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Abstract: The proposed work uses fixed lag smoothing on the interactive multiple model-integrated
probabilistic data association algorithm (IMM-IPDA) to enhance its performance. This approach
makes use of the advantages of the fixed lag smoothing algorithm to track the motion of a maneu-
vering target while it is surrounded by clutter. The suggested method provides a new mathematical
foundation in terms of smoothing for mode probabilities in addition to the target trajectory state and
target existence state by including the smoothing advantages. The suggested fixed lag smoothing
IMM-IPDA (FLs IMM-IPDA) method’s root mean square error (RMSE), true track rate (TTR), and
mode probabilities are compared to those of other recent algorithms in the literature in this study.
The results clearly show that the proposed algorithm outperformed the already-known methods in
the literature in terms of these above parameters of interest.

Keywords: IPDA; IMM; IMM-IPDA; fixed lag smoothing; RMSE; TTR; mode probabilities; cluttered
environment

1. Introduction

Target tracking in the presence of clutter has received much attention in recent times
due to proposing improvements in the tracking algorithms. The tracking procedure should
incorporate different problems while tracking a moving target in the presence of clutter [1].
Among these problems, tracking a maneuvering target in a highly cluttered environment
has received a lot of attention due to its practicality in real tracking environments [2–7]. In
essence, the target going through a maneuver diverges from the assumption of a constant
velocity constraint set for the moving targets in different tracking algorithms [8–11]. This
makes the tracking performance more compromised under difficult tracking conditions
such as high clutter density in the tracking environment.

A number of single target non-maneuvering tracking algorithms are available in the lit-
erature, which can track a target moving without any maneuver during their
movement [12–14], but these algorithms do not provide any procedure to track the ma-
neuvering target with accuracy. Some authors have used multi-scan single target tracking
algorithms to achieve the tracking accuracy for maneuvering targets [15–20], but at the end
they have increased the complexity of the algorithm without providing a new mathematical
structure for the given problem. Multi-target tracking algorithms are also used in the
literature to address the maneuvering target tracking issue. These algorithms are inherently
mathematically complex and time consuming [21–25].

The maneuvering targets are tracked more efficiently by using multiple model tracking
approaches such as the interacting multiple model (IMM) tracking algorithm. In Ref. [26],
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the author used a combination of the interacting multiple model (IMM) and modified
gain extended Kalman filter to obtain IMM-MGEKF algorithm for improvement in the
performance of IMM-based algorithms. In Ref. [27], the author used the IMM–STSRCKF
algorithm (which is an extension of the IMM algorithm using the curvature Kalman filter)
to track the target that undergoes maneuvering. Multi sensor information is fused and
then incorporated in IMM and PDF tracking algorithms for maneuvering target tracking
in Ref. [28]. By using multiple models and target existence state information, an interacting
multiple model-integrated probabilistic data association IMM-IPDA algorithm is proposed
in Ref. [29]. It shows the improvement in the performance of tracking algorithm in terms
of target hybrid state.

Smoothing algorithms are used in a number of applications in target tracking algo-
rithms to improve their performance. The smoothing algorithms increase the computational
time and tend to offer delays in any tracking algorithm [12]. However with smoothing, a
more accurate and reliable picture of the environment can be achieved. The augmented
smoothing algorithm improves the RMSE performance of the existing tracking algorithms
but has not provided the complete mathematical structure of the algorithm [30,31]. The
FLs-IPDA provides a formula to improve both the target trajectory state and target ex-
istence state by using all possible existence events [32]. An extension of the same work
with more general analogy is explained in Ref. [33]. In Ref. [34], the authors have used
the forward-backward prediction model for smoothing, but they have not provided any
mathematical framework for smoothed mode probabilities. All these smoothing algorithms
have not studied the status of hybrid target state during maneuvering in the presence of
clutter.

