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Abstract: This study experimentally and numerically validates the commonly employed technique
of laser-induced heating of a material in optical temperature sensing studies. Furthermore, the
Er3+-doped glass microspheres studied in this work can be employed as remote optical temperature
sensors. Laser-induced self-heating is a useful technique commonly employed in optical temperature
sensing research when two temperature-dependent parameters can be correlated, such as in fluores-
cence intensity ratio vs. interferometric calibration, allowing straightforward sensor characterization.
A frequent assumption in such experiments is that thermal homogeneity within the sensor volume,
that is, a sound hypothesis when dealing with small volume to surface area ratio devices such as
microresonators, but has never been validated. In order to address this issue, we performed a series of
experiments and simulations on a microsphere supporting whispering gallery mode resonances, laser
heating it at ambient pressure and medium vacuum while tracking the resonance wavelength shift
and comparing it to the shift rate observed in a thermal bath. The simulations were done starting only
from the material properties of the bulk glass to simulate the physical phenomena of laser heating
and resonance of the microsphere glass. Despite the simplicity of the model, both measurements and
simulations are in good agreement with a highly homogeneous temperature within the resonator,
thus validating the laser heating technique.

Keywords: temperature sensor; whispering gallery modes; laser heating; microsphere

1. Introduction

Optical sensors based on microresonators supporting Whispering Gallery Mode
(WGM) resonances have been gaining interest for some time due to their exceptional
sensitivity, structural diversity, and ease of integration with existing infrastructures [1].
WGM are morphology-dependent electromagnetic resonances produced from the multiple
total internal reflections of the light travelling along the curved surface of a resonator. Such
resonances are commonly supported in circularly symmetric morphologies such as micro-
spheres [2], microtoroids [3], and microbottles [4], and also in asymmetric resonant cavities
like a rounded-isosceles-triangle-shaped microcavity [5]. Typically, WGM resonances are
observed through evanescent coupling of light into the microresonator with the use of a
prism [6], a tapered fiber [7], or an angle-polished fiber [8]. A simpler approach that does
not require a coupler would be doping the microresonator with a fluorescent substance
and taking advantage of the Purcell enhancement effect, which produces a notable increase
in the emission intensity at the resonant wavelengths of the microresonator [9].

In a geometrical approximation valid for a resonator with radius a >> λ, the ray circles
the cavity through multiple total internal reflections and returns in phase such that the
following resonance condition is observed [10]:
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2πan = lλ (1)

where n is the refractive index of the resonator, λ is the resonant wavelength, and l is the
polar mode number. Therefore, a small change in the size and/or refractive index of the
microresonator can cause a significant shift in the resonant wavelength for a given mode.
Meanwhile, the material properties of a resonator, such as its size and refractive index, are
susceptible to thermal fluctuations according to its thermal expansion α and thermo-optic
coefficient β, respectively [11]. This is the main principle of WGM-based temperature
sensors, where a temperature change ∆T is directly related to a resonant wavelength shift
∆λ according to the following equation:

∆λ = (α + β)λ∆T (2)

In most studies regarding WGM-based temperature sensors, the temperature change
is induced either through the variation of the ambient temperature [11,12] or through
the absorption of the laser pump energy [13,14]. In this latter method, there is an issue
of non-homogenous heating of the microsphere due to the laser heating nature. This
produces a temperature gradient from higher to lower temperatures from the center of the
microsphere to its surface, where the WGM are located. In this work, we aim to study the
feasibility of measuring the temperature at the surface of a laser-heated microresonator
using the WGM, despite the issue of non-homogenous heating. This involves studying the
WGM displacement with the temperature change induced through both methods: ambient
temperature variation and laser heating at ambient pressure and medium vacuum as a
way to thermally isolate the microsphere. We complement our experimental results with a
COMSOL® heat transfer simulation of the laser heating.

