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Abstract: The increased global waste generation rates over the last few decades have made the waste
management task a significant problem. One of the potential approaches adopted globally is to
recycle a significant portion of generated waste. However, the contamination of recyclable waste has
been a major problem in this context and causes almost 75% of recyclable waste to be unusable. For
sustainable development, efficient management and recycling of waste are of huge importance. To
reduce the waste contamination rates, conventionally, a manual bin-tagging approach is adopted;
however, this is inefficient and requires huge labor effort. Within household waste contamination,
plastic bags have been found to be one of the main contaminants. Towards automating the process of
plastic-bag contamination detection, this paper proposes an edge-computing video analytics solution
using the latest Artificial Intelligence (AI), Artificial Intelligence of Things (AIoT) and computer vision
technologies. The proposed system is based on the idea of capturing video of waste from the truck
hopper, processing it using edge-computing hardware to detect plastic-bag contamination and storing
the contamination-related information for further analysis. Faster R-CNN and You Only Look Once
version 4 (YOLOv4) deep learning model variants are trained using the Remondis Contamination
Dataset (RCD) developed from Remondis manual tagging historical records. The overall system
was evaluated in terms of software and hardware performance using standard evaluation measures
(i.e., training performance, testing performance, Frames Per Second (FPS), system usage, power
consumption). From the detailed analysis, YOLOv4 with CSPDarkNet_tiny was identified as a
suitable candidate with a Mean Average Precision (mAP) of 63% and FPS of 24.8 with NVIDIA
Jetson TX2 hardware. The data collected from the deployment of edge-computing hardware on
waste collection trucks was used to retrain the models and improved performance in terms of mAP,
False Positives (FPs), False Negatives (FNs) and True Positives (TPs) was achieved for the retrained
YOLOv4 with CSPDarkNet_tiny backbone model. A detailed cost analysis of the proposed system is
also provided for stakeholders and policy makers.

Keywords: waste contamination; edge-computing; Artificial Intelligence of Things (AIoT);
computer vision; deep learning

1. Introduction

The waste generation rate is reported to have increased in the last couple of decades
mainly because of the increase in economic development and urbanization [1,2]. Increased
waste volumes are causing problems for governments in managing and processing them
efficiently [3,4]. Although developed countries have proper waste classification systems in
place (i.e., red, green, yellow), most of the waste still ends up either in landfills or incin-
erated, mainly because of the presence of contamination (Ziouzios et al. [5] suggests that
75% of the municipal waste that may be recycled is wasted). Therefore, it is of significant
importance for any country to enhance its ability to improve waste recycling and waste
management mechanisms. Both the existing waste management techniques of landfilling
and incinerating pose serious environmental and health threats to the community [3,6–8].
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In the context of sustainable development, efficient waste management is one of the
key agendas which directly influences the sustainable development goals (SGDs) [9,10].
However, irrespective of its importance in global sustainability, waste management has
been less prioritized compared to other factors such as water and energy. Specifically, in the
context of Australia, limited resources are allocated for waste management (e.g., 250 million
AUD were allocated for the waste recycling and policy action plan [9]). The Chinese waste
ban in 2018 and the Council of Australian Government (COAG) export ban in 2020 have
caused a national waste crisis. As of now, local governments are individually responsible
for the management of waste (i.e., collection, disposal, recycling).

At the scale of local waste management, contamination in household waste is one of
the highlighted challenges that significantly impacts the waste recycling process [11]. As a
standard, within Australia, a 6% to 10% contamination rate is referred to as an acceptable
range; however, in recent times, the average contamination rates have been reported to be
around 15%, which is much higher than the recycling waste import threshold of only 0.5%
imposed by China. Educating the community through various activities, workshops and
webinars is reported to be one of the commonly suggested approaches towards reducing
household contamination. However, such an initiative may only be successful if accurate
and widespread data is shared with the community to motivate them [12,13].

At the local government scale, bin-tagging or waste auditing is the adopted approach
to collect waste contamination-related data and to report the contamination to correspond-
ing customers [9]. However, bin-tagging is done mainly by the waste collection truck
driver by manually looking into the waste truck hopper captured by the camera [9,14].
Remondis is the leading waste management organization within the Illawarra, New South
Wales (NSW), Australia, and has camera-based systems installed to facilitate the manual
bin-tagging process. However, manual bin-tagging is a labor-intensive process that also
impacts the driving capabilities of waste collection truck drivers. Manual data collection
involves the subjective visual observations of the driver, which may result in high data
variance, which needs further analysis and time resources. Therefore, there is a dire need
for a unified automated waste contamination detection system using the state-of-the-art
technologies towards efficient and sustainable waste management. In this context, detection
of plastic-bag contamination, which is one of the most common forms of contamination in
household waste, is considered as the first step for developing an automated system.

Artificial Intelligence (AI), edge-computing, Artificial Intelligence of Things (AIoT),
computer vision and the Internet of Things (IoT) are disruptive technologies that have
achieved huge success in dealing with complex real-world problems [15–19]. In the context
of waste management, various studies have been performed for waste detection and
classification [5,20–29]; however, there still exists a gap in the development of a practical
solution. This paper presents an edge-computing video analytics solution for automated
plastic-bag contamination detection to be used in waste collection trucks for efficient
contamination detection. The proposed solution implements the state-of-the-art object
detection algorithms to detect plastic-bag contamination in household waste. Multiple
variants of the Faster R-CNN and You Only Look Once version 4 (YOLOv4) models have
been trained for plastic-bag contamination detection. For training the computer vision
models, a real utility-oriented dataset (i.e., Remondis Contamination Dataset (RCD)) was
developed from the manually tagged records of the Remondis collection trucks. The
following are the anticipated contributions of the presented research:

1. Development of a challenging utility-oriented waste contamination dataset (i.e., RCD)
from the Remondis manual bin-tagging historical records and annotation for plastic-
bag contamination bboxes;

2. Development, validation, and analysis of an edge-computing practical solution for
automated plastic-bag contamination detection in waste collection trucks.

The rest of the article is organized as follows. Section 2 presents a review of the
most relevant benchmark literature related to the use of computer vision technologies for
waste detection and classification. Section 3 provides details about the dataset used for the
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training and validation of the computer vision models. Section 4 presents details about the
proposed automated plastic-bag contamination detection system including the software and
hardware components. Section 5 provides information about the experimental protocols
and evaluation measures. Section 6 details the software and hardware evaluation results for
the proposed system, mainly for the computer vision models. Section 7 discusses the results
and highlights the potential challenges of the problem. Section 8 presents information
about the field data collection and retraining of the model for improved performance as an
essential step from an enterprise solution development perspective to ensure admissible
field performance. Section 9 provides detailed cost analysis for the proposed plastic-bag
contamination detection system. Finally, Section 10 concludes the study by highlighting
the important insights and listing potential future research directions.