In this work, a fixed lag smoothing algorithm is devised for the IMM-IPDA algorithm
to improve the performance of the IMM-IPDA algorithm in a cluttered environment. The
main contributions of proposed study are:

• This work has enhanced the earlier work proposed in Ref. [33] by adding novelty in
terms of mathematical modeling for maneuvering target tracking and its fixed lag
smoothing;

• Mathematical formulation for the FLs IMM-IPDA in terms of smoothed target trajec-
tory state estimation, smoothed target existence state update, and smoothed mode
probabilities;

• Utilization of the fixed lag smoothing algorithm to improve the tracking performance
of IMM-IPDA;

• Improvement in the RMSE, TTR, and mode probabilities using the fixed lag smoothing
algorithm;

• A complete set of simulations are performed in MATLAB to prove the above
contributions.

This paper is divided into different sections to properly describe the principal of
proposed work. The target motion model and related concepts are addressed in Section 2.
The mathematical model and different derivations are provided in Section 3. In Section 4,
complete analyses and a discussion of the results are made. The conclusion is provided at
the end to summarize the proposed work.

2. Mathematical Model

In this work, the target is assumed to switch in-between the target existence and
non-existence state randomly during its motion. It is assumed that the target follows the
Markov chain model for its propagation. The probability of the target existence is defined as

p̄11 ≡ P{χk|χk−1} ≈ 1−
∆Tk−1,k

Tavg
, (1)

where ∆Tk−1,k defines the time interval in-between scan k− 1 and k. Tavg is the average
duration of the target existence. p̄11 is the probability that the target exists at any current
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scan k conditioned on its existence at scan k − 1. The target existence (χk) and its non-
existence (χ̄k) are mutually exclusive and exhaustive events. Thus, the total probability
sum is 1 at any particular scan.

P{χk}+ P{χ̄k} = 1. (2)

The target follows the state transition model defined in (3).

xk = Fxk−1 + wk, (3)

where wk is assumed to be a zero mean white Gaussian noise with known covariance Q. It
represents the uncertainty in the assumed target motion model (3). Q is defined as

Q = q
[

0.25T4Im 0.5T3Im
0.5T3Im T2Im

]
, (4)

where q is the plant noise parameter, m is the dimension of measurement vector. The Q
matrix becomes n−dimensional in (4). In (3), xk is the target trajectory state at scan k and it
is defined as

xk =


xk
ẋk
yk
ẏk

, (5)

where xk and yk are the target position coordinates in Cartesian coordinates, while ẋk and
ẏk are the respective velocity components of the target.

2.1. Measurement Model

The measurements from the target at any scan k are defined as

yk = Hxk + vk, (6)

where H is the measurement matrix, yk is the measurement received at any current scan k,
and vk is the measurement noise, which is assumed to be zero mean white Gaussian noise.
Its covariance R is assumed to be

Rk =

[
σ2

xx 0
0 σ2

yy

]
, (7)

where σxx, σyy are the variance in the x-axis and y-axis, respectively, and are assumed to
5 m in this study equally. In (6), H is defined as

H =
[

Im 0m
]
, (8)

where Im is the identity matrix of measurement order m and 0m is the matrix of zeroes with
dimension m.

2.2. Target Motion Models

In this study, it is assumed that the target performs maneuvering during its motion.
Hence, the target will have two possible motion models to form its trajectory. One is the
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constant velocity model (CV), while the other one is the constant acceleration model (CA).
For the CA model, the state trajectory is

xk =



xk
ẋk
ẍk
yk
ẏk
ÿk

, (9)

The variable (x, y) represents target position, (ẋ, ẏ) denotes the velocity of target
and (ẍ, ÿ) represents the acceleration of the target. For the CV model, the acceleration
components in the state trajectory (9) becomes 0, and hence the trajectory state vector for
the CV model will become the same as given in (5). The CV state transition matrix Fv is

Fv =

[
fv 03×3

03×3 fv

]
, (10)

where parameter fv is a three-dimensional matrix given as

fv =

1 T 0
0 1 0
0 0 0

 (11)

where T is the sampling time. On the other hand, error covariance matrix Qv is

Qv = q
[

qv 03×3
03×3 qv

]
, (12)

where q denotes the plant noise parameter and qv is a three-dimensional matrix

qv =

0.33T3 0.5T2 0
0.5T2 0 0

0 0 0

. (13)

The state transition matrix Fa for the CA model is defined as

Fa =

[
fa 03×3

03×3 fa

]
, (14)

where the three-dimensional matrix fa is the state transition matrix and is equal to

fa =

 1 T T2/2
0 1 T
0 0 1

. (15)

The error covariance matrix Qa for CA model is

Qa = q
[

qa 03×3
03×3 qv

]
, (16)

where qv is defined in (13) and qa is defined as

qa =

 T5/20 T4/8 T3/6
T4/8 T5/20 T3/8
T5/6 T4/8 T5/20

. (17)
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For constant acceleration state vector (9), the H matrix will have an additional m-
dimensional zeros column.

