technologies and others. The
video capture is streamed to a computing unit with processing power using a streaming
protocol, delineating road lane boundary polygons. After the camera streams are stabilized
and the road lanes are registered, the training model detects, classifies, and, at the same
time, tracks the vehicles that enter the bounded area in the form of a lane polygon. This
algorithm can be identified as a multi-vehicle one in order to track the number, classification,
and speed of each vehicle in each lane. The general structure is shown in Figure 4.
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3.1. Presentation of the Training Dataset

Entrainment of the neural network was performed on two levels in order to minimize
the effects of changing the scope. As such, two training sets identified by SR1 and SR2 were
prepared. In the case of SR1, it has a larger number of training samples that have been col-
lected from the video stream to train a base model, N1, which has a larger number of steps.
Thus, SR2 is based on a much smaller number of samples collected from the outer cameras
to create the fine-tuned N2 training model but is based on the redundant data transferred
from the N1 level. The two-level training significantly reduces the training time and the
effects that domain applicability can have, creating a compromise model, optimized on the
principle of classification accuracy and detection speed [58]. On another note, SR1 benefits
from information regarding the analysis of roads from the Department of Public Safety
Suceava (stream accessible for free from outside), reaching approximately 10 TB of video
material, from around 12 cameras within 7 days in the interval of 1 June 2022–7 June 2022.
The selection of video material was divided into several training sets that also included
samples of the selected vehicles at different positions and times of the day. The video
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material was converted into image frames with annotation divisions, using a program
for manual annotation. About seven classes of vehicles were prepared, including buses,
bicycles, taxis, trucks with trailers, and vehicles. The total number of samples prepared for
the SR1 datasets is shown in Table 3 in the SR1 samples column.

Table 3. Sampling for cars, buses, taxis, trucks, trailers, bicycles, vans.

Vehicle Type SR1 Samples Tag’s SR2 SR2 Samples

Car 12,562 3284 2754

Bus 5493 133 376

Taxi 2341 332 434

Truck 1542 426 764

Trailer 1158 98 257

Bike 2849 678 743

Vans 7062 2114 1774

Total 33,007 7065 14,167

When we have a much smaller set of labels, as in the case of SR1 being data from
cameras used at the road infrastructure level, it is necessary to annotate the images for
each of the seven classes. Even if about 7% of the training data in SR1 were not used, they
may fall within the recalculation margin, being used for other instances in M1. This testing
process increased the number of training samples and the reuse of unused samples. It can
be said that the ratios between the test data and their validation have been kept constant,
some of the samples of the classes created for vehicle analysis are shown in Figure 5.
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3.2. Debate the YOLO Algorithm for Detection and Classification

In this section, the object detection models used in this manuscript and aspects related
to the degree of innovation and novelty are discussed. Thus, in addition to the standard
method of the YOLOv3 algorithm, a newly derived component has been outlined, entitled
YOLOv5s, which has the ability to vary from the smallest dimensions of the learning model.
This, in some cases, offers compromises, which end up sacrificing speed and accuracy in the
detection process [59]. An obvious difference between these versions concerns the scaling
multipliers for both network depth and network width. Through the prism of performance
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aspects and experience, YOLOv3, YOLOv3-tiny, YOLOv5-large or small were analyzed, all
with a comparative purpose. When discussing YOLOv3 (architecture shown in Figure 6),
the central basis is a DarkNet-54 backbone with normalization, but also ReLU activation,
being used without full connection layers in feature extraction and training of handles
from an image. It can be said that a 13 × 13 grid is generated by being projected onto
the feature map, and the object is highlighted with approximately three bounding boxes
and anchor scales to finally be merged. The first aspect dealing with the final response
can be interpreted as when a box has the highest intersection over union (IoU). When we
have objects of different sizes, whether small or large, surface features are used, but also
depth-based ones that allow detection even if the scales are changed, all based on a residual
structure with a reliable connection between all previous YOLO versions. The learning
ability of residuals aims to simplify the degree of complexity of the training process and
improve detection [60]. The first difference between YOLOv3 and v3t is that the former
uses about three scales and v3t relies on only two scales to obtain object prediction. Even in
the case of the original v3 version, the ability to manually calculate the size of the anchor
boxes was optimized as much as possible, and an approach in the v5s version as well. The
approach allows full automation in relation to the initial stage, without the need for the
separate calculation of the anchor box. Thus, the YOLOv5s network has, in its composition,
several elements of the type of the human skeleton, a vertebral column on which the limbs
and the central control area are found. It can be said that for the spine, a CNN is used
with the aim of extracting features from the analyzed images even if they have extremely
different granularities. The other components are composed of arrays of elements that
combine feature analysis functions and delineate anchor boxes from prediction classes.
Therefore, the major advance that YOLOv5 has is that it can integrate anchor box selection
processes by feeding them into the network, through machine learning capabilities with
the best anchor boxes relative to the training dataset [61].
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based on the DarkNet-53 backbone.