2. Related Work

This section presents a review of benchmark literature in regards to waste detection
and classification using computer vision and edge-computing technologies. The review
is organized in chronological order to highlight the advancements made over time in the
domain of waste detection.

Rad et al. [20], in the year 2017, proposed a computer vision-based litter localization
and classification system using the OverFeatGoogleNet model. A custom-collected dataset
of around 4000 images was used to train the computer vision models. From the results,
the proposed approach was able to achieve a detection precision of 63%. The detected
litter objects (e.g., leaves, cigarette buts) are not directly related to the waste contamination;
however, the detection of small litter objects from the image makes it a relevant problem
from a computer vision perspective. Ibrahim et al. [21], in 2019, developed a comprehensive
waste-contamination dataset (i.e., ContamiNet) towards detecting contamination in solid
waste. The dataset consists of 30,000 images from multiple sources where the contamination
was identified within the waste. The CNN model was trained and compared against the
manual labeling. The trained CNN model was able to achieve an AUC of 0.86 compared to
the manual AUC of 0.88.

Kumar et al. [22], in 2020, proposed the use of a computer vision object detection
model (i.e., YOLOv3) for efficient waste classification. A custom-developed dataset of
approximately 8000 images of waste from six different classes was used to train the object
detection model. Most of the images in the dataset contained a single object belonging
to only one class; however, a few test images were also captured from the real world
where multiple objects belonging to multiple classes were present. From the experimental
investigations, an mAP of 95% was achieved by the YOLOv3 model. Later in the same year,
Li et al. [23] proposed a YOLOv3-based computer vision solution to detect water surface
garbage. A custom-developed dataset of 1200 images was used to train the waste detection
model. From the experimental analysis, the proposed YOLOv3 model was able to achieve
an mAP of 91% among three garbage classes (i.e., bottle, plastic, Styrofoam). Although high
detection performance was reported, the dataset used for the training was not challenging
enough and involved very minimal background noise because the presence of water made
the waste objects distinct for the detector.

Panwar et al. [24], in 2020, proposed a dataset called AcquaVision to facilitate the use of
deep transfer learning toward detecting waste objects in water. The dataset comprised 369
images annotated for four waste categories (i.e., glass, metal, paper, plastic). The RetinaNet
model was implemented to detect the waste objects from images and reported an mAP of
81%. Although the implemented model performed well, the dataset was very limited and
the reported performance cannot be considered a generalized performance. The images
from the dataset were of good resolution with distinct waste objects and no noise in most
cases (i.e., only the waste objects were present in the image). The similarity between paper
and plastic bags is one of the challenges to address in this case. White et al. [25], in 2020,
developed a novel CNN model referred to as WasteNet toward classifying waste objects in
the context of smart bins. The proposed model was based on the VGG16 transfer learned
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architecture and was trained using the TrashNet dataset consisting of 2500 images classified
across six different trash classes. From the results, the proposed WasteNet model was able
to achieve 97% prediction accuracy. Although high performance of the proposed model
was reported, it was not compared to other literature where the TrashNet dataset was used.
Further, the nature of the dataset was not complex and the image consisted of only a single
class object without any noise, making it a simpler problem for a CNN-based classifier.

Kraft et al. [26], 2021, developed an edge-computing solution for unmanned aerial
vehicles to detect trash from low altitudes. An NVIDIA Jetson NX edge-computer with
an object detection model was used to detect the small trash objects from the air. The
computer vision models were trained using the UAVVaste dataset consisting of 774 images
with 3716 bbox annotations of trash. YOLOv4, EfficientDet and Single Shot Detector (SSD)
computer vision object detection models were trained and compared for their performance.
From the results, the YOLOv4 model was able to achieve mAP@50 of 78%. Patel et al. [27],
in 2021, used multiple computer vision object detection models to detect garbage. The
dataset consisted of 544 images with bbox annotations of garbage material in the image.
EfficientDet, RetinaNet, CenterNet and YOLOv5 models were trained and performance
was compared. From the experimental analysis, the YOLOv5 model was able to achieve
an mAP of 61%. The dataset used was very limited and reported performance cannot
be considered a generalized performance; however, the images in the dataset were from
challenging real-world scenarios.

Chazhoor et al. [28], in 2022, performed a comprehensive benchmark study to classify
plastic waste using CNN transfer learned models. The WaDaBa dataset consisting of
around 4000 images from seven different plastic waste classes was used to train the CNN
models (i.e., AlexNet, ResNet50, ResNeXt, MobileNetv2, DenseNet, SqueezeNet). From
the experimental analysis, ResNeXt was reported to perform best with an AUC of 94.8%.
High classification performance was reported for CNN transfer learned models, which
may be attributed to the noise-free dataset. Furthermore, results were not discussed in
line with the literature where the WaDaBa dataset was already used. Radzi et al. [29], in
2022, proposed the use of CNN classification models (e.g., ResNet50) to classify given
plastic waste images into seven classes (i.e., PET, HDPE, PVC, LDPE, PP, PS, others). A
custom-developed dataset of 2110 images was developed and manually annotated for
seven different classes of the plastic type. From the results, the ResNet50 model was able
to achieve a classification accuracy of 94%. Although the implemented model was able
to achieve high accuracy, the dataset was very simple, consisting of cropped images of
individual plastic objects (i.e., only one class of object in a single image), which is not the
case in most practical applications, where such models are prone to fail drastically. Most
recently, Ziouzios et al. [5] developed a real-time waste-detection and classification system
towards efficient solid waste management. The dataset used for the training of models
consisted of 1500 images from the TACO dataset and 2500 images from a local waste-
treatment agency belonging to four waste classes (i.e., plastic, glass, aluminum, other).
YOLOv4 with CSPDarkNet backbone was trained and reported to achieve an mAP of 92%.
Although the reported accuracy is towards the higher end, the images from the TACO
dataset are not very challenging and are anticipated to be the reason for the higher accuracy.

As a summary of the literature review (see Table 1), the waste detection problem has
been reported to be addressed either as an image classification problem or as an object
detection problem. However, the computer vision object detection approach for detecting
waste objects is more suitable for the real-world scenario. OverFeatGoogleNet, CNN,
WasteNet, AlexNet, ResNeXt, ResNet50, DenseNet, SqueezeNet and MobileNet models are
the highlighted image classification models used in the literature, while YOLOv3, YOLOv4,
YOLOv5, RetinaNet, EfficientDet, CenterNet and SSD are the highlighted object detection
models. In most of the cases, the datasets were either not comprehensive or not challenging
enough (i.e., single object per image with no background noise). These critical analyses
clearly suggested the need to develop a practical solution with challenging real-world data
towards identifying contamination within solid waste.
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Table 1. Summary of benchmark literature related to detection and classification of waste objects
using computer vision techniques.