2. Materials and Methods

The microresonator employed in this study is an Er3+-doped Barium Titanium Silicate
(BTS) microsphere. The bulk glass with a composition of 40% BaO, 20% TiO2, 40% SiO2 and
doped in excess with 3% Er2O3 (in molar ratio) was produced through the conventional
melt-quenching method of the precursor components at 1500 ◦C for one hour. After that,
the microspheres were produced by dropping a crushed portion of the obtained glass
through a small torch. The crushed glass melts as it passes through the flame, then surface
tension pulls it into a sphere which quenches into an amorphous state as it drops to the
cooler region outside the hot zone [15]. A microsphere with a radius of 10 µm was selected
for the experiment.

A modified confocal microscope setup, shown in Figure 1, was used in order to observe
the WGM. A continuous 532 nm DPSSL was used to excite the Er3+-doped microsphere
attached to a stem inside a vacuum chamber. The luminescent emission is observed through
a CCD spectrograph. The laser beam was focused on the center of the microsphere while
the luminescent emission at its surface was collected so that the highest WGM resonance
amplitudes were observed [16]. In order to characterize the microsphere as a temperature
sensor, it was heated in two different ways: by increasing the laser pump power and by
increasing the surrounding temperature of the sample through a water bath. Furthermore,
in order to study the heating mechanism of the microsphere, the experiments were done in
two conditions: at atmospheric pressure and at 20 Pa (medium vacuum).
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Figure 1. Modified confocal microscope setup used to observe the WGM. 

3. Results and Discussion 
3.1. Emission Spectrum of Er3+ 

The WGM resonances superimposed with the typical Er3+ emission spectrum are 
shown in Figure 2 as a result of the 532 nm excitation of the microsphere. The emission 
bands of Er3+ are observed at 650 nm (4F9/2 → 4I15/2), 800 nm (2H11/2 → 4I13/2), 850 nm (4S3/2 → 
4I13/2), and 1000 nm (4I11/2 → 4I15/2). The WGM at 670 nm, 850 nm, and 1000 nm bands were 
used for the temperature correlation. 

 
Figure 2. Emission spectrum of Er3+-doped BTS glass microsphere under a 532 nm excitation. Inset: 
Close up of the WGM resonant peaks in the 850 nm emission band. 

3.2. Temperature Correlation with WGM Displacement 
3.2.1. Laser Heating 

To obtain the temperature correlation by laser heating, the laser pump power was 
increased from 2 mW to 112 mW and the WGM displacement from the three mentioned 
emission bands was recorded. This is shown in Figure 3 for the microsphere at atmos-
pheric pressure (a) and at 20 Pa vacuum (b). A linear tendency can be observed for each 
correlation. The displacement rates obtained at atmospheric pressure and in a vacuum are 
displayed in Table 1. It can be seen that the displacement rate depends on the wavelength, 
as expected from Equation (2). It can also be seen from these results that the displacement 
rates of the microsphere in a vacuum are greater than those of the microsphere at atmos-
pheric pressure. This is because, in vacuum, heat transfer is greatly reduced, allowing only 

Figure 1. Modified confocal microscope setup used to observe the WGM.

3. Results and Discussion

3.1. Emission Spectrum of Er3+

The WGM resonances superimposed with the typical Er3+ emission spectrum are
shown in Figure 2 as a result of the 532 nm excitation of the microsphere. The emission
bands of Er3+ are observed at 650 nm (4F9/2 → 4I15/2), 800 nm (2H11/2 → 4I13/2), 850 nm
(4S3/2 → 4I13/2), and 1000 nm (4I11/2 → 4I15/2). The WGM at 670 nm, 850 nm, and 1000 nm
bands were used for the temperature correlation.
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Figure 2. Emission spectrum of Er3+-doped BTS glass microsphere under a 532 nm excitation. Inset:
Close up of the WGM resonant peaks in the 850 nm emission band.