In the case of the v4s core, a CSP-type network was used to aggregate PANnet-type
paths with spatial pyramidal blocks, the core neck has the ability to generate characteristic
pyramids that help the overall network and can analyze objects at different scales and sizes.
Thus, using pyramids and SPP or PANnet block features can substantially increase the
identification process even on unseen data. A key integral component of the analysis and
classification process is anchor box selection within the neural network, as it has the ability
to automatically learn the best anchor boxes for specific training sets [62]. Contact structures
were added between the elements that analyze the depths from the common characteristics
between YOLOv5s and v5l, which ended up converting the image to a smaller number of
depths, sacrificing, in some places, the accuracy, but increasing the speed. When evaluating
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YOLO networks, an improved intersection (IoU), specifically generalized join-intersection
(GioU) was used for the loss function:

LGIoU(q) = 1− IoU +
|F(C ∪ B)|
|F| (1)

where C and B are bounding boxes of the true values, respective of the prediction, F
represents the smallest circumscribed rectangle between C and B, and IoU represents the
intersection between C and B. Thus, the major improvement of GIoU compared to standard
IoU is that it can define a minimal closed area F, so the boundaries for C and B are included
in F. When we talk about GIoU, it then calculates the area of C and B as not being included
in F, although this would be proportional to the entire area of F.

The next stage after the training process of the YOLO models concerns the collection
or recording of the streams received from the cameras installed at the level of the road
infrastructure with the help of which the tracking models of the individual classes of
vehicles were trained. The developed vehicle tracking and classification algorithm create
a centroid tracking gradient that takes a predicted class and generates a bounding box
for a predefined pattern, performing the task of computing each road polygon into equal
segments. It can be said that the method can highlight the superior performances in order
to calculate the degree of matching. Each vehicle uses a trained model and benefits from a
vehicle class, after which a vehicle bounding box is obtained for a video recording. These
bounding boxes and lane polygons with unique IDs are captured within the algorithm to
recursively process multiple vehicles. Part of the processes that the algorithm follows are
based on a series of rules. The first rule is the one in which the centroids of the bounding
boxes are calculated, and later the degree of matching in the lane polygons is checked,
in the case of non-conformity the data are the response and definitely, the vehicle class
no longer reaches a process delimitation. In other words, if the verified vehicle matches
an existing vehicle in the training dataset it is registered with a new ID and annotated as
compatible with the existing feature granularity. After updating the features for an ID, it
analyzes the lanes and makes the vehicle part of that lane’s polygon.

4. Results and Discussion

In this section, elements related to the performance of the trained networks, the
methods, but also the accuracy obtained in the analysis and classification process are
presented. Thus, the accuracy of the training and validation data for the YOLO models are
compared with the first training instances that have an extremum fine tuning to highlight
the degree of domain drift. Some of the experimental results of the lower test levels
for the training sets are presented in this section in addition to coupling the models
created in YOLO with fine-tuning by analyzing data received from cameras installed at the
infrastructure level. To make a comparison, we use precision (P), recall (R) metrics, as well
as analysis bases for the curves, this being calculated using the confidence threshold of the
model. In the case of a recall, the proportion of all positive data with which the weighted
confidence threshold of over 60% is identified identifies it. In the case of precision and
recall metrics, they are calculated according to Equations (2) and (3):

Precision(P) =
TM

TM + VP
(2)

Recall(R) =
TM

TM + VN
(3)

where TM, VP, and VN represent the number of positive data with a valid truth, false
positives, but also those with negative factors are, respectively, false. In the case of the PR
curve indicator, it represents the degree of precision for the recall level for the interpolation
of the maximum precision calculated in the case of each withdrawal models, there is a
grid for the recall coefficient. In the case of mAP, this describes a map of average precision
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with the number of total existing classes, and, in our case, they are seven in number. In
conclusion, AP summarizes PR curves that are defined with average precision over sets of
ten recall cycles at approximately equal distances.