Author Year Addressed Problem Dataset Proposed Approach Performance

Rad et al. [20] 2017 Litter classification Custom dataset OverFeatGoogleNet Precision of
and detection (4000 images) 63.7%

Ibrahim et al. [21] 2019 Waste contamination ContamiNet CNN AUC 0f
detection (30000 images) 0.88

Kumar et al. [22] 2020 Waste classification Custom dataset YOLOv3 mAP of
and detection (8000 images) 95%

Li et al. [23] 2020 Water surface Custom dataset YOLOv3 mAP of
garbage detection (1200 images) 91%

Panwar et al. [24] 2020 Water waste AcquaVision RetinaNet mAP of
detection (369 images) 81%

White et al. [25] 2020 Waste object TrashNet WasteNet Prediction accuracy
classification (2500 images) ((VGG)-16 based) of 97%

Kraft et al. [26] 2021 Trash object UAVVaste YOLOv4, EfficientDet YOLOv4 mAP
detection (774 images) SSD of 78%

Patel et al. [27] 2021 Garbage Custom dataset YOLOv5, EfficientDet YOLOv5 mAP
detection (544 images) RetinaNet, CenterNet of 61%

Chazhoor et al. [28] 2022 Plastic waste WaDaBa AlexNet, ResNeXt, ResNet ResNeXt AUC
classification (4000 images) MobileNet, DenseNet of 94.8%

Radzi et al. [29] 2022 Plastic waste Custom dataset ResNet50 Accuracy of
classification (2110 images) 94%

Ziouzios et al. [5] 2022 Waste detection Custom dataset YOLOv4 mAP of
and classification (4000 images) 92%

3. Remondis Contamination Dataset (RCD)

The Remondis Contamination Dataset (RCD) used for the development of computer
vision models (i.e., training, testing) was established from the historical records of Remondis
where the drivers manually labeled the images as contaminated. All the images are stored
in jpeg format with 640× 480 dimensions and 72 pixels-per-inch resolution. The color
scheme for all the images is RGB. The images are taken from the camera installed on the
waste collection truck, pointing towards the truck hopper where waste is emptied from
the bins before being processed to the main compartment. A portion of images were also
captured from the camera pointing towards the bins. The images in the dataset are diverse
in terms of at least three different camera zooms, offer challenging blur noise and are
captured from different angles depending on the settings of camera installed on the truck.
The dataset presents various waste contaminants including plastic bags, plastic bottles
and food waste. RCD is a novel dataset presented for the first time in this manuscript and
can serve as a benchmark for practical waste segregation purposes including detection of
different waste contaminants, characterization of waste contents and counting of a certain
waste content occurrence. The main differences between the existing waste contamination
datasets and RCD are the actual real-world visuals and presence of contamination along
with the non-contaminated waste. For the presented research, the raw dataset was labeled
to detect plastic-bag contamination only.

In terms of plastic waste contamination, the dataset is highly challenging, mainly
because of visual similarities between some types of plastic bags and non-contaminants.
For example, a white plastic-bag is often similar to white paper. Black plastic bags are often
similar to any dark portions in the image. Packaging materials are often similar to the
reflecting surface of the tracker hopper. Some clear candidates of plastic bags include color
bags (blue, yellow, purple), coles bags and woolie bags. As a labeling schema, six type of
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plastic-bag candidates were considered to be annotated for bounding box detection. The
plastic-bag candidates included coles bags, woolie bags, color bags, white bags, black bags
and packaging material. Annotations were done using the labelImg tool and labels were
saved in .xml format, which were converted to KITTI for training purposes (see Figure 1).

The plastic-bag contamination detection dataset was generated/curated following a
number of standard steps. As a first step, the raw images captured by the camera installed
on the waste collection truck were acquired from the Remondis repository. These raw
images were then sorted manually to select the training candidates that included visible
plastic-bag contamination. The sorted images were then annotated for the plastic-bag
bounding boxes using the defined labeling criteria. The final annotated dataset was then
converted to KITTI format and split into training and validation subsets for performance
evaluation of trained computer vision models. The validation dataset consisted of the
images that were not presented during the training process and were unseen to the model,
and were used for the performance evaluation of the models. The final dataset consisted of
1125 samples (i.e., 968 for training, 157 for validation) with a total of 1851 bbox annotations
(i.e., 1588 for training, 263 for validation).

Figure 1. Annotated samples from the RCD.

4. Automated Plastic-Bag Contamination Detection System

To address the problem of detecting plastic-bag contamination in the waste collection
trucks, an automated solution using edge-computing and computer vision approaches has
been proposed. The concept of the proposed system is to make use of the already installed
analog camera on the truck to process the images and deploy the latest computer vision
models on edge-computing hardware to automatically detect plastic-bag contamination.
The conceptual illustration of the proposed automated plastic-bag contamination detection
system is shown in Figure 2. Overall, the system is designed to capture analog video from
the installed camera, convert it to digital using the EasyCap analog-to-digital converter,
make inference on a NVIDIA edge-computer using trained computer vision object detection
models to detect plastic-bag contamination and display the detected contamination bboxes
on the truck monitor. Fundamentally, the system uses trained computer vision models
deployed on a NVIDIA edge-computer using the DeepStream application to process the
input video feed towards detecting the plastic-bag contamination. Brief theoretical details
about the computer vision object detection models and hardware components involved in
developing the system are presented in the following subsections.
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Truck Dashboard Monitor with  
Contamination Detection

Connector Cable from  
Edge Computer to 

Monitor

NVIDIA Edge Computer Analog to Digital Video  
Converter

Analog Camera Pointing  
at Garbage

Figure 2. Conceptualization illustration of the proposed automated plastic-bag contamination detec-
tion.

4.1. Computer Vision Models for Plastic-Bag Contamination Detection

Towards developing an optimized solution, as a Research and Development (R&D)
approach, multiple variants of state-of-the-art computer vision object detection models
(i.e., Faster R-CNN, YOLOv4) were trained and compared to identify the best performing
model. The theoretical background to each of the implemented computer vision models is
presented as follows.

4.1.1. Faster R-CNN

The Faster R-CNN model was proposed by Ren et al. [30] and addressed the problem
of high computational cost while calculating region proposals. This model is based on a
novel Region Proposal Network (RPN) developed with the idea of sharing the features
from the feature extraction network with the detection network, significantly reducing
the computational cost. Further, the Fast R-CNN and RPN networks were merged using
the shared CNN features and introduced the attention-based mechanism. In the RPN,
anchors are used to address the multiple scales and aspect-ratio problems related to objects.
As a result of this operation, an anchor is placed at the center of each spatial window.
The proposals are then parametrized in relation to the anchors. This results in a unified
single model with two modules: the RPN deep CNN model and the Fast R-CNN detector.
Compared to other object detection models, the proposed RPN network generates multi-
scale anchors as regression and adopts a pyramid type approach to make it efficient.
Therefore, the loss function includes both the classification and regression tasks as expressed
in Equation (1). It can be observed that both the regression loss and classification loss are
optimized to train the model.