3.2. Temperature Correlation with WGM Displacement
3.2.1. Laser Heating

To obtain the temperature correlation by laser heating, the laser pump power was
increased from 2 mW to 112 mW and the WGM displacement from the three mentioned
emission bands was recorded. This is shown in Figure 3 for the microsphere at atmospheric
pressure (a) and at 20 Pa vacuum (b). A linear tendency can be observed for each correlation.
The displacement rates obtained at atmospheric pressure and in a vacuum are displayed in
Table 1. It can be seen that the displacement rate depends on the wavelength, as expected
from Equation (2). It can also be seen from these results that the displacement rates of the
microsphere in a vacuum are greater than those of the microsphere at atmospheric pressure.
This is because, in vacuum, heat transfer is greatly reduced, allowing only radiation (from
the pump laser to the microsphere as a heating mechanism and from the microsphere to the
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surrounding medium as a cooling mechanism) and conduction via the microsphere stem. A
slight saturation can also be observed for higher pump powers in the vacuum experiment.
This could be due to the higher radiation loss from the microsphere as its temperature rises,
which opposes the laser heating.
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pressure and (b) at 20 Pa vacuum. Error bars represent standard error of 20.4 pm.

Table 1. Displacement rates obtained as a function of laser pump power.

Emission Band
Displacement Rates (pm/mW)

at Atmospheric Pressure at 20 Pa Vacuum

650 nm 2.22± 0.16 10.2± 0.5
850 nm 2.79± 0.16 12.9± 0.4
1000 nm 3.03± 0.16 14.5± 0.4

3.2.2. Water Bath Heating

For the water bath heating, the experiment was done at atmospheric pressure and the
temperature of the microsphere was heated from 298 K to 328 K. The WGM displacement
of the 850 nm band as a function of temperature is shown in Figure 4 (blue). With a linear
fit, a displacement rate of 6.6 ± 0.8 pm/K was obtained.
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3.3. Simulations of the WGM Displacement and Laser Heating of the Microsphere

In order to obtain the relationship between the temperature of the microsphere and the
laser pump power, two simulations were done with COMSOL Multiphysics®: a simulation
of the displacement of the WGM frequencies of the microsphere with temperature using the
Frequency Domain (ewfd) solver and a simulation of the laser heating of the microsphere
using the Heat Transfer in Solids solver.

3.3.1. WGM Displacement with Temperature Simulation

The WGM in a microsphere was simulated using the Frequency Domain (ewfd) solver
included in the Wave Optics package. This solves the eigenfrequencies of the resonator
modes numerically. To reduce the computation time, an axisymmetric 2D geometry was
implemented. The initial radius of the microsphere is set to 10 µm, similar to the one
used in the experiment. To properly simulate the WGM shift of the microsphere with
temperature, its refractive index, thermal expansion coefficient, and thermo-optic coeffi-
cient were previously determined. The refractive index of the BTS glass was found to be
1.76 at 633 nm for a BTS glass of similar composition in Ref. [17]. Meanwhile, the thermal
expansion coefficient was measured with a dilatometer while the thermo-optic coefficient
was measured using a Michelson interferometer as detailed in Ref. [18], and values of
7.94 × 10−6 K−1 and 1.63 × 10−6 K−1 were obtained, respectively. The profile of the elec-
tric field norm of a WGM in the microsphere is shown in Figure 5, and the simulated WGM
shift of the 850 nm band with temperature is shown in Figure 4 (red). A displacement rate
of 8.04 ± 0.37 pm/K was obtained from the simulation, similar to the 6.57 ± 0.32 pm/K
experimentally obtained previously in Section 3.2.2.
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Figure 5. Electric field norm profile of a WGM with TE polarization with n = 1, m = l = 133,
λ = 826.63 nm with (a) z axisymmetric simulation and (b) transversal simulation. Color represents
electric field intensity normalized in rainbow scale.

