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Abstract: In the past few years, the ability to transfer power wirelessly has experienced growing
interest from the research community. Because the wireless channel is subject to a large number
of random phenomena, a crucial aspect is the statistical characterization of the energy that can
be harvested by a given device. For this characterization to be reliable, a powerful model of the
propagation channel is necessary. The recently proposed generalized-K model has proven to be
very useful, as it encompasses the effects of path loss, shadowing, and fast fading for a broad set of
wireless scenarios, and because it is analytically tractable. Accordingly, the purpose of this paper
is to characterize, from a statistical point of view, the energy harvested by a static device from an
unmodulated carrier signal generated by a dedicated source, assuming that the wireless channel
obeys the generalized-K propagation model. Specifically, by using simulation-validated analytical
methods, this paper provides exact closed-form expressions for the average and variance of the
energy harvested over an arbitrary time period. The derived formulation can be used to determine a
power transfer plan that allows multiple or even massive numbers of low-power devices to operate
continuously, as expected from future network scenarios such as the Internet of things or 5G/6G.

Keywords: radio-frequency energy harvesting; wireless power transfer; path loss; shadowing; multi-
path fading; unmodulated carrier; additive white Gaussian noise; mean; variance; correlation

1. Introduction

Recent developments in low-power integrated circuits and wireless technologies, the
emergence of new application paradigms in the context of the Internet of things (IoT), and
a better understanding of propagation phenomena, have led the scientific community to
revise Tesla’s initial idea of the wireless power transfer. This idea is now seen as a promising
and achievable solution to overcome the limitations of conventional power supply methods,
such as batteries or wired connections to fixed power grids. Given the large number of
nodes expected to be interconnected in IoT applications and other 5G/6G scenarios, the
benefits of radio frequency-based energy harvesting (RF-EH) in terms of operating cost
savings and self-sustainability are undoubted. In addition, whether based solely on RF-EH
or combined with other primary energy sources (solar radiation, mechanical vibration,
air flow, etc.), the panacea of perpetual operation of wireless networks seems somewhat
closer today.

Research in RF-EH has already produced significant results, as indicated in recent
survey papers. Examples are [1–6]. Moreover, relatively new books like [7] or [8] contain
good compilations of the main contributions and results. Until now, however, less attention
has been paid to the role of the propagation model, either because current work has focused
on design aspects or applications of the energy-harvesting technology, or because it has
relied on assumptions that neglect the importance of the wireless environment. For example,
many papers assume the presence of a dedicated energy source, which performs channel
estimation to adjust the transmitted power accordingly. Therefore, the specific propagation
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model plays a secondary role in these works. However, an important application area
for RF-EH is IoT, which is expected to comprise thousands or even millions of extremely
simple and low-cost wireless devices. Thus, it is quite possible that these devices will not
be able to participate in channel state information (CSI) estimation procedures, nor will the
power transmitter be able to cope with the excessive workload involved in keeping track of
each connection.

Given the erratic behavior of the wireless channel, the main motivation of this paper
is to analyze in detail the impact of the variability of the received power on the amount of
electromagnetic energy that can be captured by a device. To fully capture this variability, a
key aspect is the selection of a powerful channel propagation model that encompasses all
sources of signal variation in a flexible manner. Thus, the main contributions regarding the
use of channel propagation models in the characterization of the energy-harvesting process
are reviewed below.

First, the propagation models used in RF-EH are outlined in some of the above survey
papers. This is the case of [1,6], which includes a brief description of wireless propagation
through manageable models such as free-space, two-ray, or Rayleigh fading [4], which
recalls the free-space and two-ray models and [5], which only makes reference to the Friis
path-loss formula. As for regular papers, most also adopt simplified propagation models.
For example, the work presented in [9] assumes free-space path loss and additive white
Gaussian noise, which is consistent with the use of a power transmitter mounted on an
unmanned autonomous vehicle (UAV) flying along a circular path over the wireless nodes.
The objective is to optimize the trajectory radius of the UAV so that a fair allocation of energy
between the participating devices is achieved. In [10], a two-ray model is used to account
for both line of sight (LOS) and non-line of sight (NLOS) propagation. The analysis focuses
on the impact of the NLOS component and other factors (radiation pattern of the transmit
and receive antennas, losses associated with different polarization of transmitting field, and
efficiency of the power harvester circuit) on the average energy harvested. The use of the
two-ray model applies to situations in which there is a direct LOS component and a clear
NLOS component reflected by a uniform ground plane. This model is further extended
to include path loss, lognormal shadowing, and Rician fading. The latter characterizes
the aggregation of many weak scattered rays rather than a single dominant one. The
paper then focuses on the estimation of the path loss and shadowing parameters as well as
the Rician factor on the basis of experimental measurements. The paper concludes with
the assertion that the Rayleigh fading model is not well suited to characterize practical
scenarios of RF-EH due to the presence of a strong LOS component. Reference [11] discusses
a power beamforming strategy for distributed power transfer from multiple transmitters
to a single receiver, based on a relatively simple path-loss model combined with Rayleigh
fading and Gaussian noise. Another example is [12], which characterizes the channel by a
Nakagami-m fading model. Its purpose is to determine an optimal transmission policy for
the RF energy-harvesting device, which switches between two modes: on and off. In the
on mode, the device is operational and powered by a battery; in the off mode, the device
turns off, and the battery feeding process stops. In [13], various empirical path-loss models
are used to determine the usability and fundamental limits of joint RF and photovoltaic
harvesting-based M2M communications. Essentially, the theoretical bounds derived in this
paper are based on the well-known Shannon’s capacity theorem. In [14], several empirical
path-loss models are used with the objective of proposing design guidelines for all stages
of the end-to-end RF-to-DC energy-conversion process. In [15], both the Nakagami-m
and generalized-K fading models are considered in the statistical characterization of the
battery recharging time. In [16], the HATA model, the Ericsson model, and the ITU-R model
are used to provide outdoor RF spectral survey results in suburban areas. Basically, the
main objective of this paper is to determine the frequency bands most suitable for energy
harvesting from RF ambient sources in populated environments.
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Among the reviewed literature, the closest contributions to the work presented in this
paper are made by [17,18]. The first characterizes the average and variance of the energy
collected by a node from the RF signal generated by multiple transmitters distributed
according to a spatial Poisson process. The channel between each transmitter and the
collector node is initially assumed to be generalized-K, but it is then approximated by a
gamma distribution and finally mixed with the rest of the channel distributions to produce
a general Gaussian process according to the central limit theorem. Very general propagation
models are also considered in [18], such as the generalized η-µ and κ-µ models, which
are used to obtain exact closed-form expressions for the distribution, mean, variance, and
higher-order moments of the recharge time. However, no relationship is provided between
the mathematical parameters of these models and the physical parameters of the system.

This paper fills the previous gaps by fully considering the generalized-K propagation
model for the statistical characterization of the energy collected by a single device over
an arbitrary time interval. The generalized K-model is doubly advantageous in that it is
analytically tractable (in contrast to what is stated in [17]) while covering a wide variety of
scenarios with respect to all perturbations introduced by wireless channels, namely path
loss, shadowing, and fast fading. Specifically, the main contributions of this paper can be
listed as follows.