AP =
1

11

1

∑
r=0

Pmax(r), r ∈ [0, 0, 0.1, . . . , 1] (4)

mAP =
∑ AP

n
(5)

The description of the training sets for the YOLO models from the SR1 data series
and the results obtained are presented and detailed in this section, the data are packaged
in a separate set. Pre-training difficulties have no contact in the initialization of training
sets. Applying a random increment to the data for the training period, led to a variable
scalar inclusion of over 0.5–1 with a shift of 0.1 for a horizontal angle of approximately
180◦. Through the valorization process of the ratio of hue and saturation, it was completely
modified segmentally with filling factors of up to 0.5. The input images were resized to
512 × 512 pixels before being transmitted over the network. In the case of the learning set,
a threshold of 0.03 was set; for the final learning rate, a threshold of 0.1 was reached, and
the impulse for weight reduction through granularity was reached at a filling factor of 0.005.
The scaling of the stochastic gradient played the role of the model optimizer, these being
classified into batches for each set of approximately 800 frames. The hardware requirement
for the simulations were identified as a unit with 256 GB Ram and two I9 processors with
two NVIDIA 3060 GPUs (Nvidia, CA, USA). In the case of all five networks created at the
simulation level, the dimensions of the anchors and their derivation were characterized
by deriving the set of training using k-means. The standard training level on the SR1 set
trained 1500 data on gradient maps with high factors. The generation of an IOU map
with a loss of class and the training data with the obtained accuracies are exemplified in
Figure 7. In the experiments, the chosen and improved algorithm outperformed the other
implemented standards. The latest generation models showed an exponential increase,
while the others showed a weighted decrease.
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In order to obtain an additional comparison between AP and mAP, the five YOLO
networks and their derivatives were tested based on the trained dataset SR1. In Table 4 are
presented the AP distributions of the prediction against the validation datasets that were
provided within the input dataset SR1 for each class of vehicles: cars, buses, taxis, bicycles,
trucks, pickups, trailers. A significant difference can be observed in the case of networks
formed and outlined based on YOLOv5s and v4r (with double loop recall function).
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The results extracted from the samples provided by running with the YOLOv5r
training model on the TR1 test set are presented in Figure 8. We note that these test
samples in the image are slightly different from the ROI polygons, they extract the tracking
gradients generated by the created method. Therefore, ROI placed at appropriate distances
can gradually reduce false detection, the result being directly proportional to the exposure
created by the detection in the section. There is an alternation, by which the movement in
the field changes the accuracy of the training models, which has extractions in the explored
section. The exposure for these extractions was carried out in the same environment in
which the initial analysis models were analyzed and created, i.e., conditions of intense
traffic, varied brightness, and unstable meteorological conditions. The flow of vehicles
transiting the analyzed areas exceeds 500 units per minute every 3 min for each direction
of travel.

Table 4. Performance of YOLO networks for SR1 training sets and their evaluation and validation.

Classes
Average Precision (AP)

YOLOv3 YOLOv3t YOLOv5ls YOLOv5s YOLOv5r

Car 0.688 0.832 0.644 0.794 0.888

Bus 0.854 0.974 0.933 0.966 0.913

Taxi 0.943 0.799 0.875 0.889 0.869

Truck 0.870 0.649 0.789 0.856 0.842

Trailer 0.772 0.755 0.867 0.744 0.943

Bike 0.893 0.876 0.830 0.890 0.790

Vans 0.746 0.670 0.776 0.799 0.828

mAP_60 0.812 0.843 0.809 0.791 0.890

Class Loss 0.003 0.005 0.022 0.031 0.039
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4.1. Testing and Analyzing the Created Models and Training Sets for SR1 and SR2

According to the obtained results, it was shown that the training networks performed
extremely well for the SR1 dataset for a mAP_60, with 77–82% accuracy, some aspects, such
as volatility and weather conditions, caused that, in some cases, the collected image frames
do not contain an expected granularity. Therefore, testing the networks in a synchronous
mode, both SR1 and SR2 were able to highlight that the sampling is gradual and the classes
produced for each set of analyses do not show anomalies for the APs of the incident classes.
Thus, Table 5 shows the performance and accuracy characteristics for subdomain switching
in fine-tuned classes.