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nbbox

∑
i

p∗i Lbbox(ti, t∗i ) (1)

where i is the index for anchor, pi is the probability for the ith anchor, p∗i is the ground truth
for the ith anchor, ti is the vector containing the predicted bbox coordinates, t∗i is the vector
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for the ground truth bbox coordinates, Ncls and Nbbox are regularization terms and λ is the
balancing parameter. Figure 3 shows the architecture of the Faster R-CNN model.

Fast R-CNN

Region Proposal Network (RPN)

Backbone 
CNN

Backbone 
CNN

Feature 
Map

Feature 
Map

ROI Pooling

FC
 L

ay
er

FC
 L

ay
er FC

 L
ay

er
FC

 L
ay

er

Conv Layers

Region Proposals

Classification

Regression

Input

Figure 3. Overview of Faster R-CNN architecture.

In the process of training, first, the shared convolutional layers in the backbone
network extract the deep features related to plastic-bag contamination from the images.
This network is often referred to as the feature extractor. A fixed size image is selected as
an input to the pooling layer along with the information extracted by the RPN layer. At the
final stage, an output detection network with fully connected layers is connected with a
high dimensional feature vector. One fully connected layer in the output network is used
for the classification score determination, while the other layer is used for the position of
detection by regression. The parameters of the neural network during the training process
are adjusted based on the loss function (see Equation (1)). Given the output of the loss
function, the SGD optimizer adjusts the weights of the network to minimize the loss of the
model during the backpropagation process. This process takes place in the following steps:

• First, based on the backbone network, the weights (w) and bias (b) of the network
are initialized;

• A forward-propagation process starts, which performs the computations on the input
image based on the type of layer in the network.

– For a fully connected layer, forward computation is performed using the follow-
ing expression:

αm,l = σ(zm,l) = σ
(

W lαm,l−1 + bl
)

where m denotes the image sample, l denotes the layer of the network, σ denotes
the activation function (i.e., ReLU for this case), W denotes the network weights
and b denotes the network bias;
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– For a convolutional layer, forward computation is performed using the follow-
ing expression:

αm,l = σ(zm,l) = σ
(

W l ⊗ αm,l−1 + bl
)

where ⊗ denotes the convolution operation;
– For the pooling layer, a reduced dimension operation is performed on the input;
– For the output layer, a Softmax function is used to predict the class probabilities.

Softmax operation can be mathematically represented as:

Softmax(z)j =
expzj

∑K
k=1 ezk

for j = 1, 2, . . . , K

where K denotes the dimension of the z vector on which Softmax is being applied;

• Based on the loss function, a backpropagation operation is performed depending on
the type of layer in network. The backpropagation process involves loss minimization
using the gradient descent approach where weights and bias values are updated for
each layer depending on the gradient values. Learning rate plays a vital role in the
gradient descent process and has to be chosen carefully during the training process.
For the Faster R-CNN training, a learning rate of 0.02 was used.

4.1.2. You Only Look Once version 4 (YOLOv4)

The YOLOv4 model was proposed by Bochkovskiy et al. [31] with the aim to achieve
accurate and high-speed performance for mobile platforms deployed in the field for real-
time applications. Often, YOLOv4 is also referred to as an updated version of YOLOv3
with improved speed and accuracy. A number of universal features were introduced
in the new model to be used for improved performance, including Cross-Mini-Batch
Normalizations (CmBN), Cross-Stage Partial Connections (CSP), mish activation and Self
Adversarial Training (SAT). The overall structure of YOLOv4 consists of an optimized
backbone architecture, a neck architecture, and a detection head architecture. With default
settings, YOLOv4 was developed using CSPDarkNet53 as a backbone, an additional SSP
module, a PANet neck model, and a YOLOv3 head model. The CSPDarkNet53 backbone
network divides the input into two parts; one part is passed through the DenseNet network,
while the other part bypasses the network. The SPP and PAN are used mainly because
of their enhanced receptive fields. In order to avoid the limitation of the fixed size input,
a max pooling operation is performed at the SPP layer, which results in fixed output
representations. To preserve the spatial information, PANet performs the pooling operation
at multiple layer levels within the network. Finally, for the detection and localization of the
objects, YOLOv3 head architecture is used.

In terms of training performance enhancements, YOLOv4 introduced SAT and mosaic
data augmentation approaches and uses genetic algorithms to optimize the model hyperpa-
rameters. The mosaic data augmentation approach mixes four training samples, eliminates
the need for a large number of mini-batches and provides improved object features. On
the other hand, in the SAT augmentation, the training image is modified and the model is
trained on the modified image to detect objects of interest. The architecture of the YOLOv4
model is shown in Figure 4. The new YOLOv4 model outperformed the YOLOv3 model
while keeping the real-time performance.
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SPP
Input

CSPDarkNet Backbone PANet YOLOv3 Detector

Figure 4. Overview of YOLOv4 architecture.

4.2. Hardware Components

The proposed plastic-bag contamination system mainly consists of three hardware
components: (a) a camera to capture the video, (b) an analog-to-digital converter, and
(c) an edge-computer to process the video through the computer vision models to detect
contamination. For the developed prototype, a Mitsubishi 4010 series analog video camera,
an EasyCap analog-to-digital converter and a NVIDIA edge-computer were used. Figure 5
shows the laboratory hardware setup for the proposed plastic-bag contamination system.
Brief details of each hardware component are provided as follows:

• Mitsubishi Analog Camera: Remondis waste collection trucks are already equipped
with aluminum-encased Mitsubishi C4010 heavy-duty waterproof analog cameras
specifically built for such harsh industrial utilities. The camera is capable of op-
erating in low-lighting conditions and a high-vibration environment. The camera
operates on +12V DC with 150mA current consumption and +50 ◦C maximum operat-
ing temperature;

• EasyCap Analog-to-Digital Converter: To convert the analog video coming from the
camera into digital for processing, an EasyCap USB 2.0 capture card was used. The
capture card is a plug-and-play solution and supports high-resolution NTSC and
PAL50 video formats;

• NVIDIA edge-computer: The edge-computer is the most important hardware compo-
nent of the proposed system, with the role of performing all the computations related
to plastic-bag contamination detection. For the developed prototype, NVIDIA Jetson
Nano and NVIDIA Jetson TX2 edge-computers were used. The detailed specifications
for both the edge-computers are presented in Table 2.