• Exact closed-form expressions are obtained for the expectation and variance of the
energy harvested by a static device, which is assumed to be illuminated by a dedicated
power source emitting an unmodulated carrier (a WPT system is thus considered). To
the author’s knowledge, this is the first work that adopts such a very general propaga-
tion model to accurately characterize the statistics of the RF energy-harvesting process.

• A detailed evaluation is performed showing the sensitivity of the statistical parameters
with respect to the physical parameters of the propagation environment (transmission
distance, path-loss exponent, shadowing spread, and Nakagami parameter).

Table 1 summarizes the current state-of-the art work in RF-EH related to the specifica-
tion and use of channel propagation models.

Table 1. Current state-of-the-art work in RF-EH involving channel propagation models.

Reference Propagation Model Main Focus

[9] Free space path-loss and additive
Gaussian noise Fair energy allocation

[10] Two-ray/Path-loss, lognormal
shadowing and Rician fading

Average energy
harvested/Estimation of model

parameters

[11] Path-loss, Rayleigh fading and
additive Gaussian noise Beamforming strategy

[12] Nakagami-m fading Optimal transmission policy

[13] Empirical Theoretical bounds on
transmission rate

[14] Empirical Design guidelines for
RF-to-DC circuitry

[15] Nakagsami-m/Generalized-K Battery recharging time

[16] Empirical (HATA/Ericsson/ITU-R) Spectral behavior of RF-EH in
suburban environments

[17] Gaussian Mean and variance of harvested
energy (from multiple transmitters)

[18] Generalized η-µ/κ-µ Battery recharging time
Current

contribution Generalized-K Mean and variance of
harvested energy

In the context of RF energy harvesting, one of the paradigms with the greatest pro-
jection is the wireless energy network (WEN) [19]. The results obtained in this paper are
useful in several aspects related to the planning and performance of this type of network.
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• To define areas with different levels of energy coverage, once a potential location of
the primary and secondary power sources is defined. Here, a grade of service metric
such as the probability of energy outage will be of the utmost importance.

• To analyze the queuing time experienced by the energy requests directed to the same
power source.

The rest of the paper is organized as follows. In Section 2, the basics of RF-EH
are reviewed. In Section 3, the problem is formulated by stating the system model and
assumptions, the energy harvesting equations and the generalized-K distribution. Exact
closed-form expressions for the average and variance of the energy harvested by a static
device are respectively obtained in Sections 4 and 5. In Section 6, the analytical expressions
are validated by simulation and then numerical results are obtained. Finally, in Section 7,
the main conclusions and suggestions for further research are drawn.

2. Fundamentals of RF-EH

RF-EH has recently emerged as a disruptive technology that allows low-power
portable devices and energy-constrained wireless networks to convert the electromag-
netic energy present in the environment into DC current. This idea is not new, as it dates
back to the early years of the last century, when Nikola Tesla designed and built an experi-
mental station (Wardenclyffe Tower) for the wireless transfer of information and energy
to remote devices. However, the project did not receive enough funds and was quickly
abandoned before it became operational due to several reasons: the low efficiency of
the electric-to-electromagnetic-to-electric conversion process as well as health concerns
related to high-power transmitters. Fortunately, in the past few years we have witnessed a
resurgence of the concept, as a result of its reformulation for low-power wireless devices.

Wireless power transfer (WPT) techniques fall into one of two major categories, namely
near field and far field. The distinction is made because electromagnetic waves behave very
differently in these two regions, and correspondingly the techniques to collect energy from
them are also quite different. Near-field propagation takes place within an area of about
one wavelength of the transmitting antenna, which typically corresponds to distances of at
most several meters. As detailed in [3], propagation in the near-field region is essentially
non-radiative, meaning that power leaves the transmitter only when there is a receiver to
couple to within such a region. Accordingly, power can be transferred in the near-field
region by employing inductive coupling, capacitive coupling or their enhanced versions,
which consist of adding resonant circuits in order to increase the power-coupling coefficient
and, consequently, the transmission range. However, for distances of hundreds of meters
or even several kilometers, far field is the only possible region of operation. In contrast
to near-field propagation, far-field propagation is radiative, and it obeys the well-known
Friis equation when no obstacles are present between transmitter and receiver. RF-EH
encompasses systems and techniques devoted to far-field WPT via electromagnetic signals
like radio waves, microwaves, or light waves.

Various architectures have been proposed for energy-harvesting systems that coexist
with traditional data receivers. One solution is to have independent segments for WPT
and wireless information transfer (WIT), as depicted in Figure 1. Such a global scenario of
wireless information and power transfer (WIPT) is also referred to as separated receiver
architecture. As can also be seen, power sources can be classified into two classes: dedicated
power sources and ambient power sources. Dedicated power sources are specifically
deployed to transfer RF energy to one or several nodes. These sources can use the license-
free ISM frequency bands, though subject to restrictive upper bounds on transmission
power. On the other hand, ambient power sources, that is, transmitters that are not
intended for RF energy transfer, are always available at no cost, but the collected energy
can be very small. Consequently, for applications that require stable and predictable energy
supply, dedicated power sources are preferable.
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Figure 1. WIPT scenario, with separated WIT and WPT segments. The WIT segment contains
conventional hardware to receive information, whereas the WPT segment is essentially a voltage
rectifier followed by a low-pass filter devoted to extracting the DC component of the received signal.

The architecture represented in Figure 1 is also known as out-of-band RF energy
harvesting, because the node collects energy from an RF signal different from that used
to receive information. On the other hand, because the information signal also carries
energy, a new modality called simultaneous wireless information and power transfer
(SWIPT), or in-band energy harvesting, was devised. The new architecture is represented
in Figure 2. As can be seen, SWIPT allows for use of a single antenna (or antenna array)
to obtain both information and energy. However, a splitting architecture is required in
order to distribute the received signal among the two processes. The reason is that a serial
implementation would not be feasible regardless of which process was implemented first.
Either the energy harvester would destroy information, or the information decoder would
consume all signal power. References [1,3] provide very complete descriptions of the WIPT
and SWIPT architectures.

Figure 2. SWIPT scenario. Power is obtained from the same information signal, by using a splitting
architecture that generates an input for every independent process.

Finally, another architecture is frequency splitting, the diagram of which is shown
in Figure 3. In this architecture, the input signal transports both information and power
by using separated frequencies. In fact, this signal consists of the information-bearing
modulated component plus an unmodulated sine wave that essentially results from shifting
the carrier frequency used in the modulation process, from a value fc to a different value
fp. The figure also highlights the fact that though the transmitter sends a pure sinusoidal to
transfer power, the received signal exhibits some spread due to variations in the channel
coefficient. Consequently, there must be a sufficiently high guard band between fc and fp.
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Figure 3. Frequency-splitting architecture. This architecture is really a variant of WIPT, because
information and power are transferred via separated signals in the frequency domain, but just a
single antenna is required at each side of the link (as in SWIPT).

3. Problem Formulation

In this section, the system model and assumptions, the fundamental energy harvesting
equation and the generalized-K distribution are formulated.