3.3.2. Laser Heating of the Microsphere Simulation

To model the laser heating experiment, the Heat Transfer in Solids solver interface
was employed. This simulates the temperature rise within and around a material. The
model is shown in Figure 6a, which consists of the following: a sphere of a 10 µm radius
that represents the BTS microsphere, a smaller sphere of a 2 µm radius acting as a heat
source at the center of the first sphere that represents the laser spot volume, a cylindrical
steel bar representing the needle that supports the microsphere, and surrounding all of
these elements is a box of air with a side of 2 mm. In this model, we set the steel bar at
constant room temperature since one end of it is in constant contact with the wall of the
vacuum chamber, which remains at room temperature, and due to its large size and high
conductivity, the heat from the microsphere is negligible according to the simulations. A
500 nm gap between the bar and the microsphere was added in order to account for the
roughness of the needle. We assume that all the energy absorbed by the microsphere is
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converted into heat. Furthermore, we neglect the laser absorption in the whole path of
the laser within the microsphere and only consider the absorption in the focus since the
energy density here is much greater than out of focus. The absorption coefficient of the
microsphere at 532 nm is also a required parameter for this simulation and is measured
to be 5.69 cm−1. Aside from this, we took into consideration the losses from having the laser
beam pass through a sapphire window in the vacuum chamber as well as the reflection losses
from the microsphere, such that the simulated microsphere absorbs about 0.3% of the incident
laser power. The thermal conductivity of air at atmospheric pressure and 20 Pa was obtained
from Ref. [19] with values of 2.50 × 10−2 W/mK and 4.39× 10−3 W/mK, respectively.
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The temperature map of the microsphere and its surroundings when laser heated with
112 mW is shown in Figure 6b,c for atmospheric pressure and vacuum, respectively. To
quantify the inhomogeneity of the temperature distribution, the following figure of merit
is defined:

%Variation = (Tcenter − Tsurface)/Tcenter (3)

where Tcenter and Tsurface are the temperatures at the center and at the surface of the
microsphere, respectively. For atmospheric pressure simulations, the temperature varies
within the microsphere by 2.1%, while for vacuum simulations, this value is 1.3%. As
can be seen, although the microsphere is heated at its center, there is high homogeneity
in the temperature distribution throughout the microsphere, which verifies temperature
measurements on its surface through WGM displacements. Furthermore, such homogeneity
is enhanced in vacuum experiments because of the lessened interaction between the surface
of the microsphere and its surroundings.

By changing the power of the heat source and recording the change in temperature
at the surface of the microsphere produced by the simulation, the relationship between
the laser pump power and temperature change can be obtained. The simulated data
points for both atmospheric pressure and vacuum configurations are shown in Figure 7.
Meanwhile, the experimental data points were obtained by combining the correlations
established in Figure 3 (850 nm band) and Figure 4. As can be seen, the simulations
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reproduce the experimental results, and a linear dependence exists between the temperature
and laser pump power. With the microsphere at atmospheric pressure, laser heating
rates of 0.42 K/mW and 0.39 K/mW were obtained experimentally and numerically,
respectively. With the microsphere in vacuum, rates of 1.97 K/mW and 2.25 K/mW
were obtained experimentally and numerically, respectively. As can be seen, the laser
heats the microsphere much more easily in a vacuum than in air for the reason explained
previously. Moreover, the laser heating rates in the simulation are similar to those in the
experiment, both for air and vacuum. This further supports the validity of such temperature
measurements using WGM displacements and laser-originated heating. The noticeable
difference between the simulation and experimental data in vacuum can be attributed to
the high uncertainty in the measurement of the exact pressure of the vacuum since the
vacuum chamber had leaks.
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microsphere at atmospheric pressure and at 20 Pa vacuum.

4. Conclusions

In this study, we have developed a WGM-based temperature sensor from Er3+-doped
BTS microspheres. We established a WGM displacement—pump power correlation through
laser heating of the microsphere and obtained displacement rates of 2.8 pm/mW and
13.0 pm/mW for the 850 nm emission band at room pressure and at a 20 Pa vacuum,
respectively. On the other hand, we established a WGM displacement—temperature
correlation through water bath heating and obtained a displacement rate of 6.57 pm/K
for the same emission band. In order to verify if one can heat the microsphere from its
center (such as in laser heating) and measure the temperature through the WGM near
its surface, we performed a laser heating simulation through COMSOL. The simulated
and experimentally obtained temperature—pump power correlations are very similar
to each other both for the microsphere at room pressure and in vacuum. This suggests
that the proposed method of using the WGM to study how much the laser heats up the
microsphere makes sense. Furthermore, laser heating rates of 0.42 K/mW and 1.97 K/mW
were obtained for the microsphere in air and in vacuum, respectively. This shows that it is
much easier to heat the microsphere in vacuum, which can be attributed to the fewer heat
transfer mechanisms from the microsphere in vacuum.
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