Table 5. Performance characteristics of YOLO networks on SR1 training sets and evaluating data
from fine-tuned SR2 test sets.

Classes
Average Precision (AP)

YOLOv3 YOLOv3t YOLOv5ls YOLOv5s YOLOv5r

Car 0.481 0.341 0.338 0.336 0.388

Bus 0.28 0.422 0.241 0.142 0.13

Taxi 0.644 0.364 0.301 0.464 0.569

Truck 0.371 0.257 0.238 0.483 0.342

Trailer 0.272 0.246 0.308 0.351 0.243

Bike 0.493 0.271 0.245 0.146 0.090

Vans 0.346 0.152 0.103 0.058 0.028

mAP_60 0.282 0.267 0.209 0.291 0.290

In order to minimize the effects of the domain dynamics approach, the five networks
were adjusted to be able to process the training data from the SR1 and SR2 sets using
transfer learning as well. It can be said that these fine adjustments are part of the second
stage of preparation, different epochs that sum up over 1000 entities as the first level of
preparation. When we introduce the process of fine-tuning with high gradation on raw
datasets, we can obtain up to seven times the hAp factor for each model, as shown in
Table 6, where YOLO performances are. Another aspect addressed in vehicle classification
analysis is the classification factor and its loss when applied to training sets. In other words,
the loss, if it tends to reach below the 0.07 threshold, may blur some of the defining features
and subsequently led to poor performance or misclassification. It can be said that a reason
for such an anomaly is the mAp graphic index through which the losses converge towards
a gradual fading inside the formed centroids. Thus, standard YOLO models are much
more stable in the case of performance for small datasets and epochs that do not exceed
300 units, subsequently decreasing depending on the version involved in the detection
process. In such conditions, the adjustment of the algorithm, but also the involvement at
the architecture level, highlights a smaller dimension in processing, an extremely important
aspect in the tracking and classification of vehicles.

It can be said that in the case of fine adjustments, substantial and sometimes significant
improvements in accuracy can be observed, although there are very many approaches that
can further increase the degree of accuracy. These highlighted values reflect the appearance
that they are the result of calculations based on full-frame detection of the image. There is
the possibility of anchoring the centroid only on areas with a distinct gradient and applying
HOG to those areas, an aspect that significantly reduces processing time and accuracy, but
decreases performance in some cases when the analyzed image does not benefit from all
the necessary characteristics, such as brightness, FOV angle, conditions such as unfavorable
weather conditions. In a word, if we limit the detection area and avoid objects from a
certain distance from the analyzed area, it can considerably increase the accuracy, because
certain objects, if the human eye does not visualize them, means that they have a large
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enough distance to favor our detection. It can be said that in the case of fine adjustments,
substantial and sometimes significant improvements in accuracy can be observed, say that
instead of segmenting the video stream we can apply techniques for image processing with
user-defined thresholds, creating polygons and gradation bands that act with the detection
process only in those areas. These polygons can exponentially increase the detection and
decrease the false detection factor, subsequently facilitating the calculation of speed or the
generation of reports of restricted lanes.

Table 6. Performance characteristics of YOLO networks training on previous SR1 sets, applied
fine-tuning on SR2 with data evaluation and validation on SR2 set.