Table 2. Detailed hardware specifications of NVIDIA Jetson Nano and NVIDIA Jetson TX2 edge-
computers.

NVIDIA Jetson Nano NVIDIA Jetson TX2

GPU 128-core NVIDIA Maxwell 256-core NVIDIA Pascal
CPU Quad-core ARM A57 Quad-core ARM A57

Memory 2 GB 64-bit LPDDR4 25.6 GB/s 8 GB 128-bit LPDDR4 59.7 GB/s
Storage 16 GB eMMC 5.1 32 GB eMMC 5.1

Dimensions 69.6 mm × 45 mm 87 mm × 50 mm
Performance 472 GFLOPs 1.3 TFLOPs

Power 5/10 W 7.5/15 W
Temperature range −25 ◦C ∼ 80 ◦C −25 ◦C ∼ 80 ◦C

4.3. Experimental Design

To develop and validate the edge-computing solution for plastic-bag contamination
detection, three experiments were performed:
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• In first experiment, a variety of computer vision object detection models were trained
and compared for their performance in detecting the plastic-bag contamination;

• In second experiment, the computer vision models were exported and deployed
on the edge-computing hardware using a DeepStream video analytics application.
The hardware performance of the models was compared for their suitability as a
practical solution;

• In third and final experiment, the edge-computing hardware was deployed on three
waste collection trucks where functionality of the developed solution was validated
and additional data was collected. The collected data was then used to retrain the com-
puter vision models for improved plastic-bag contamination detection performance.

NVIDIA Powered  
Edge Computer

EasyCap Analog to  
Digital Converter

Coaxial Connector  
Cable from Camera

Mitsubishi Analog Camera  
Installed on Truck

USB Storage

+12V DC

Figure 5. Laboratory hardware setup for the proposed automated plastic-bag contamina-
tion detection.

5. Experimental Protocols and Evaluation Measures

A standard three-stage data-driven research approach has been used for the devel-
opment of an automated plastic-bag contamination detection system (see Figure 6). The
first stage is referred to as the data preparation stage, where raw images collected from the
Remondis records were sorted, filtered and processed. Further, at this stage, images were
annotated using the LabelImg [32] annotation tool for the plastic-bag bboxes. The labels
were converted to KITTI format to meet the requirements of the training platform. The
second stage is referred to as the model training phase, where, first, the computer vision
models were selected, taking literature as reference (i.e., Faster R-CNN, YOLOv4) and
hyperparameters for training were decided. The NVIDIA TAO toolkit was used to train the
selected models and training performance was assessed using the training loss, validation
loss and validation mAP values to ensure that training followed the standard patterns.
The final stage is referred to as the testing and validation stage, where the trained models
were tested and evaluated using multiple software and hardware performance matrices.
Furthermore, the detailed cost analysis was also presented at this stage to demonstrate
usability for real-world application.
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Figure 6. Block diagram representation of the research approach for automated plastic-bag contami-
nation detection.

All the computer vision object detection models used in this research were trained
using the NVIDIA TAO toolkit with TensorFlow and Python at the back-end. A NVIDIA
A100 Graphical Processing Unit (GPU)-powered Linux machine was used to train the
models. A data split of 80:20 was used for training and validation purposes, respectively.
The Faster R-CNN model was trained using three different backbones (i.e., DarkNet53,
ResNet50, MobileNet), while the YOLOv4 model was trained using two different backbones
(i.e., CSPDarkNet53, CSPDarkNet_tiny). All the models were initially trained using a batch
size of 1 for 200 epochs and were pruned (i.e., pruning threshold of 0.2 for Faster R-
CNN models, pruning threshold of 0.1 for YOLOv4 models) and re-trained for 100 more
epochs. Pruning is a commonly adopted approach in neural networks in which unnecessary
connections between the neurons are removed to reduce the model complexity/size without
impacting the overall model integrity. This results in achieving better memory usage, saving
training time, and achieving faster inference times. However, the pruning threshold should
be selected carefully since it is inversely proportional to the model prediction accuracy.
A pruned model may observe a decrease in prediction accuracy mainly because some
important weights might have been removed during the pruning process. Therefore, it
is recommended to retrain the model after pruning to retain accuracy. For Faster R-CNN
models, the Stochastic Gradient Descent (SGD) optimizer was used with 0.9 momentum and
a base learning rate of 0.02 with L2 regularization. Multiple data augmentation techniques
including scaling, contrast change and image flipping were incorporated into the training.
For the YOLOv4 models, the Adaptive momentum (Adam) optimizer was used with L1
regularization and a base learning rate of 1× 10−7. Image flip, color variations, and jitter
data augmentation approaches were used during the training.

Performance Evaluation Measures

The performance of the developed plastic-bag contamination detection system was
assessed in terms of software and hardware using multiple matrices. The software perfor-
mance was assessed in the training and testing phases separately. The training performance
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of computer vision models was evaluated using training loss, validation mAP, training
time per epoch and monitoring of the training curves. The test performance of models was
assessed using the mAP for the unseen validation dataset. The mathematical expression
for calculating mAP is given in Equation (2).

mAP =
1
N

N

∑
i

APi (2)

where AP refers to the Average Precision, which is defined as the weighted sum of precisions
at each threshold, where the weight equals the increase in recall. AP is determined from
the precision-recall curve and is one of the most commonly used measures for evaluation
of object detection model performance. N represents the number of classes. In this case,
since there is only one detection class (i.e., plastic-bag), mAP is equivalent to AP.

The hardware performance of models was benchmarked using NVIDIA Jetson Nano
and NVIDIA Jetson TX2 boards in terms of system usage (i.e., GPU usage, CPU usage, GPU
temperature, CPU temperature), average power consumption and Frames Per Second (FPS).
Finally, the cost analysis was reported to highlight the suitability for practical implementa-
tion of such a system towards automating the plastic-bag contamination detection process.

6. System Evaluation

This section presents the results of the developed plastic-bag contamination detection
system subjected to software evaluation and hardware evaluation. Results are presented
quantitatively, illustrated graphically and described qualitatively for each evaluation to
highlight the important trends.

6.1. Software Evaluation

Computer vision models for plastic-bag contamination detection were evaluated for
their training and testing performances. Quantitative results are presented in tabular form
and graphical illustrations are presented as training curves.