3.1. System Model and Assumptions

As stated in [1], the SWIPT architectures always impose a trade-off between infor-
mation rate and amount of RF energy harvested. To bypass this trade-off, especially in
situations where a stable and predictable energy supply is required, WPT from a dedicated
source is preferable. Accordingly, this paper focuses on scenarios like those shown in
Figure 1 or Figure 3. More specifically, the system under analysis is shown in Figure 4,
where a dedicated power source generates an unmodulated carrier at frequency fp in the
RF, microwave, or visible light bands. Both the power source and the receivers are located
at fixed positions and equipped with directional antennas of gains Gt and Gr, respectively.
In particular, the power source uses a phased array that allows for tuning the main beam
in the direction of current receiver, whereas receiver antennas are always aligned with
the power source. An additive white Gaussian noise (AWGN) channel is assumed, with
spectral noise density N0 and a channel coefficient h(t) that obeys the abovementioned
generalized-K distribution. Moreover, the energy-harvesting device is assumed to operate
linearly, in spite of the presence of non-linear components like diodes. For the sake of
generality, the analysis will start from an arbitrary waveform x(t) for the power-bearing
signal, and only in the end will it be particularized to the special case of an unmodulated
carrier. The corresponding power transfer bandwidth is B, meaning that the impedance
matching circuit (or the combined effect of this circuit and the stop-band filter at fc if the
scenario of Figure 3 is considered) has an equivalent bandwidth B centered at frequency fp.

Figure 4. System model.
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3.2. Energy-Harvesting Equation

Using complex notation, the power-bearing signal x(t) can be expressed in terms of
its equivalent low-pass signal or complex envelope x̃(t) as follows:

x(t) = <
{

x̃(t) · ej2π fpt
}

. (1)

Here, < stands for the real part. As pointed out in [20], the received signal can be
generally formulated in this way:

r(t) = <
{

K(t)

∑
k=0

αk(t) · x̃(t− τk(t)) · ej(2π fp(t−τk(t))+ϕk)

}
+ n(t). (2)

In this expression, n(t) is the AWGN component, K(t) is the total number of resolvable
multi-path components and αk(t), τk(t), and φk are, respectively, the time-dependent
amplitude and delay parameters and a constant phase offset associated with the k:th
resolvable multi-path component. If the delay spread of the channel, Tm, verifies Tm � 1

B ,
then x̃(t− τk(t)) ∼= x̃(t). This is the so-called narrow-band fading condition. Note that for
x(t) consisting of an unmodulated carrier, this condition holds for any Tm. Consequently,
under narrow-band fading, we have [20]

r(t) = <
{(

K(t)

∑
k=0

αk(t) · e−j(2π fpτk(t)−ϕk)

)
· x̃(t) · ej2π fpt

}
+ n(t). (3)

The summation term between parentheses is independent of the complex envelope
x̃(t), and hence it simply introduces a multiplicative effect on the signal. It is the so-called
channel coefficient, typically denoted by h(t). Accordingly, Equation (3) can be rewritten in
the following way:

r(t) = <
{

x̃(t) · h(t) · ej2π fpt
}
+ n(t). (4)

The noise component can also be reformulated in terms of its complex envelope
ñ(t) as n(t) = <{ñ(t) · ej2π fpt}, and therefore the channel output signal can be expressed
as follows:

r(t) = <
{
(x̃(t) · h(t) + ñ(t)) · ej2π fpt

}
. (5)

The term multiplying the exponential is nothing more than the complex envelope of
the received signal r(t), namely r̃(t):

r̃(t) = x̃(t) · h(t) + ñ(t). (6)

Figure 5 shows the equivalent low-pass representation of the channel effect, as well as
the subsequent energy-harvesting and power-management units. The energy-harvesting
unit is capable of producing a certain amount of energy at the end of an exposition time
period T. This energy, denoted as E(T), can be mathematically formulated as follows:

E(T) = η
∫

T
r2(t) · dt. (7)

Here, the integral represents the RF energy captured by the receiving antenna along the
period T, whereas η denotes the RF-to-DC conversion efficiency. Equation (7) constitutes
the starting point of the analysis performed in this paper.
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Figure 5. Equivalent low-pass model of the channel.

3.3. The Generalized-K Distribution

The generalized-K distribution is a powerful description of the perturbation effects
experienced by signals in wireless propagation environments. It was proposed in the
early 2000s as a compound probability density function (PDF) encompassing all sources of
wireless signal degradation, namely path loss, shadowing, and fast fading. In addition, it
enjoys the property of analytical tractability, which helps to obtain closed-form expressions
for the performance measures of interest. An example is the statistical characterization of
the energy harvesting performed in this paper. The availability of closed-form expressions
for magnitudes such as the mean and variance of the energy harvested is very useful
for network planning, especially in scenarios like IoT, where the energy provider cannot
rely on CSI to adjust its transmission power because of the expected massive number of
participating devices.

The generalized-K model combines the Nakagami-m distribution for fast fading and
the gamma distribution for path loss and shadowing (Nakagami gamma). In addition,
it can be particularized to numerous well-known models, such as Rayleigh lognormal
(Suzuki model), Nakagami lognormal, Rayleigh gamma (K model) and, in an approximate
way, Rician gamma, and Rician lognormal.

Let z = z(t) = ‖h(t)‖ be the envelope of the channel coefficient. Assuming that
the channel is stationary, z can be treated as a single random variable whose statistical
characterization is independent of time. If this characterization obeys the generalized-K
model, the probability density function (PDF) of z can be expressed as follows [21]:

fZ(z) =
4
√

m
b

Γ(a)Γ(m)

(√
m
b

z
)a+m−1

Ka−m

(
2
√

m
b

z
)

. (8)

In this expression, a and b are respectively the shape and scale parameters of the
gamma distribution (a > 0, b > 0), whereas m > 0 is the so-called Nakagami parameter.
Ka−m stands for the modified Bessel function of order (a − m). The shape and scale
parameters can be formulated in terms of physical parameters [22]:

a =
1

e
σ2

ΨdB
ζ2 − 1

; (9)

b = e
µΨdB

ζ +
σ2

ΨdB
2ζ2

(
e

σ2
ΨdB
ζ2 − 1

)
. (10)

In these expressions, ζ = 10
ln 10 , and µΨdB and σΨdB are, respectively, the average and

standard deviation of ΨdB = 10 log10 Ψ = 10 log10
Pr
Pt

, that is, the ratio of power received
to power transmitted expressed in dB. The expected value µΨdB is given by the following
expression [20]:

µΨdB = 10 log10 α− 10β log10
d
d0

. (11)
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Here, d is the distance between the transmitter and the receiver (transmission distance),
d0 is the reference distance, β is the path-loss exponent, and α is a constant that depends
on multiple parameters (antenna gains, reference distance, path-loss exponent, average
blockage, and carrier frequency). There is no mathematical expression for σΨdB (shadowing
spread), but its value has been experimentally set up within the range [4, 13] dB [20]. The
generic path-loss model given in (11) can be replaced by more specific models (free-space,
two-ray, Okumura, Hata, COST 231 models, etc.) when further details about the scenario
are provided [20].

Equations (8)–(11) define a versatile propagation model that is entirely formulated in
terms of physical (and measurable) parameters. To summarize, the inputs to this model
are the constant α, the path-loss exponent, both the transmission and reference distances,
the delay spread and the Nakagami parameter. This parameter can take on any value
above 0, thus providing high flexibility to capture quite different small-scale multipath
fading conditions:

• If m > 1, the channel is Rician, meaning that there is a dominant LOS propagation
component over the scattered non-LOS component. This is the so-called non-isotropic
propagation environment. In this case, the degree of fading is low, becoming less
severe with increasing m. In particular, for m→ ∞ there is no fading.