3. Fixed Lag Smoothing IMM IPDA

In this section, a step-by-step approach towards the working of the proposed algo-
rithm is provided. Tracks are initialized using the two-point difference [12] method. By
considering the target birth as a random event, this test is repeated at every scan for tracks
initialization. At any scan, the target starts with a two point initialization step.

Tracks are initialized at any scan k with target initial augmented trajectory state for
the jth model as

x̂A,j
k0|k0

=
[
x̂j

k0|k0
x̂j

k0−1|k0
...x̂j

k0−N|k0

]T
, (18)

and its associated covariance is initialized as

PA,j
k0|k0

=


Pj

k0|k0
0n×n · · · 0n×n

0n×n Pj
k0−1|k0

· · · 0n×n
...

. . . · · ·
...

0n×n 0n×n · · · Pj
k0−N|k0

. (19)

k0 in the subscript denotes the initial state of the target. ‘A’ in the superscript is the
significance of the augmented state while the j denotes the jth model in progress.

The augmented state transition matrix FA,j
k at any scan k for constant velocity and

constant acceleration model are defined as

FA,j =


Fv/a 0n×n · · · 0n×n
In×n 0n×n · · · 0n×n
0n×n In×n · · · 0n×n

...
...

. . .
...

0n×n 0n×n · · · In×n

, (20)

where Fv/a is the definition of the state transition matrix defined in (10) and (14) for CV
and CA models.

The process noise covariance matrix QA,j
k is

QA,j =


Qv/a 0n×n · · · 0n×n
0n×n 0n×n 0n×n 0n×n

... 0n
. . .

...
0n×n 0n×n · · · In×n

, (21)

where Qv/a is the process noise covariance matrix conditioned on (12) and (16).

Track Information Mixing

The mixing step is key to the IMM initialization at any current scan k. For any scan k, it
is assumed that the transition probability, which defines the switching from mode (model)
to mode (model), is already known. The mode transition probabilities can be modeled in
the form of matrix

pij =

[
0.98 0.02
0.02 0.98

]
. (22)

The selection procedure for the values in (22) is discussed in Ref. [32]. The sum of
these mode transition probabilities is always equal to 1.

r

∑
j=1

pij = 1 (23)
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The mixing steps in IMM algorithm are summarized below:
1: Mixing mode probability

µ
i|j
k−1|k−1 = P{Mi

k−1|M
j
k, Yk−1}, (24)

µ
i|j
k−1|k−1 =

pijµ
i
k−1|k−1

r
∑

i=1
pijµ

i
k−1|k−1

. (25)

The i and j represents the previous and current scans index, respectively. µi
k−1|k−1 is

the mode probability at scan k− 1. Mj
k is the target motion model at jth scan, while Mi

k−1
is the target motion model in ith scan. The denominator in (25) is the normalization term.

2: Mixing target trajectory state and error covariance matrix subject to initial
conditions

x̂A,0j
k−1|k−1 =

r

∑
i=1

[
p
(

x̂A
k |M

i
k−1, Mj

k, χk, Yk−1
)

P
{

Mi
k−1|M

j
k, Yk−1

} ]
, (26)

x̂A,0j
k−1|k−1 =

r

∑
i=1

x̂
Aj
k−1|k−1µ

i|j
k−1|k−1, (27)

where x̂
Aj
k−1|k−1 is target trajectory state estimate at scan k− 1 conditioned on jth mode. The

mixing state error covariance is

PA,0j
k−1|k−1 =

r

∑
i=1

µ
i|j
k−1|k−1

(
PA,j

k−1|k−1+
[
(Ax)(Ax)

T
] )

(28)

where

Ax = x̂A,i
k−1|k−1 − x̂A,oj

k−1|k−1 (29)

PA,j
k−1|k−1 is state error covariance update at scan k− 1 for jth model.