6.1.1. Training Performance

The training performance was assessed using the training loss, validation mAP, loss
curves, mAP curves and training time per epoch. The training loss curves and validation
mAP curves for all the different variants of Faster R-CNN and YOLOv4 models are pre-
sented in Figure 7 and Figure 8, respectively. The curves for Faster R-CNN models and
YOLOv4 models are presented separately because of the variation in the interpretation
of loss for both types of models. For Faster R-CNN models (see Figures 7a and 8a), it is
observable that similar loss curve trend (i.e., negative exponential) was reported with Dark-
Net53 variant at the slight better end in comparison to MobileNet and ResNet50 variants. It
can be observed that for all three models, after pruning, the loss increased for some epochs
and then decreased to reach the minimum value. The degradation in the model accuracy
was expected due to removal of important weights during the pruning process. However,
upon retraining, the pruned model was able to retain the similar accuracy with much
reduced model size (see Table 3 for model size comparison). The loss curves stabilized
around 0.1 for DarkNet53 and MobileNet versions. However, from the mAP curves, it is
observable that the MobileNet model and ResNet50 models achieved better performance
in comparison to DarkNet53, specifically after the pruning of the model. ResNet50 and
MobileNet models were able to achieve the maximum mAP of around 63% at the 290th
and 190th epochs, respectively.

For YOLOv4 models (see Figures 7b and 8b), a similar negative exponential trend was
observed for training loss curves as in the case of Faster R-CNN; however, for YOLOv4
models, the loss kept on decreasing after pruning of models (i.e., evidence of effective prun-
ing). Model pruning resulted in much reduced size model for YOLOv4 with CSPDarkNet
in comparison to CSPDarkNet_tiny, for which very slight (i.e., negligible change) in size
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was observed (see Table 3 for model size comparison). YOLOv4 with the CSPDarkNet_tiny
model performed slightly better in comparison to the CSPDarkNet53 variant, with loss
stabilized around 18. From the mAP curves, comparatively similar performance can be
observed, with the CSPDarkNet_tiny variant achieving a maximum mAP of 65% at the
170th epoch, while the CSPDarkNet53 variant achieving mAP of 67% at the 190th epoch.

The detailed impacts of pruning on computer vision detection models are quantita-
tively presented in Table 3. It can be observed that, for all the cases, pruning of models
resulted in reduced model size, reduced training times and reduced number of trainable
parameters. The training times are for relative comparison only and correspond to the
training machine specified in experimental protocols section.

The detailed quantitative results from the training for the best performing epoch
are tabulated in Table 4. The results are presented in terms of training loss, validation
mAP, precision and recall score (i.e., for YOLOv4 models, precision and recall scores were
not available). From Table 4, it can be clearly identified that the YOLOv4 model with
CSPDarkNet53 backbone was able to achieve the best mAP of 67%, with a training loss
of 21.83. The YOLOv4 with CSPDarkNet_tiny was reported second-best with slightly
degraded performance (i.e., mAP of 65%).

Trained models were also evaluated for their relative training speed per epoch in
seconds (see Figure 9) to determine the usability of training resources by each model. From
Figure 9, it is evident that the YOLOv4 model with CSPDarkNet_tiny backbone was the
fastest to train (i.e., 48 seconds per epoch), while Faster R-CNN with MobileNet backbone
was second-best, with 55 seconds per epoch training time. The YOLOv4 model with
CSPDarkNet53 backbone took the longest to train (i.e., 132 seconds per epoch), which may
be attributable to the complexity of the model and the huge number of trainable parameters.

Table 3. Impact of pruning on the computer vision object detection models trained for the automated
plastic-bag contamination detection.

Model Model Size Trainable Parameters Training Time (per epoch)
Name Unpruned Pruned Unpruned Pruned Unpruned Pruned

Faster R-CNN (DarkNet53 backbone) 344 MB 266 MB 42 M 33 M 95 s 90 s
Faster R-CNN (ResNet50 backbone) 342 MB 97 MB 42 M 24 M 100 s 87 s
Faster R-CNN (MobileNet backbone) 45 MB 24 MB 5 M 3 M 55 s 47 s
YOLOv4 (CSPDarkNet53 backbone) 594 MB 402 MB 49 M 38 M 132 s 120 s
YOLOv4 (CSPDarkNet_tiny backbone) 70 MB 69 MB 5 M 4.9 M 59 s 48 s

Table 4. Quantitative training results for the different variants of computer vision object detection
models implemented for plastic-bag contamination detection.

Model Training Loss mAP Precision Recall

Faster R-CNN Models

MobileNet backbone 0.1044 63% 0.4569 0.7425
DarkNet53 backbone 0.1915 61% 0.1448 0.8517
ResNet50 backbone 0.2106 63% 0.2961 0.7871

YOLOv4 Models

CSPDarkNet53 backbone 21.83 67% NA NA
CSPDarkNet_tiny backbone 18.73 65% NA NA
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Figure 7. Training loss curves for the different variants of computer vision object detection models
implemented for plastic-bag contamination Detection.
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Figure 8. Training mAP curves for the different variants of computer vision object detection models
implemented for plastic-bag contamination Detection.

6.1.2. Testing Performance

The trained computer vision models were subjected to an unseen validation dataset
to evaluate their test performance (see Table 5 for detailed qualitative results). The test
performance of implemented models was compared based on the mAP values. From the test
results, the Faster R-CNN model with ResNet50 backbone was able to achieve an mAP of 64%,
while YOLOv4 with CSPDarkNet_tiny backbone was able to achieve an mAP of 63%. The 64%
mAP value for a single-class object detection problem is slightly on the lower end; however,
it reflects the complexity and challenging nature of RCD. Given this, the performance of
the best-performing model was observed to be comparable to the literature when a similar
challenging real-world dataset has been used (i.e., 63.7% precision reported by Rad et al. [20],
78% mAP reported by Kraft et al. [26], 61% mAP reported by Patel et al. [27]).

YOLOv4 (CSPDarkN
et_ti

ny)

YOLOv4 (CSPDarkN
et)

Faste
r R-CNN (M

obileNet)

Faste
r R-CNN (DarkN

et53)

Faste
r R-CNN (ResNet50)

0

20

40

60

80

100

120

140

Ti
m

e 
(s

ec
)

59

132

55

95
100

48

120

47

90 87

Unpruned
Pruned

Figure 9. Training time per epoch for each implemented computer vision object detection model for
plastic-bag contamination Detection.
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Table 5. Quantitative testing results for the different variants of computer vision object detection
models implemented for plastic-bag contamination detection.

Model mAP

Faster R-CNN (DarkNet53 backbone) 50%
Faster R-CNN (ResNet50 backbone) 64%
Faster R-CNN (MobileNet backbone) 59%
YOLOv4 (CSPDarkNet53 backbone) 62%
YOLOv4 (CSPDarkNet_tiny backbone) 63%

6.2. Hardware Performance

The trained computer vision models were exported and benchmarked against NVIDIA
Jetson Nano and NVIDIA Jetson TX2 edge-computers to compare their hardware perfor-
mance in terms of system usage and power consumption. Results are presented in both
tabular format (see Table 6) and illustrated graphically (see Figures 10 and 11) to better
compare the hardware performance of the implemented computer vision models. The per-
formance was assessed based on FPS, average CPU usage, average GPU usage, maximum
CPU temperature, maximum GPU temperature and average power consumption (available
only for TX2). From the above-mentioned parameters, FPS, GPU usage and average power
consumption are considered the most important factors in making the decision about which
hardware and which model should be used for real-world deployment.