• If m ≤ 1, there is no dominant LOS component in the received signal and the degree
of fading is high, increasing as m decreases. Such scenario is referred to as isotropic
propagation environment. Particular cases are m = 1 (Rayleigh channel), m = 0.5
(one-sided Gaussian channel) and m� 1 (very severe fading channel).

4. Average Energy Harvested

The first step in the characterization of the amount of energy harvested as a random
variable is to obtain its average. Recalling Equation (7), the expected energy harvested can
be formulated in this way:

E{E(T)} = E
{

η
∫

T
r2(t) · dt

}
= η

∫
T

E
{

r2(t)
}
· dt =

η

2

∫
T

E
{
‖r̃(t)‖2

}
· dt. (12)

On the other hand, from Equation (7), we have

r̃(t) =
(

x̃I(t) + j · x̃Q(t)
)
· (hre(t) + j · him(t)) + ñI(t) + j · ñQ(t). (13)

In this expression, both x̃(t) and ñ(t) have been decomposed into their in-phase and
quadrature components, respectively (x̃I(t), x̃Q(t)) and (ñI(t), ñQ(t)), and the channel
coefficient into its real and imaginary parts, namely (hre(t), him(t)). Further manipulation
allows to separate the real and imaginary components of r̃(t) as follows:

r̃(t) = x̃I(t) · hre(t)− x̃Q(t) · him(t) + ñI(t) + j ·
(
x̃I(t) · him(t) + x̃Q(t) · hre(t) + ñQ(t)

)
. (14)

Then, the squared module of r̃(t) is nothing else but the sum of the squared real and
imaginary parts:

‖r̃(t)‖2 =
(
x̃I(t) · hre(t)− x̃Q(t) · him(t) + ñI(t)

)2
+
(
x̃I(t) · him(t) + x̃Q(t) · hre(t) + ñQ(t)

)2. (15)

Proceeding through standard calculations, we can end up with the following exact
result for ‖r̃(t)‖2:

‖r̃(t)‖2 = ‖x̃(t)‖2 · ‖h(t)‖2 + ñ2
I (t) + ñ2

Q(t) + 2
(
x̃I(t) · hre(t)− x̃Q(t) · him(t)

)
· ñI(t)

+2
(
x̃I(t) · him(t) + x̃Q(t) · hre(t)

)
· ñQ(t).

(16)

Next, we can obtain the expectation of ‖r̃(t)‖2. The analysis can be simplified by re-
calling some valuable properties of AWGN ([23]): (i) E

{
ñ2

I (t)
}
= E

{
ñ2

Q(t)
}
= E

{
n2(t)

}
=

NR = η0 · B, where NR stands for the received noise power, η0 for the spectral density
power and B for the power transfer bandwidth, (ii) E{ñI(t)} = E

{
ñQ(t)

}
= 0, and (iii) ñI(t)
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and ñQ(t) are mutually independent Gaussian random variables. In addition, because
noise is independent of both, input signal and channel coefficient, and E{ñI(t)} = 0, we
also have E

{(
x̃I(t) · hre(t)− x̃Q(t) · him(t)

)
· ñI(t)

}
= E

{(
x̃I(t) · hre(t)− x̃Q(t) · him(t)

)}
·

E{ñI(t)} = 0. Similarly, E
{(

x̃I(t) · him(t) + x̃Q(t) · hre(t)
)
· ñQ(t)

}
= 0. Because the input

signal and the channel coefficient are also mutually independent random variables, the
squared module of the complex envelope can be expressed in this way:

E
{
‖r̃(t)‖2

}
= E

{
‖x̃(t)‖2

}
E
{
‖h(t)‖2

}
+ 2E

{
n2(t)

}
. (17)

Accordingly, the average energy harvested formulated in (12) obeys the following
expression:

E{E(T)} = η
∫

T

(
E
{
‖x̃(t)‖2}

2
E
{
‖h(t)‖2

}
+ E

{
n2(t)

})
· dt. (18)

The equivalent low-pass input signal x̃(t) is defined by the modulation. Consequently,
in general, this signal is non-stationary and can be expressed as x̃(t) = A(t)ejθ(t), where
A(t) and θ(t) denote, respectively, the time-varying amplitude and phase of the modulating
signal. On the other hand, the channel is assumed to be stationary, and hence its effect
represented by E

{
‖h(t)‖2} can be taken out of the integral in the previous equation.

In [22], exact closed-form expressions are provided for the moments of the generalized-K
distribution, among which the second moment is given by E

{
‖h(t)‖2} = a · b, where a and

b obey, respectively, expressions (9) and (10). In agreement with [24], this second moment
will be renamed from now on as Ωp. Accordingly, we have

E{E(T)} = η

(
Ωp

∫
T

E
{

A2(t)
}

2
· dt + NR · T

)
. (19)

In this equation, the relevant term regarding how efficient the energy-transfer process
can be is Ωp, because it represents the global channel effect due to path loss, shadowing and
multi-path fading on the received signal. Instead, the integral in Equation (19) evaluates
the energy contained in an interval T of the transmitted signal, whatever its shape. Thus,
without loss of generality, we can assume the simplest case of A(t) = A, which corresponds
to an unmodulated carrier. Accordingly, the previous equation can be reformulated in
this way:

E{E(T)} = η · T
(

A2

2
·Ωp + NR

)
. (20)

The term A2

2 is nothing else but the transmitted power (normalized to a 1Ω-load). If
we denote this power as Pt, the expected energy harvested is as follows:

E{E(T)} = η · T
(

Pt ·Ωp + NR
)
. (21)

Note that the average energy harvested depends on the shape and scale parameters of
the gamma distribution (via Ωp), but not on the Nakagami parameter that characterizes
multi-path fading. Note also that it has two components, the main one due to the power-
bearing signal, and the thermal noise.

5. Variance of Energy Harvested

To obtain the variance of the energy harvested, first we can analyze the second moment
about zero:
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E
{
E2(T)

}
= η2E

{(∫
T

r2(t)dt
)2
}

= η2E
{(∫

T
r2(s)ds

)(∫
T

r2(t)dt
)}

= η2E
{∫

T

∫
T

r2(s)r2(t)ds · dt
}

= η2
∫

T

∫
T

E
{

r2(s)r2(t)
}

ds · dt

=
η2

4

∫
T

∫
T

E
{
‖r̃(s)‖2‖r̃(t)‖2

}
ds · dt.

(22)

The next step is to evaluate the expectation inside the integral, which is nothing else
but a correlation. However, the analytical procedure that yields an exact closed-form
expression for this correlation is very complex, and thus the details have been relegated to
the Appendix A. For the setting s = t + τ, the result is Equation (A31):

E
{
‖r̃(t + τ)‖2‖r̃(t)‖2} = φ‖r̃‖2(t, τ) = φ‖x̃‖2(t, τ)φ‖h‖2(τ) + 4NR · E

{
‖x̃(t)‖2}E

{
‖h(t)‖2}

+16φñ(τ) · <{φx̃(t, τ)φh(τ)}+ 4N2
R + 4φ2

ñ(τ).
(23)

Next, the terms that appear in this equation are analyzed individually.
If we assume that the input signal is an unmodulated carrier, that is, x̃(t) = Aejθ ,

we have
E
{
‖x̃(t)‖2

}
= A2 = 2Pt; (24)

φ‖x̃‖2(t, τ) = E
{
‖x̃(t + τ)‖2‖x̃(t)‖2

}
= A4 = 4P2

t ; (25)

φx̃(t, τ) =
1
2

E{x̃(t + τ)x̃∗(t)} = 1
2

E
{

Aejθ · Ae−jθ
}
=

A2

2
= Pt. (26)

Note that, for the case of an unmodulated carrier, the input signal does not only
become a stationary process, but its associated correlations are constant. Moreover, despite
the fact that it has been assumed that θ is a constant phase offset, the analysis that follows
would also be valid, with some minor modifications, for a phase-modulated signal, that is,
θ = θ(t).