3: Prediction Process
With the use of results summarized in (27) and (28), the target trajectory state and its

associated error covariance are predicted for the current scan k as

x̂A,j
k|k−1 = FA,jx̂A,0j

k−1|k−1, (30)

and
PA,j

k|k−1 = FA,jPA,0j
k−1|k−1

(
FA,j

)T
+ QA,j. (31)

All parameters used in (30) and (31) are defined in the above sections.
4: Update Process
In this step, the mode probability, target trajectory state and its associated error covari-

ance, and the target existence state is updated using each rth measurement information
yk(r) from the measurement vector yk received at current scan k. The measurement selec-
tion is carried out using the following selection criteria(

yk(r)−HAx̂A,j
k|k−1

)T(
SA,j

k

)−1(
yk(r)−HAx̂A,j

k|k−1

)
≤ g, (32)

where g is the gating threshold. Its value is selected as the 3σ limit on standard deviation.
SA,j

k is defined as

SA,j
k = HAPA,j

k|k−1

(
HA
)T

+ R. (33)
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The measurements from the measurement set yk, which satisfies the criteria defined in
Equation (32), are selected further for the estimation process.

4.1: Calculation of data association probabilities at the current scan
Each measurement yk(r) at the current scan is associated with the target of interest

and its association probability β is calculated for both the null hypothesis (none of the
measurement belongs to the target) and the other hypothesis [12].

βk|k

(
r, Mj

)
=

1
∆k(Mj)


1− PdPg; r = 0

PdPg pk
(
r, Mj)

ρ
; r > 0

, (34)

where r = 0 implies the null hypothesis and r > 0 implies the detection hypothesis. Pd is
the detection probability and the Pg is the gating probability. The values of these parameters
are selected with the assumption that if the target is detected then it is certain that it will lie
in the validation gate. ρ is the clutter density. The likelihood function for the measurement
yk(r) conditioned on model Mj is

pk

(
r, Mj

)
=

1∣∣∣∣√2πSA,j
k

∣∣∣∣ exp

(
−

1
2
[
yk(r)−HA x̂A,j

k|k−1

]T(
SA,j

k

)−1[
yk(r)HA x̂A,j

k|k−1

])
.

(35)

The ∆k(Mj) is defined as

∆k(Mj) = 1− PdPg + PdPg

mk

∑
r=1

pk
(
r, Mj)/

ρ. (36)

4.2: Mode probability update at current scan
The mode probability at the current scan for jth mode, conditioned on the rth mea-

surement yk(r) is
P
{

Mj
k(r)|Y

k
}
= µk|k

(
r, Mj),

µk|k
(
r, Mj) = pk

(
r, Mj)µk|k−1

(
Mj)

M
∑

m=1
pk(r, Mm)µk|k−1(Mm)

, (37)

where

P
{

Mj
k|Y

k−1
}
= µk|k−1

(
Mj
)
=

M

∑
m=1

pmjµk−1|k−1(Mm). (38)

For the non-detection event r = 0, (37) will be defined as

µk|k

(
0, Mj

)
= µk|k−1

(
Mj
)

. (39)

To obtain the updated mode probability for the jth mode at current scan, we have to
use (37) for all measurements to the mode hypothesis as

P
{

Mj
k|Y

k
}
= µk|k(Mj) =

mk

∑
r=0

βk|k(r)µk|k(r, Mj), (40)

where

βk|k(r) =
1

∆k

 1− PdPg; r = 0

PdPg
pk(r)

ρ
; r > 0

(41)



Sensors 2022, 22, 7848 8 of 18

In (41), the measurement likelihood pk(r) is

pk(r) =
M

∑
m=1

µk|k−1(Mm)pk(r, Mm) (42)

and

∆k = 1− PdPg + PdPg

mk

∑
r=1

pk(r)
/
ρ (43)