Classes
Average Precision (AP)

YOLOv3 YOLOv3t YOLOv5ls YOLOv5s YOLOv5r

Car 0.793 0.715 0.733 0.839 0.791

Bus 0.871 0.767 0.657 0.686 0.774

Taxi 0.645 0.658 0.765 0.757 0.677

Truck 0.741 0.771 0.858 0.674 0.755

Trailer 0.845 0.681 0.667 0.858 0.668

Bike 0.741 0.759 0.785 0.788 0.436

Vans 0.421 0.851 0.691 0.663 0.615

mAP_60 0.771 0.634 0.656 0.641 0.610

Class Loss 0.010 0.021 0.029 0.033 0.036

Model Size (MB) 283.44 35.21 87.36 44.61 20.14

4.2. Comparative Analysis of the Proposed Approach in Relation to the Simulation of Urban Mobility

Even though there are very many types of vehicle analysis, even prototyping that is
based on macroscopic or microscopic models where they expose the traffic to extremely
exponential densities in relation to the potential of the infrastructure, cannot rationalize
the problem under discussion. The approach proposed in the article is based on an ad
hoc created model applied to the existing video infrastructure at the track level. There are
premises for hybridity between continuum, and macroscopic methods, these being based
on agents, an aspect that excels in the analysis of individual vehicles. Implementation at
the infrastructure level even needs an individual approach through intensive analysis of
the infrastructure and the capabilities that the runway provides. Therefore, the relationship
that can be exposed through the features that the proposal in this article has is one of
dynamic and automatic communication, synchronization between modeling methods, and
display on levels of detail. It can be said that traffic flows can be treated as crowds within
the simulators, only that the flows differ from time T, in relation to individual behaviors,
these having similarities that can interact differently in the driving process. Thus, computer
graphics were outlined based on existing datasets, and crowds were simulated with a
restricted area, but with a dynamic behavioral stage, but with the modeling of a crowd
of a dynamic of agents with movements controlled by microscopic procedures, seein in
Figure 9. In order to be able to represent part of the previous analyzes in a simulative form,
a series of executions were carried out through which some of the varied characteristics
were identified as random in the context of vehicle classification dynamics. Each running
lane was identified as having approximately 30 min of running time within the network
and half of that time was subsequently dedicated to surrogate data collection. Within the
simulation, much shorter durations were proposed in relation to the practical evaluation
of the traffic through the lens of the imposed temporal constraint, but also of the aspects
related to the continuous analysis of the traffic from the outside environment.
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Figure 9. Illustration regarding the macroscopic analysis standard in relation to traffic on separate
lanes and cells. Identification of each state in the updated cell through parameterized solutions.

In the first behavioral analysis, 8432 pairs of synchronous data with vehicle identifiers
were processed, identifying approximately 324 conflicts that are predominant in a statical
analysis. Therefore, the iterative assumption in relation to the simulations during peak
hours imposes a factor of 0.97 of unusual traffic volume, referring to an average number of
11563 vehicles for the analyzed period.

Even from the first series of tests, it can be seen that the simulation time and the
processing time can have a similar ratio to the evaluations presented in the manuscript that
exceed 120 h through the lens of the two datasets, SR1 and SR2, even if they are in distinct
replications. Thus, there are approximately 1244 conflicts out of a total of 42,321 points,
even if the length and width characteristics of the vehicles were also loaded. This aspect
also involves the direct arrangement of predictive analysis classes with replicated data
from SR1 and SR2 in a neural loop to perform the prediction. It can be said that replicated
type implementations constitute a certain dimension of static samples, see Figure 10.
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Some of the microscopic models can produce uncontrolled movements of the vehicles
at an extremely high level, so each vehicle must be treated as a discrete agent capable of
satisfying the basic rules of the governing algorithm. In this case, a series of microscopic
iterations were developed, which were capable of carrying out simulations specifically for
urban traffic, providing increased flexibility for modeling the heterogeneous behaviors
of these agents. It can be said that in some simulations where the track is discretized
in several cells, the model must determine the next movement of the vehicle from the
current cell to the next one. However, due to its discrete nature, the generated virtual traffic
cannot fully reproduce the events and behaviors in the traffic; through the prism of these
factors, we can say that an exact representation of the proposal described in the manuscript
cannot be applied at the simulative level and vice versa. The movement of traffic flows
is not the same, because everything depends on the drivers’ intuition and their behavior.
We point out that the article proposed definition and analysis by classifying vehicles in
congested urban traffic, the model being applied directly to the real-time analysis from
the surveillance cameras installed at the level of the infrastructure. The application of the
same simulative principle was also carried out in a virtual analysis environment, according
to the previous presentations, to highlight the number of vehicles, but also how many
of them were classified at the simulative level. To expose this approach most feasibly,
different traffic levels were designed with several traffic lanes, but also with access ramps.
At the simulative level, the traffic control is programmed, and the production of events is
equally predictive through the prism of outlining acceleration and deceleration strategies,
programmed turning, and maintaining a behavior. All data it are presented in Table 7.