Another auto-correlation involved in (23) is φñ(τ). For the case of AWGN, the follow-
ing expression is provided in [23]:

φñ(τ) = η0
sin (πBτ)

πτ
= η0B

sin (πBτ)

πBτ
= NR · sinc (πBτ). (27)

The remaining terms are φh(τ) and φ‖h‖2(τ), which are channel auto-correlations. They
capture the variations, in the statistical sense, perceived by the user as it moves at a certain
speed v over the combined path loss, shadowing, and multi-path fading scenario under
consideration (in the present case, the scenario that leads to the generalized-K distribution).
These temporal correlations can always be transformed into spatial correlations, because
the dependence on τ is, in fact, on the product v · τ. However, because the focus of this
paper is on static users, that is, v = 0, which has the same effect as τ = 0, we are really
interested in φh(0) and φ‖h‖2(0). Regarding the first one, we can write

φh(0) =
1
2

E{h(t) · h∗(t)} = 1
2

E
{
‖h(t)‖2

}
=

Ωp

2
. (28)

To analyze the second term, it is useful to introduce the auto-covariance µ‖h‖2(τ),
which is related to the auto-correlation as follows:

µ‖h‖2(τ) = φ‖h‖2(τ)− E
{
‖h(t + τ)‖2

}
· E
{
‖h(t)‖2

}
. (29)

Accordingly,

φ‖h‖2(0) = µ‖h‖2(0) + E2
{
‖h(t)‖2

}
= µ‖h‖2(0) + Ω2

p. (30)
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Because the auto-covariance at the origin is nothing else but the variance, we have

φ‖h‖2(0) = Var
{
‖h(t)‖2

}
+ Ω2

p. (31)

Moreover, Var
{
‖h(t)‖2} can be expressed in terms of the second and fourth moments

of the distribution of ‖h(t)‖:

Var
{
‖h(t)‖2

}
= E

{
‖h(t)‖4

}
− E2

{
‖h(t)‖2

}
. (32)

Note that the second term in the right-hand side of this equation is Ω2
p. In [22], a generic

closed-form expression is provided for the moments of the generalized-K distribution. This
expression is exact and can be particularized for the fourth moment as follows:

E
{
‖h(t)‖4

}
=

Γ(a + 2)Γ(m + 2)
Γ(a)Γ(m)

(
b
m

)2

. (33)

Recall that a and b are, respectively, the scale and shape parameters of the gamma
distribution that describes path loss and shadowing, and m is the Nakagami parameter that
characterizes multi-path fading. Next, considering Equations (32) and (33), Equation (31)
can be rewritten in terms of the parameters of the generalized-K distribution:

φ‖h‖2(0) =
Γ(a + 2)Γ(m + 2)

Γ(a)Γ(m)

(
b
m

)2

. (34)

Now, introducing (24)–(28) and (34) into Equation (23), and rearranging terms, we can
obtain the definite result for E

{
‖r̃(t + τ)‖2‖r̃(t)‖2}:

E
{
‖r̃(t + τ)‖2‖r̃(t)‖2

}
= 4P2

t
Γ(a + 2)Γ(m + 2)

Γ(a)Γ(m)

(
b
m

)2

+ 8NRPtΩp(1 + sinc (πBτ))

+ 4N2
R(1 + sinc2 (πBτ)).

(35)

As can be seen, this expression depends exclusively on system parameters. In particu-
lar, PtΩp is the average received power, because it is the product of the average transmitted
power and the channel effect represented by Ωp. Finally, the variance of the energy har-
vested can be obtained by integrating expression (35) according to (22), and then subtracting
the square of the expected energy harvested given by (21). An exact closed-form expression
is obtained:

Var{E(T)} = (ηPtT)2
(

Γ(a + 2)Γ(m + 2)
Γ(a)Γ(m)

(
b
m

)2

−Ω2
p

)
+

4η2NRPtΩp

π2B2 (−1 + cos(πBT) + πBT · Si(πBT))

+
η2N2

R
π2B2

(
− 1− γ + cos(2πBT) + Ci(2πBT)

− ln(2πBT) + 2πBT · Si(2πBT)
)

.

(36)

Here, γ is the Euler’s constant (γ ' 0.577216), and Si() and Ci() stand, respectively,
for the sine integral and cosine integral functions, which are defined as follows:

Si(x) =
∫ x

0

sin(u)
u

du; (37)
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Ci(x) = −
∫ ∞

x

cos(u)
u

du. (38)

As can be seen from Equation (36), the variance of the energy harvested has three
components: one that depends exclusively on the power-bearing signal, a cross-term
that depends on both the power-bearing signal and the thermal noise, and finally a third
component that only depends on noise.

Even more meaningful than the variance is the squared coefficient of variation, which
is nothing more than the ratio of the variance to the squared expectation. In essence, it
represents the relative variability of the distribution around its expected value. In particular,
the squared coefficient of variation of the energy harvested, namely SCV{E(T)}, is given by

SCV{E(T)} = P2
t

(
Γ(a+2)Γ(m+2)

Γ(a)Γ(m)

(
b
m

)2
−Ω2

p

)
(PtΩp + NR)2

+
4NRPtΩp(−1 + cos(πBT) + πBT · Si(πBT))

π2B2T2(PtΩp + NR)2

+
N2

R
π2B2T2(PtΩp + NR)2

(
− 1− γ + cos(2πBT)

+ Ci(2πBT)− ln(2πBT) + 2πBT · Si(2πBT)
)

.

(39)

If the signal-to-noise ratio is very high, we can approximate the squared coefficient of
variation of the energy harvested (SCV{E(T)}) by the next limit:

lim
NR→0

SCV{E(T)} = Γ(a + 2)Γ(m + 2)
Γ(a)Γ(m)Ω2

p

( b
m

)2
− 1. (40)

Recall that Ωp = a · b. Equation (40) is nothing else but the squared coefficient of
variation of ‖h(t)‖2.

6. Validation and Performance Assessment

In this section, the analysis performed in this paper is validated via simulation, and
then the evolution of E{E(T)} and SCV{E(T)} in terms of multiple input variables is
studied. With no loss of generality, an exposition time of 1 minute is assumed. To highlight
the possibilities of the RF energy harvesting technology, a long-range scenario is considered,
which is based on a real case: the KING-TV tower located at Seattle (Washington, DC,
USA). This telecommunications tower transmits several analog and digital TV channels in
the VHF and UHF bands, respectively. In particular, it uses a source power of 960 kW to
broadcast a 6-MHz digital TV signal at the frequency of 0.677 GHz. The evaluation that
follows assumes that all transmit power is concentrated on this frequency ( fp = 0.677 GHz),
though the receiver bandwidth is kept to 6 MHz (B = 6 MHz). Other fixed parameters are
the reference distance (d0 = 1 m), the energy conversion efficiency (η = 0.5), the ambient
temperature (290 K), and the receiver noise figure (9 dB).