4.3: Estimation of the trajectory state and error covariance at the current scan
The target trajectory state estimate at scan k is update conditioned on the rth measure-

ment and jth model as

x̂A,j
k|k (r) = xA,j

k|k−1 + KA,j
k

(
yk(r)− ŷj

k|k−1

)
, (44)

where
ŷj

k|k−1 = HAx̂A,j
k|k−1, (45)

and the Kalman gain at current scan k is

KA,j
k = PA,j

k|k−1

(
HA
)T(

SA,j
k

)−1
. (46)

The measurement innovation covariance matrix SA,j
k is defined as

SA,j
k = HAPA,j

k|k−1

(
HA
)T

+ R, (47)

where
HA =

[
H 0m,n .... 0m,n

]
. (48)

The updated trajectory state error covariance matrix is

PA,j
k|k (r) = PA,j

k|k−1 + KA,j
k HAPA,j

k|k−1. (49)

The target trajectory state update at the current scan conditioned on all models and
measurement associations is

x̂A
k|k =

mk

∑
r=0

M

∑
m=1

x̂A,m
k|k (r)βk|k(r, Mm)µk|k(r, Mm), (50)

where for the r = 0 and mth model

x̂A,m
k|k (0) = xA,m

k|k−1. (51)

Other parameters are defined in the above set of equations. The associated state error
covariance matrix is calculated as

PA
k|k =

mk

∑
r=0

M

∑
m=1

µk|k(r, Mm)βk|k(r, Mm)
{

PA,m
k|k (r) + [D f ][D f ]T

}
, (52)

where
D f =

[
x̂A,m

k|k (r)− x̂A
k|k

]
. (53)

4.4: Target existence state update at the current scan
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The target existence state χk at the current scan k is also updated for the maneuvering
target as

P
{

χk|Yk
}
=

p
(

yk|χk, Yk−1
)

p
(
yk|Yk−1

) P
{

χk|Yk−1
}

.

=
∆kP

{
χk|Yk−1

}
1− (1− ∆k)P

{
χk|Yk−1

} ,

(54)

where
P
{

χk|Yk−1
}
= P{χk|χk−1}P

{
χk−1|Yk−1

}
.

= p̄11P
{

χk−1|Yk−1
}

.
(55)

The p̄11 is defined in (1), and P
{

χk−1|Yk−1
}

is the track existence state at scan k− 1.
The parameter ∆k is defined in (43).

5: Smoothed State Update
The smoothing of the target trajectory state and target existence state at fixed lag N

is carried out in this section. The smoothing principle proposed in Ref. [33] is used here
to obtain the smoothed hybrid state at fixed lag N. The authors have used the fixed lag
smoothing algorithm on the integrated track splitting filter to obtain the smoothed target
trajectory state and target existence state at the same time. In this work, the smoothing
principle is carried out for the maneuvering target scenario. In addition to the improvement
in the target hybrid state, the mode weights are also smoothed at fixed lag N.

5.1: Augmented Smoothed Target Trajectory State Update
At each time step k, we also obtain the augmented target trajectory state conditioned

on jth model as

x̂A,j
k|k =

mk

∑
r=0

x̂A,j
k|k (r)βk|k(r, Mj). (56)

The augmented state Equation (56) also provides the smoothed state vector at lag
k − N using the measurement information available until the current scan k. This idea
is presented in Figure 1 for a smoothing window of lag size N. At each scan we need to
collect the smoothed state x̂j

k−N|kτ
, where kτ represents the index in the smoothing window.

In Section 5.2, the result of (56) will be used to obtain the smoothed target trajectory state at
fixed lag N.

Figure 1. Smoothing window overview.