Table 6. Quantitative hardware performance of implemented computer vision models benchmarked
on NVIDIA edge-computers.

Model FPS Avg GPU Avg CPU Max CPU Temp Max GPU Temp Avg Power
(%) (%) (C) (C) (watt)

Jetson Nano 2GB

Faster-RCNN Models

DarkNet53 0.4 98.945 9.435 54.5 53 NA
MobileNet 3.2 98.29 11.40 54.5 53 NA
ResNet50 0.88 98.82 10.42 54.5 52.5 NA

YOLOv4 Models

CSPDarkNet_tiny 16.4 97.66 21.15 57 55 NA
CSPDarkNet53 2.4 98.70 11.63 56.5 54.5 NA

Jetson TX2

Faster-RCNN Models

DarkNet53 1.8 98.82 8.72 58 66.5 16.942
MobileNet 8.4 98.08 11.05 54.5 59 13.863
ResNet50 2.6 98.77 9.07 58.5 65 16.131

YOLOv4 Models

CSPDarkNet_tiny 24.8 58.5 16.21 50.5 53.5 10.680
CSPDarkNet53 6.6 98.60 11.23 58.5 63.5 15.719

For the Jetson Nano board (see Table 6), it can be clearly observed that YOLOv4 with
CSPDarkNet_tiny achieved the best performance in terms of FPS (i.e., 16.4), while the
Faster R-CNN model with DarkNet53 was slowest, with only 0.4 FPS, mainly because of
the complexity and depth of the model. For all the models (see Table 6 and Figure 10),
GPU usage was observed to be the maximum (≈99%), CPU usage around 10% (except 21%
for YOLOv4 with CSPDarkNet_tiny backbone), and temperatures stabilized to less than
60 degrees (i.e., within the operational temperature range referred in Table 2). The only
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model that can be used to achieve real-time performance in the real-world scenario using
the Jetson Nano board is the YOLOv4 with the CSPDarkNet_tiny backbone.

For the TX2 board (see Table 6), a similar trend was observed as with the Nano board,
where YOLOv4 with CSPDarkNet_tiny backbone was able to achieve the best FPS (i.e.,
24.8), while Faster R-CNN with DarkNet53 backbone was slowest (i.e., 1.8 FPS). However,
in contrast to Jetson Nano, for TX2, the Faster R-CNN model with MobileNet backbone
and YOLOv4 with CSPDarkNet53 backbone models were also able to achieve higher
FPS values of 8.4 and 6.6, respectively, making them suitable candidates for real-world
application using the TX2 board. For all the models (see Table 6 and Figure 11), GPU usage
was observed to be at maximum (≈99%) except for the YOLOv4 with CSPDarkNet_tiny
backbone, where only 58.5% GPU was used. CPU usage around 10% (except 16% for
YOLOv4 with CSPDarkNet_tiny backbone) and temperatures stabilized to less than 60
degree (i.e., within the operational temperature range referred in Table 2). In addition,
for the TX2 board, average power consumption by each model was also recorded and, as
expected, the YOLOv4 with CSPDarkNet_tiny backbone model consumed the least average
power of 10.6 watts, in comparison to 16.9 watts consumed by the Faster R-CNN model
with DarkNet53 backbone.
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Figure 10. NVIDIA Jetson Nano system usage plots for different variants of implemented computer
vision object detection models.
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Figure 11. NVIDIA Jetson TX2 System usage plots for different variants of implemented computer
vision object detection models.

7. Discussion of the Results

Results presented in Section 6 show that computer vision object detection models have
considerable potential towards automating the process of detecting plastic-bag contamina-
tion in waste collection trucks. Furthermore, the hardware testing results further provided
evidence that such models are practical to deploy in actual real-world scenarios. From
the results, overall, the YOLOv4 model with CSPDarkNet_tiny backbone emerged as the
most balanced model in terms of accuracy (i.e., 63%), speed (i.e., 24.8 FPS for Jetson TX2)
and power consumption (i.e., 10.68 watts for TX2). Faster R-CNN model with MobileNet
backbone and YOLOv4 model with CSPDarkNet backbone were also identified as potential
second and third choices, respectively, for deployment using the TX2 edge-computer. Fig-
ure 12 and Figure 13 show true detection and false detection, respectively, for the YOLOv4
model with CSPDarkNet_tiny backbone. In Figure 12, it can be observed that the model
was able to accurately detect the plastic-bag in the image, although the bboxes were not
exactly the same as the ground truths; however, the model was able to capture the most of
the plastic-bag in the image.

In terms of false detection (see Figure 13), three examples are included; first, when
the model failed to detect any plastic-bag in the image; second, when the model wrongly
classified other objects as plastic bags and third, when the model failed partially by detecting
only a few of the many existing plastic bags in the image. One reason for the miss-detection
may be attributed to the existing noise and visually similar objects within the dataset.
However, it is expected that with the availability of more images for training, the model
will keep improving and over a few iterations of re-training, it will achieve a level of
accuracy acceptable for real-world application. The existing model has been deployed on
actual waste trucks as a pilot project to test the functionality of the hardware and collect
more images for fine-tuning the object detection model. A few highlighted challenges of
the dataset identified from the analysis included the low pixel resolution of images (i.e.,
low level of visual details), presence of noise (i.e., light reflections, glare, low lighting) and
visual similarity of the plastic-bag to other objects in the image (e.g., white bag similar to
white boxes and white paper, black plastic-bag similar to the dark portions, packaging
material similar to the shiny reflected surfaces).
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Figure 12. Sample correct predictions by the YOLOv4 with CSPDarkNet_tiny backbone model.
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Figure 13. Sample false predictions by the YOLOv4 CSPDarkNet_tiny backbone model.