For the simulation and performance assessment, four input variables were taken into
consideration: the transmission distance, the path-loss exponent, the shadowing spread,
and the Nakagami parameter. Accordingly, Table 2 shows the analytical and simulation
results for both the expected and squared coefficient of variation of the energy harvested.
For each set of values, at least 30,000 runs were executed in order to achieve relative
errors within 10% at a 90% confidence level. The relative errors between the analytical
and simulation results have also been added to the table. As can be seen, there is a high
agreement between the two sets of results.
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Table 2. Comparison between analytical and simulation results for different parameter sets. The
relative error (in absolute value) incurred by the simulation results has also been included.

d(m), β, σΨdB, m E{E(T)} Analytical E{E(T)} Simulation
SCV{E(T)} Analytical SCV{E(T)} Simulation

10,000, 3.0, 8.5, 2.0 24.3135 25.1643 (3.5%)
68.1367 68.2532 (0.2%)

10,000, 2.0, 5.5, 0.3 79,855.3 77,096.3 (3.5%)
20.5454 21.0171 (2.3%)

20,000, 2.0, 6.5, 4.0 27,440.9 26,991.4 (1.6%)
10.7423 10.0688 (6.3%)

20,000, 3.0, 8.5, 5.0 3.03919 2.9721 (2.2%)
54.3092 54.1187 (0.4%)

30,000, 3.5, 6.5, 7.0 0.00235284 0.00233108 (0.9%)
9.6885 9.19882 (5.1%)

30,000, 2.5, 4.5, 9.0 39.2981 39.7297 (1.1%)
2.2511 2.24226 (0.4%)

40,000, 4.0, 8.5, 6.0 0.0000152195 0.0000151148 (0.7%)
20.5507 19.1669 (6.7%)

40,000, 2.0, 6.5, 0.5 6860.24 6720.51 (2.0%)
27.1815 24.6008 (9.5%)

50,000, 2.5, 4.5, 3.0 10.9585 11.0875 (1.2%)
2.90132 2.7808 (4.2%)

50,000, 3.5, 10.5, 8.0 0.00238773 0.00235364 (1.4%)
385.967 361.542 (6.3%)

60,000, 3.0, 8.0, 5.0 0.0904563 0.0897801 (0.7%)
34.7094 33.9685 (2.1%)

60,000, 2.0, 4.0, 10.0 1520.35 1529.88 (0.6%)
1.56925 1.551 (1.2%)

70,000, 2.5, 6.0, 1.0 7.17395 7.23829 (0.9%)
12.4884 12.2202 (2.1%)

70,000, 2.5, 6.0, 0.1 7.17395 6.77048 (5.6%)
73.1861 77.2072 (5.5%)

80,000, 4.0, 10.0, 3.0 6.96074× 10−6 6.95204× 10−6 (0.1%)
8.44362 8.39472 (0.6%)

80,000, 3.0, 7.0, 7.0 0.0256447 0.0253276 (1.2%)
14.3489 13.7613 (4.1%)

90,000, 2.5, 10.5, 6.0 27.3988 27.1551 (0.9%)
402.224 407.723 (1.4%)

90,000, 3.5, 8.0, 1.0 0.0000950559 0.0000937424 (1.4%)
51.6893 50.6754 (2.0%)

100,000, 2.0, 7.5, 4.0 1590.89 1523.16 (4.3%)
23.6669 23.0866 (2.5%)

100,000, 3.0, 4.5, 0.7 0.00613169 0.0061943 (1.0%)
6.0946 6.17654 (1.3%)

To assess the performance of the energy harvesting process, several input–output
relations were explored, the results of which are reflected in subsequent figures. For
instance, Figure 6 plots the evolution of the average energy harvested in terms of distance
for different values of the path-loss exponent. As expected, the average energy harvested
increases as the distance and the path-loss exponent decrease. A similar plot is shown in
Figure 7, but parameterized by the shadowing spread instead of the path-loss exponent.
The figure reveals that the average energy harvested increases with the shadowing spread.
The interpretation is less intuitive, but we can think of shadowing as a low-frequency
“noise” superimposed on the signal, the power of which is directly proportional to its
variability (as occurs with thermal noise). Figures 8–10 describe the behavior of the squared
coefficient of variation. In particular, Figure 8 shows the dependence of this coefficient on
distance, for different path-loss exponents. We can observe that the squared coefficient of
variation decreases as the distance and/or the path-loss exponent increase, that is, as the
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expected energy harvested decreases. Such a reduction of variability with the decrease
of the average is typical of non-negative random variables, like the energy harvested
considered here. Figure 8 does not allow us to distinguish between the curves obtained
for the lowest path-loss exponents. However, these differences can be better highlighted
by exchanging the roles of distance and path-loss exponent in the representation. This
is shown in Figure 9, which confirms that beyond β ∼= 3.5 the decay profiles begin to
distinguish. Finally, Figure 10 shows how the squared coefficient of variation varies with
the shadowing spread and the Nakagami parameter. As can be seen, the influence of the
shadowing spread is much higher than that of the Nakagami parameter. The figure also
highlights the fact that the squared coefficient of variation of the energy harvested can
vary within a very large range, consistent with the relatively shorter variability of the
shadowing spread.

Figure 6. Evolution of the average energy harvested as a function of distance, for different path-loss
exponents and a shadowing spread of 8.5 dB.

Figure 7. Evolution of the average energy harvested as a function of distance, for different levels of
shadowing spread and a path-loss exponent equal to 3.0.
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Figure 8. Evolution of the squared coefficient of variation in terms of distance, for different path-
loss exponents. The shadowing spread and the Nakagami parameter have been set to 8.5 and 5.0,
respectively.

Figure 9. Evolution of the squared coefficient of variation in terms of the path-loss exponent, for
different distances. The shadowing spread and the Nakagami parameter have been set to 8.5 and 5.0,
respectively. The outermost curve corresponds to d = 10,000 m.

Figure 10. Evolution of the squared coefficient of variation as a function of the Nakagami parameter,
for different values of the shadowing spread. The transmission distance and the path-loss exponent
have been set to 50,000 m. and 3.0, respectively.

7. Discussion

In this paper, exact closed-form expressions for the mean and variance (and squared
coefficient of variation) of the energy harvested by a static device have been obtained and
validated via simulation. To model the propagation scenario, the generalized-K model has
been adopted, as it encompasses the effects of path-loss, shadowing and multi-path fading
for a wide set of wireless scenarios. It has been assumed that the device is illuminated
for an arbitrary exposure time by a dedicated source emitting an unmodulated carrier. A
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long-range scenario has also been assumed, in order to highlight the capabilities of the RF
energy-harvesting technology.

The results obtained in this paper reveal that the path-loss and shadowing components
of the propagation model have a much greater influence on the amount of energy harvested
than the multi-path component. They also reveal that the squared coefficient of variation of
the harvested energy can be very large. This is in agreement with the high variability that
the signal level can experience in a generalized-K propagation environment. Consequently,
the RF-EH device must be designed to operate under wide dynamic ranges at its input,
which in turn means a very low sensitivity threshold and high saturation point.

Future work can go in several directions. The following list includes some suggestions.

• As stated in Section 1, the results obtained in this paper can be used to determine
relevant metrics in the context of future WENs. Examples of these metrics are the prob-
ability of energy outage and the mean waiting time experienced by energy requests.