5.2: Smoothed Target Existence State Update
For the smoothed target existence state χk−N under maneuvering at fixed lag N, the

final results of Ref. [33] are used here. Let kτ be the running index in the smoothing window
and is defined as kτ = k− N + w, where 0 ≤ w ≤ N. The smoothed target existence state
for w = 0 is
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P
{

χkτ
|Yk
}
=

T1 +

[
N−w

∑
s=1

[
N−1
∏

n=s−1
Λk−n

]
Ωkτ

(s)
]

Den(Ωkτ
)

(57)

where
T1 = (1− p11)P

{
χk−N |Yk−N

}
. (58)

For 1 ≤ w ≤ N

P
{

χkτ
|Yk
}
=

N−w+1
∑

s=1

[
N−1
∏

n=s−1
Λk−n

]
Ωkτ

(s)

Den(Ωkτ
)

, (59)

where

Den(Ω) = 1−
(

p11P
{

Xk−N |Yk−N
})

+

[
N
∑

s=1

[
N−1
∏

n=s−1
Λk−n

]
Ωkτ

(s)
]

, (60)

and

Ωkτ
(s)=


P
{

χk|Yk−N
}

; s = 1

P
{

χk−s+1|Yk−N
}
−P
{

χk−s+2|Yk−N
}

; s > 1
(61)

5.3: Smoothed Mode Probability Update
The mode probabilities are also smoothed in the proposed algorithm at fixed lag N.

The mode probabilities are smoothed at fixed lag N for each jth model by assuming all
possible joint events with respect to the motion models at each scan in the smoothing
window. This principle is illustrated in Figure 2, where M = 2 is observed as a special
case. For clarity it is assumed that M1 at scan k− N is to be smoothed. The same procedure
will be repeated for any jth model Mj. In Figure 3, a tree diagram is presented for the set
of possible hypothesis in a smoothing window of lag size N and M = 2. It is presented
for any single jth mode (in Figure 3, j = 1) at scan k taken as reference and its backward
propagation in the smoothing window until scan k− N is observed. In general, the number
of possible joint events from scan k to scan k− N grows as a function MN+1.

Figure 2. Joint mode events in the smoothing window (lag: N, modes: 2).
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Figure 3. Joint mode events in the smoothing window for M = 2.

Here, to begin with, a special case of lag size N = 2 and number of motion models
M = 2 is considered. Later in the section, the results will be generalized for any lag N and
for any number of motion models. The smoothed mode probability for any M1 model at
scan k− 2 is calculated as

P
{

M1
k−2|Y

k
}
= P

{
M1

k−2, M1
k−1, M1

k |Y
k
}
+ P

{
M1

k−2, M1
k−1, M2

k |Y
k
}

+P
{

M1
k−2, M2

k−1, M1
k |Y

k
}
+P
{

M1
k−2, M2

k−1, M2
k |Y

k
}
.

(62)

The first term on the right side of equality in (62) is defined as

P
{

M1
k−2, M1

k−1, M1
k |Y

k
}
=

p
(

yk, yk−1|M1
k−2, M1

k−1, M1
k , Yk−2

)
p
(
yk, yk−1|Yk−2

) P111
, (63)

where

P111 = P
{

M1
k−2, M1

k−1, M1
k |Y

k−2
}

, (64)

P111 = p2
11P
{

M1
k−2|Y

k−2
}

, (65)

where, p11 is defined in (22). P
{

M1
k−2|Y

k−2
}

is the estimated mode probability of M1 at
scan k− 2, and it is obtained in (40). Similarly, the next three terms on the right hand side
of (62) can be solved, such that the second term becomes

P
{

M1
k−2, M1

k−1, M2
k |Y

k
}
=

p
(

yk, yk−1|M1
k−2, M1

k−1, M2
k , Yk−2

)
p
(
yk, yk−1|Yk−2

) P112
, (66)

where
P112 = P

{
M1

k−2, M1
k−1, M2

k |Y
k−2
}

, (67)

P112 = p12 p11P
{

M1
k−2|Y

k−2
}

. (68)

The third term is

P
{

M1
k−2, M2

k−1, M1
k |Y

k
}
=

p
(

yk, yk−1|M1
k−2, M2

k−1, M1
k , Yk−2

)
p
(
yk, yk−1|Yk−2

) P121
, (69)

where
P121 = P

{
M1

k−2, M2
k−1, M1

k |Y
k−2
}

, (70)

P121 = p21 p12P
{

M1
k−2|Y

k−2
}

, (71)
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and the fourth term on the right hand side of (62) is

P
{

M1
k−2, M2

k−1, M2
k |Y

k
}
=

p
(

yk, yk−1|M1
k−2, M2

k−1, M2
k , Yk−2

)
p
(
yk, yk−1|Yk−2

) P122
, (72)

where
P122 = P

{
M1

k−2, M2
k−1, M2

k |Y
k−2
}

, (73)