Table 7. Traffic analysis and classification of vehicles depending on the time of day, the hypothesis
treated at a simulative level.

Classes
Average Precision (AP)

Morning Traffic Midday Traffic Evening Traffic Traffic at Night

Car 0.361 0.525 0.312 0.419

Bus 0.384 0.476 0.231 0.391

Taxi 0.318 0.389 0.448 0.489

Truck 0.293 0.276 0.374 0.588

Trailer 0.351 0.233 0.465 0.549

Bike 0.434 0.358 0.388 0.156

Vans 0.466 0.451 0.421 0.351

Class Loss 0.341 0.239 0.221 0.167

The interpretation of the results can be performed in only one way, which an exact
analysis of the traffic transposed at the simulation level, depending on n factors that can
change the state and behavior of the simulations. The interpolated IDM model applied
within urban road networks may have a different description in relation to reality. Therefore,
the results obtained support the proposed algorithm and the approach represented in the
article, but in an ideal situation, without analyzing the traffic and infrastructure for at least
1–2 months to observe if there are repetitive behaviors, similar waiting times, peak hours
and congested traffic depending on the time interval and time of day. Even the process
of acceleration and deceleration by 1–2 km/h can be an influencing factor in the process
of analysis and processing of the traffic model, in terms of the classification of vehicles,
the total number of vehicles was also kept in the case of these simulations, and the results
are as expected. If we have night traffic, the process is rarer in terms of traffic density, and
during the day the weights are close to real cases.
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5. Conclusions and Future Works

In accordance with the results obtained and the development achieved, we can thus
conclude that the future directions regarding approaches are extremely vast through lo-
cation analysis, but also though road transport automation based on camera and video
processing, and artificial intelligence. These elements are extremely important in the de-
velopment of ITS systems, and, at the same time, are challenging in order to achieve some
performance in terms of classifiers and low transit times. Therefore, this article comes as an
alternative to the existing detection and classification methods, but brings new elements in
terms of the results obtained and their validity. The ability to process very large datasets
and visualize training sets with over 10,000 entities highlights the accuracy of vehicle
classification that can be considered in larger development. The integration of over 50,000
learning sets was prepared and recorded on the transit routes of Suceava county. The
datasets were used to train a highly versatile deep learning network capable of handling
extremely large databases. Fine adjustments were made through transfer learning and
collaborative neural processing techniques with the aim of being able to implement an ITS-
type system in the future that will include the current software component. This training
process is divided into two stages that enable leveraging and learning from datasets across
applied domains. Thus, the process is able to reduce the number of samples dedicated to
the training sets, but also the number of iterations, which can implement new systems,
without bringing negative effects or requiring the creation or change of datasets between
domains of applicability. In another phase, the model was adjusted to combine multiple
processing standards to classify vehicles and calculate distances and body features through
fine-tuning and deep learning based on the YOLO algorithm. For each of the five archi-
tectures, a new neural network and components were assembled which were capable of
reducing the conversion time with respect to the spatio-temporal properties of the vehi-
cles, smoothing the dissipation gradient and strengthening the features related to them,
including propagation, but also the reuse of already existing features regardless of size and
shape. In the case of the five models, the detection and classification tests were performed
using the presented algorithm proposal. The YOLOv5r model achieved an overall accuracy
of over 90% in the process of vehicle detection and classification, with variable accuracy
depending on meteorological characteristics, image quality, FOV, or noise sources. In the
main future directions, this knowledge will be applied for the purpose of validating the
analysis of vehicles, regardless of conditions, all through direct communication between
vehicles and infrastructure, using VLC, 4 or 5G optical communications, through which the
development of roads and pedestrians is developed. We want safety systems, systems for
monitoring and streamlining the traffic, and solutions in V2V—V2I vehicle systems, but
also between cars using DSRC—5.9 GHz.
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