• Also, this work can be extended to the case of mobile devices and to the evaluation of
higher-order moments of the harvested energy.

• The RF energy harvester considered in this paper is ideal. However, a more realistic
model of such device should include undesirable phenomena, such as limited sensitiv-
ity, saturation effects and non-linearities. Therefore, another extension could consist of
evaluating the impact of these perturbations on the energy-harvesting process.

• Finally, to reinforce the results derived from this work, an experimental validation
is required.
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Appendix A

As stated in Section 5, the variance of the energy harvested is based on the expectation
E
{
‖r̃(s)‖2‖r̃(t)‖2}. By recalling Equation (16), the argument of such expectation can be

formulated as follows:

‖r̃(s)‖2‖r̃(t)‖2 =

(
‖x̃(s)‖2‖h(s)‖2 + ñ2

I (s) + ñ2
Q(s)

+ 2
(

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)
· ñI(s) + 2

(
x̃I(s) · him(s) + x̃Q(s) · hre(s)

)
· ñQ(s)

)
·
(
‖x̃(t)‖2‖h(t)‖2 + ñ2

I (t) + ñ2
Q(t)

+ 2
(

x̃I(t) · hre(t)− x̃Q(t) · him(t)
)
· ñI(t) + 2

(
x̃I(t) · him(t) + x̃Q(t) · hre(t)

)
· ñQ(t)

)
.

(A1)

To evaluate the expected value of such a long expression, we can first identify the
following terms:

• I1 : ‖x̃(s)‖2‖h(s)‖2.

• I2 : 2
(

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)
· ñI(s) + 2

(
x̃I(s) · him(s) + x̃Q(s) · hre(s)

)
· ñQ(s).

• I3 : ñ2
I (s) + ñ2

Q(s).
• I4 : ‖x̃(t)‖2‖h(t)‖2.

• I5 : 2
(

x̃I(t) · hre(t)− x̃Q(t) · him(t)
)
· ñI(t) + 2

(
x̃I(t) · him(t) + x̃Q(t) · hre(t)

)
· ñQ(t).

• I6 : ñ2
I (t) + ñ2

Q(t).

Note that I1, I2 and I3 are formally equivalent to I4, I5 and I6, respectively. According
to these new variables, Equation (A1) can be simply reformulated in the following way:

‖r̃(s)‖2‖r̃(t)‖2 = (I1 + I2 + I3) · (I4 + I5 + I6). (A2)

The subsequent procedure consists of developing all terms generated by the product
in Equation (A2), and then take their respective expectations. In fact, only six out of the
nine terms lead to different results:

Product I1 · I4

I1 · I4 = ‖x̃(s)‖2‖h(s)‖2‖x̃(t)‖2‖h(t)‖2. (A3)

Then, the expected value can be obtained after several manipulations:

E{I1 · I4} = E
{
‖x̃(s)‖2‖h(s)‖2‖x̃(t)‖2‖h(t)‖2

}
= E

{
‖x̃(s)‖2‖x̃(t)‖2

}
E
{
‖h(s)‖2‖h(t)‖2

}
= E

{
‖x̃(t + τ)‖2‖x̃(t)‖2

}
E
{
‖h(t + τ)‖2‖h(t)‖2

}
= φ‖x̃‖2(t, τ) · φ‖h‖2(τ).

(A4)

Note that the total expectation has been expressed as a product of expectations thanks
to the independence between x̃(t) and h(t). Moreover, the temporal variable s has been
replaced, with no loss of generality, by t + τ, where τ is a time lag. The first expectation is
nothing else but the auto-correlation of the squared module of x̃ in terms of the absolute
time and the time lag τ, because no assumption has yet been made about the input sig-
nal being stationary (it depends on the type of modulation). Instead, because the channel
is assumed to be stationary, the second auto-correlation depends exclusively on the time lag.
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Product I1 · I5

I1 · I5 = 2‖x̃(s)‖2‖h(s)‖2 ·
((

x̃I(t)· hre(t)− x̃Q(t) · him(t)
)
· ñI(t)

+
(

x̃I(t) · him(t) + x̃Q(t) · hre(t)
)
· ñQ(t)

)
.

(A5)

Because noise is independent of both input signal and channel coefficient, the expected
value of the previous expression depends directly on the expected values of the in-phase
and quadrature components of noise, which are identically zero: E{ñI(t)} = E

{
ñQ(t)

}
= 0.

Accordingly,
E{I1 · I5} = 0. (A6)

Product I1 · I6

I1 · I6 = ‖x̃(s)‖2‖h(s)‖2
(

ñ2
I (t) + ñ2

Q(t)
)

. (A7)

Again because of the mutual independence between input signal and channel coeffi-
cient, we have

E{I1 · I6} = E
{
‖x̃(s)‖2

}
E
{
‖h(s)‖2

}
E
{(

ñ2
I (t) + ñ2

Q(t)
)}

= E
{
‖x̃(s)‖2

}
E
{
‖h(s)‖2

}(
E
{

ñ2
I (t)

}
+ E

{
ñ2

Q(t)
})

= 2NR · E
{
‖x̃(s)‖2

}
E
{
‖h(s)‖2

}
.

(A8)

Here, the first property of AWGN stated in Section 4 has been recalled.

Product I2 · I4

This product is formally equivalent to I1 · I5; thus, we have

E{I2 · I4} = 0. (A9)

Product I2 · I5

I2 · I5 = 4
((

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)
· ñI(s)

·
(

x̃I(t) · hre(t)− x̃Q(t) · him(t)
)
· ñI(t)

+
(

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)
· ñI(s)

·
(

x̃I(t) · him(t) + x̃Q(t) · hre(t)
)
· ñQ(t)

+
(

x̃I(s) · him(s) + x̃Q(s) · hre(s)
)
· ñQ(s)

·
(

x̃I(t) · hre(t)− x̃Q(t) · him(t)
)
· ñI(t)

+
(

x̃I(s) · him(s) + x̃Q(s) · hre(s)
)
· ñQ(s)

·
(

x̃I(t) · him(t) + x̃Q(t) · hre(t)
)
· ñQ(t)

)
.

(A10)
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This expression involves the following expectations:

E{ñI(s) · ñI(t)} = E{ñI(t + τ) · ñI(t)} = φnoise
I (τ)

E
{

ñI(s) · ñQ(t)
}
= E{ñI(s)} · E

{
ñQ(t)

}
= 0 · 0 = 0

E
{

ñQ(s) · ñI(t)
}
= E

{
ñQ(s)

}
· E{ñI(t)} = 0 · 0 = 0

E
{

ñQ(s) · ñQ(t)
}
= E

{
ñQ(t + τ) · ñQ(t)

}
= φnoise

Q (τ).

(A11)

Note that the fact that noise is stationary and that its in-phase and quadrature com-
ponents are independent (Section 4) has been taken into account. On the other hand,
from [23] we have φnoise

I (τ) = φnoise
Q (τ) = φñ(τ). Then, based on these preliminary results,

the expected value of I2 · I5 can be initially written as follows:

E{I2 · I5} = 4E
{(

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)

·
(

x̃I(t) · hre(t)− x̃Q(t) · him(t)
)}
· φñ(τ)

+ 4E
{(

x̃I(s) · him(s) + x̃Q(s) · hre(s)
)

·
(

x̃I(t) · him(t) + x̃Q(t) · hre(t)
)}
· φñ(τ).