P122 = p22 p12P
{

M1
k−2|Y

k−2
}

. (74)

The derivations to obtain the results in Equations (65), (68), (71), and (74) are available
in Appendix A. Using the Equations (63)–(73) and some previous results in (62) as

P
{

M1
k−2|Y

k
}
=

∆k(M1)∆k−1(M1)

p
(
yk, yk−1|Yk−2

) p2
11P
{

M1
k−2|Y

k−2
}

+
∆k(M2)∆k−1(M1)

p
(
yk, yk−1|Yk−2

) p12 p11P
{

M1
k−2|Y

k−2
}

+
∆k(M1)∆k−1(M2)

p
(
yk, yk−1|Yk−2

) p21 p12P
{

M1
k−2|Y

k−2
}

+
∆k(M2)∆k−1(M2)

p
(
yk, yk−1|Yk−2

) p22 p12P
{

M1
k−2|Y

k−2
}

, (75)

where ∆k−1(Mm) and ∆k(Mm) for m =1:2 are the likelihood ratios conditioned on models for
scans k− 1 and k, as defined in (36). The normalization function in (75), p

(
yk, yk−1|Yk−2

)
is

the consequence of the total probability theorem with reference to both models (m = 1 : 2)
under consideration at scan k− N, such that

P
{

M1
k−2|Y

k
}
+ P

{
M2

k−2|Y
k
}
= 1. (76)

In general, to obtain the smoothed mode probability for jth mode at fixed lag N using
the measurement information till the current scan k, the following set of equations can be
used,

P
{

Mj
k−N |Y

k
}
=

M
∑

i1=1

M
∑

i2=1
..

M
∑

iN=1

∆k(MiN )∆k−1(MiN−1)..∆k−N+1(Mi1)

pji1 pi1i2 ..piN−1 piN P
{

Mj
k−N |Y

k−N
} 

p
(
yk, yk−1, ..., yk−N+1|Yk−N

) , (77)

where

p
(

yk, yk−1, ...yk−N+1|Yk−N
)
=

M
∑

m=1
p
(

yk, yk−1, ...yk−N+1, Mm
k−N |Y

k−N
)

. (78)

With the use of (77) and (78), one can find the smoothed mode probability at any past
scan at fixed lag N.

5.4: Merged Smoothed Target Trajectory State Update
Each jth model smoothed state is probabilistically weighted and merged to calculate

the smoothed target trajectory state at fixed lag N for the jth model. For this purpose, the
smoothed target trajectory state x̂j

k−N|k at fixed lag N from the augmented state smoothed
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target trajectory state (56) is used and weighted with the jth smoothed mode at fixed lag N,
as calculated in (77), and merged over all the possible modes.

p
(

xk−N |χk−N , Yk
)
=

M
∑

j=1
p
(

xj
k−N |χk−N , Yk

)
P
{

Mj
k−N |Y

k
}

x̂k−N|k =
M
∑

j=1
x̂j

k−N|kµk−N|k
(

Mj) , (79)

where all parameters are defined in the earlier sections.

4. Simulation Analysis

In this section, the performance of proposed algorithm is compared with different
tracking algorithms under the same simulation conditions to achieve a fair analysis. A
single target under maneuvering is considered in a 2-dimensional surveillance area with a
dimension of 570 m× 270 m. The target is assumed to follow two motion models: a CV
model and a CA model. During the CV model, the target is assumed to be moving with
a velocity of 17 m/s. In the CA model, the target is assumed to have an acceleration of
1.118 m/s2.

As shown in Figure 4, the CV model is followed by the target in two separate scan
intervals. The first target is in-between scans 1–21, and the second target is in-between
scans 47–67. The CA model is followed by the target in-between scans 22–46. The initial
position of the target is [50 m, 80 m]T for the single target and the target is detected with
a detection probability of Pd = 0.9. The sampling time is 1 s. The total number of scans
in a single run is 67 and 500 simulation runs are performed in this analysis. The clutter is
uniformly distributed with a density of 10−4 m−2.