(A12)

Next, by performing standard calculations, the latter equation can be rewritten in
this way:

E{I2 · I5} = 4E
{
<{x̃(s) · h(s)}<{x̃(t) · h(t)}

}
· φñ(τ)

+ 4E
{
={x̃(s) · h(s)}={x̃(t) · h(t)}

}
· φñ(τ).

(A13)

Here, = stands for the imaginary part. Given the linearity of the expectation operator,
the latter result can be further simplified:

E{I2 · I5} = 4φñ(τ)

· E
{
<{x̃(s) · h(s)}<{x̃(t) · h(t)}

+={x̃(s) · h(s)}={x̃(t) · h(t)}
}

= 4φñ(τ)E
{
<
{

x̃(s) · h(s)
(

x̃(t) · h(t)
)∗}}

.

(A14)

Recall that the asterisk denotes the complex conjugate operator. Now, we can replace
s by t + τ and formulate E{I2 · I5} in terms of correlations

E{I2 · I5} = 4φñ(τ)

· E
{
<
{

x̃(t + τ) · h(t + τ)
(

x̃(t) · h(t)
)∗}}

= 4φñ(τ)<
{

E{x̃(t + τ) · x̃∗(t) · h(t + τ) · h(t)∗}
}

= 4φñ(τ)<
{

E{x̃(t + τ) · x̃∗(t)} · E{h(t + τ) · h(t)∗}
}

= 4φñ(τ)<
{

2φx̃(t, τ)2φh(τ)

}
= 16φñ(τ)<

{
φx̃(t, τ)φh(τ)

}
.

(A15)
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Note from [25] that, in the complex field, φU·V = 1
2 E{U ·V∗}.

Product I2 · I6

I2 · I6 = 2
(

ñ2
I (t) + ñ2

Q(t)
)

·
((

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)
· ñI(s)

+
(

x̃I(s) · him(s) + x̃Q(s) · hre(s)
)
· ñQ(s)

)
.

(A16)

Now, we can determine the corresponding expected value by making use of the
independence properties already outlined:

E{I2 · I6} = 2E
{(

x̃I(s) · hre(s)− x̃Q(s) · him(s)
)}

· E
{(

ñ2
I (t) + ñ2

Q(t)
)
· ñI(s)

}
+ 2E

{(
x̃I(s) · him(s) + x̃Q(s) · hre(s)

)}
· E
{(

ñ2
I (t) + ñ2

Q(t)
)
· ñQ(s)

}
.

(A17)

Note that this formula relies on four expectations that only involve noise, namely
E
{

ñ2
I (t) · ñI(s)

}
, E
{

ñ2
Q(t) · ñI(s)

}
, E
{

ñ2
I (t) · ñQ(s)

}
and E

{
ñ2

Q(t) · ñQ(s)
}

. Two of them
are zero as a result of the statistical independence between the in-phase and quadrature
components of the equivalent low-pass noise signal:

E
{

ñ2
Q(t) · ñI(s)

}
= E

{
ñ2

Q(t)
}
· E{ñI(s)} = NR · 0 = 0; (A18)

E
{

ñ2
I (t) · ñQ(s)

}
= E

{
ñ2

I (t)
}
· E
{

ñQ(s)
}
= NR · 0 = 0. (A19)

On the other hand, because ñI(t) is a zero-mean normal random process, any set
of random variables obtained from it by selecting particular time instants constitute a
zero-mean multivariate normal random vector. Hence, it satisfies the Isserlis’ theorem [26],
which states that any odd-order moment of a zero-mean multivariate normal random
vector is zero. Accordingly,

E
{

ñ2
I (t) · ñI(s)

}
= 0. (A20)

The same statements can be formulated about process ñQ(t) to conclude that

E
{

ñ2
Q(t) · ñQ(s)

}
= 0. (A21)

Thus, we definitely have:
E{I2 · I6} = 0. (A22)

Product I3 · I4

As this product is formally equivalent to I1 · I6, we have

E{I3 · I4} = E{I1 · I6}. (A23)

Product I3 · I5
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This product is formally equivalent to I2 · I6. Thus,

E{I3 · I5} = 0. (A24)

Product I3 · I6

I3 · I6 =
(

ñ2
I (s) + ñ2

Q(s)
)
·
(

ñ2
I (t) + ñ2

Q(t)
)

. (A25)

Its expectation is as follows:

E{I3 · I6} = E
{(

ñ2
I (s) + ñ2

Q(s)
)
·
(

ñ2
I (t) + ñ2

Q(t)
)}

= E
{

ñ2
I (s) · ñ2

I (t)
}
+ E

{
ñ2

I (s) · ñ2
Q(t)

}
+ E

{
ñ2

Q(s) · ñ2
I (t)

}
+ E

{
ñ2

Q(s) · ñ2
Q(t)

}
.

(A26)

This expression contains two types of expectations—those that involve both the in-
phase and quadrature components of noise, and those that only involve one of these
components. Regarding the latter, we can substitute s by t + τ and formulate them as
auto-correlations, whereas for the former we can make use of the properties highlighted in
Section 4:

E{I3 · I6} = E
{

ñ2
I (t + τ) · ñ2

I (t)
}

+ E
{

ñ2
I (s)

}
· E
{

ñ2
Q(t)

}
+ E

{
ñ2

Q(s)
}
· E
{

ñ2
I (t)

}
+ E

{
ñ2

Q(t + τ) · ñ2
Q(t)

}
= φñ2

I
(τ) + NR · NR + NR · NR + φñ2

Q
(τ)

= 2N2
R + φñ2

I
(τ) + φñ2

Q
(τ).

(A27)

Next, by making use of the Isserlis’ theorem for the even-order moments [26], we have

φñ2
I
(τ) = E

{
ñ2

I (t + τ) · ñ2
I (t)

}
= E{ñI(t + τ) · ñI(t + τ) · ñI(t) · ñI(t)}
= E{ñI(t + τ) · ñI(t + τ)} · E{ñI(t) · ñI(t)}
+ E{ñI(t + τ) · ñI(t)} · E{ñI(t + τ) · ñI(t)}
+ E{ñI(t + τ) · ñI(t)} · E{ñI(t + τ) · ñI(t)}

= NR · NR + 2
(

φnoise
I (τ)

)2
= N2

R + 2φ2
ñ(τ).

(A28)

Similarly:

φñ2
Q
(τ) = N2

R + 2φ2
ñ(τ). (A29)

Next, by introducing Equations (A28) and (A29) into Equation (A27), and making
some additional manipulations, we can obtain the following result:

E{I3 · I6} = 4N2
R + 4φ2

ñ(τ). (A30)
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Finally, from Equations (A4), (A6), (A8), (A9), (A15), (A22), (A23), (A24) and (A30), we
can derive the following expression for E

{
‖r̃(s)‖2‖r̃(t)‖2}, with s = t + τ:

E
{
‖r̃(t + τ)‖2‖r̃(t)‖2

}
= φ‖x̃‖2(t, τ)φ‖h‖2(τ)

+ 4NR · E
{
‖x̃(t)‖2

}
E
{
‖h(t)‖2

}
+ 16φñ(τ) · <{φx̃(t, τ)φh(τ)}
+ 4N2

R + 4φ2
ñ(τ).

(A31)
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