Figure 4. Simulation scenario (red: true target, blue: clutter).

The root mean square error (RMSE), true track rate (TTR), and mode probabilities are
presented in this section to compare the performance of the proposed algorithm with the
other algorithms available in the literature, which also assumed the target existence state as
an event [12].

In Figure 5, the RMSE plots for different algorithms are compared with the proposed
algorithm. The RMSE performance of the proposed algorithm is shown for the fixed lag
N = 4. It can be observed that the RMSE performance is improved as compared to the
other tracking algorithms. In Figure 6, the CTTR for the proposed algorithm is plotted and
it is compared with other different algorithms, which also compare the target existence as



Sensors 2022, 22, 7848 14 of 18

an event. The proposed FLs IMM-IPDA tracking algorithm confirms the true tracks much
earlier compared to the other existing algorithms.The drop rate is almost negligible in the
maneuvering phase compared to the other algorithms.

Figure 5. Root mean square error (the smoothing lag is 4).

Figure 6. The confirmed true track rate (the smoothing lag is 4).

In Figure 7, the mode probabilities for both the CV and CA models are compared
among IPDA, IMM, and the proposed smoothing algorithm, which is used here to minimize
the ambiguity in the figure (the legend shows NS:Non smoothing algorithm, which in
this case is IMM-IPDA, and the proposed algorithm is labeled as FLs-L4, which implies
fixed lag smoothing-Lag4). Based on the proposed formula used to obtain the smoothed
mode probabilities, it can be observed that the proposed algorithm has shown a significant
improvement in terms of mode decisions, and the mode switching is fast compared to
other non-smoothing algorithms. Due to these smoothing probabilities, the overall target
tracking is improved and its trajectory state estimation error is reduced, which is also
evident in Figure 5. The performance of the proposed algorithm for different smoothing
lags in terms of mode probabilities is also compared in Figure 8. It can be observed that the
smoothing environment helps the algorithm to identify and correct the trajectory modes in
a better and abrupt manner.
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Figure 7. Mode probabilities (the smoothing lag is 4).

Figure 8. Mode probabilities for lag sizes 2 and 4.

In addition to the above experiments, the results are compared for high clutter density
in the same target trajectory environment. The results show the performance of the pro-
posed algorithm in Figures 9 and 10 for the RMSE, TTR, and mode probabilities. In this
scenario, the clutter is twice as much, as compared to Figures 5–8.

Figure 9. Root mean square error performance for clutter density: 2× 10−4 m−2.



Sensors 2022, 22, 7848 16 of 18

Figure 10. True track rate for clutter density: 2× 10−4 m−2.

5. Conclusions

In this paper, a fixed lag smoothing technique is suggested to enhance the trajectory
state and existence state of the target while it is being maneuvered in the presence of clutter.
In addition, the proposed algorithm has provided a complete and generalize mathematical
formula to smooth the target mode probabilities while it maneuvers during its motion in
the presence of clutter.The target hybrid state and mode probabilities at fixed lag N are not
smoothed using the standard IMM-IPDA technique due to the lack of a formal mathematical
foundation. The suggested smoothing framework outperformed other methods in the
literature, according to simulation findings for RMSE, CTTR, and mode probabilities.
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Appendix A

Appendix A.1. Joint Mode Transition Probabilities

The joint mode transition probabilities in (65), (68), (71), and (74) are derived as

P111 = P
{

M1
k−2, M1

k−1, M1
k |Y

k−2
}

P111= P
{

M1
k |M

1
k−1, M1

k−2, Yk−2
}

P
{

M1
k−1|M

1
k−2, Yk−2

}
P
{

M1
k−2|Y

k−2
}

,

= P
{

M1
k |M

1
k−1

}
P
{

M1
k−1|M

1
k−2

}
P
{

M1
k−2|Y

k−2
}

,

= p2
11P
{

M1
k−2|Y

k−2
}

,

(A1)
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P112 = P
{
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k−1, M2
k |Y

k−2
}

P112= P
{
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k |M

1
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k−2, Yk−2
}

P
{
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k−1|M

1
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}
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}
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P
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(A2)
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{
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}
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{
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