8. Field Data Collection and Model Retraining

The developed edge-computing hardware was deployed in field for three waste trucks
with the aim of validating the functionality of the developed solution and collecting more
data. The DeepStream application was configured with the functionality to save the image
and corresponding labels in KITTI format for each detection in an external USB drive. The
idea behind this activity was to monitor the performance of the deployed model and to
retrain the model using the collected data. From this activity, in total, 2325 images were
extracted from the field deployment. Out of these image, 314 images were separated for
testing, while 2011 images were used for the retraining of the model. In addition to images
collected from the field, a set of images was also extracted from the open source videos
captured by the waste collection truck. In total, 2224 images from the videos source were
extracted and used for the retraining of the model. All the images were annotated for the
plastic-bag bounding box instances.
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The YOLOv4 model with CSPDarknet_tiny backbone (i.e., the best-performing base
model reported in Section 7) was retrained with additional images collected from the
field and extracted from the open source videos. In total, an additional of 4235 images
were used along with the original 968 images for the retraining of the model towards
achieving improved performance. The same experimental protocols as described in Section
5 were adopted for the retraining of YOLOv4 model with CSPDarknet_tiny backbone.
From the retraining results, an improved performance of 73% mAP for YOLOv4 with
CSPDarkNet_tiny backbone was achieved. In addition to training performance, to better
monitor the improvement of the retrained model, both the base and retrained models
were subjected to an unseen test dataset of 314 images collected from the field. The
performance was compared in terms of mAP, True Positives (TP), False Positives (FP) and
False Negatives (FN). Table 7 summarizes the field testing results for the base and retrained
models. From the results, it can be observed that retrained model achieved mAP of 69% in
comparison to the base model, which achieved mAP of 58% (i.e., an improvement of 11%).
Furthermore, the number of FPs was observed to be reduced to 112 for the retrained model
in comparison to 176 FPs for the base model (i.e., a reduction of 36.6% in the FPs). The FNs
were also observed to be decreased by 8.29% for the retrained model. In addition, there
was an increase of 6.21% in the TPs for the retrained model. The improved performance of
retrained model suggests that a few more retraining iterations in the future using the data
collected from the field will further improve the performance of the computer vision model
for plastic-bag contamination detection.

Table 7. The performance comparison of base model and retrained model on field collected test data.

Base Model Retrained Model Percentage Change

mAP 58% 69% 11% Increased
False Positives (FP) 176 112 36.6% decreased
False Negatives (FN) 239 218 8.29% decreased
True Positives (TP) 338 359 6.21% increased

9. Cost Analysis

Cost analysis for the developed edge-computing solution for plastic-bag contamination
detection is presented in Table 8 to inform the stakeholders and define the baseline for
deploying similar solutions in various geographical locations. The presented cost analysis
is for the developed prototype based on the R&D principles and is subject to reduction by
at least three times once the optimized version of the product is developed on a mass scale.
Overall, the costs are divided into non-recurring costs (i.e., hardware cost, software cost,
services cost) and recurring costs (i.e., software maintenance cost, hardware maintenance
cost, operational cost). Non-recurring costs are estimated to be $22,245 (i.e., the hardware
cost of $2245, software development cost of $15,000, the installation cost of $5000) and are
to be spent one time. Recurring costs are estimated to be $15,225 for one year (i.e., the
software maintenance cost of $10,000, hardware maintenance cost of $225, the operational
cost of $5000).



Sensors 2022, 22, 7821 22 of 24

Table 8. Detailed cost analysis for proposed plastic-bag contamination detection system.

Item Quantity Purpose Cost (USD)
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Hardware Cost

Mitsubishi analog 1 Capture the visual data from the hopper of the ≈100camera garbage truck.

Analog-to-digital 1 To convert the analog video feed into digital for ≈20video converter processing through edge-computer.

NVIDIA edge 1 Edge-computer to perform computer vision ≈2000computer operations.

Power adapter 1 To power the edge-computer hardware. ≈100

External USB 1 To store the contamination-detected images for ≈25storage future analysis.

Software Cost

AI models
NA

To train the AI models with the capability to
≈10,000development process the raw data and extract waste

cost contamination relevant information.

Software NA To deploy the trained AI model(s) on the edge ≈5000Implementation computing hardware.

Services Cost Installation NA To visit potential sites and set up the hardware ≈5000cost system.

R
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ng
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t

Software Maintenance NA

To update and optimize the computer vision

≈10,000
Tuning of models and overall software firmware. A major
computer-vision part of listed price is anticipated cost for the AI model
models fine-tuning and performance improvements. The

price is listed for twice-a-year updates.

Hardware Maintenance NA

To manage the hardware components replacement

≈225
Replacement of the and/or repair including camera, edge-computer,
hardware cables and USB drive. The anticipated life of
components hardware components is 10 years. The listed price

is calculated relatively for one year.

Operational Cost
Operations and

NA
To perform the maintenance operations on site

≈5000logistics to maintain This includes the labor cost and logistics. Listed is
the hardware the price for twice-a-year maintenance operation.

10. Conclusions

An edge-computing video analytics solution has been successfully developed and
validated for automated plastic-bag contamination detection in waste collection trucks.
Multiple variants of the Faster R-CNN and YOLOv4 model were trained using real waste
data collected from Remondis historical manual tagging records (i.e., RCD). From the results
and analysis, in terms of training performance, the YOLOv4 model with CSPDarkNet53
backbone was able to achieve the best performance (i.e., validation mAP of 67%); however,
it took the longest among all models to train (i.e., 132 seconds per training epoch). On the
other hand, YOLOv4 with CSPDarkNet_tiny backbone was able to achieve a comparable
training performance (i.e., mAP of 65%), but was the fastest to train (i.e., 48 seconds per
training epoch). A similar trend was also observed for the testing, where the YOLOv4 model
was the second best (i.e., 63% mAP in comparison to 64% for the best performing model).
From a hardware deployment perspective, the YOLOv4 model with CSPDarkNet_tiny
backbone was the fastest (i.e., FPS of 24.8 for TX2) and consumed the least power (i.e.,
10.68 watts for TX2) in comparison to all the implemented models; therefore, it is suggested
as the suitable model to be deployed on TX2 edge-computers for real-time plastic-bag
contamination detection in waste collection trucks. The proposed edge-computing solution
was deployed on waste collection trucks to assess the functionality of the system and
to collect more data for model fine-tuning. As a result, around 4235 more images from
the field testing and open source videos were collected, with which the YOLOv4 model
with CSPDarkNet_tiny backbone was retrained for improved performance. The retrained
model was able to achieve an improved performance in comparison to the base model
in terms of mAP (11% increase), FP (36.6% decrease), TP (6.21% increase) and FN (8.29%
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decrease). For the proposed prototype development, $22245 USD is estimated for the
one-time cost to deploy the system, while $15225 USD is estimated for per year recurring
costs. The visual similarity of other objects to plastic bags was highlighted as one of the
critical limitations in the presented research, along with low lighting conditions and the
presence of reflections. In the future, it is planned to annotate images for multiple types of
plastic bags (e.g., white bag, black bag, colored bag, coles bag, woolies bag) for improved
performance. Furthermore, as an extension of this research, it is intended to make use of
other cameras installed on the truck to detect potholes and roadside trash.
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The following abbreviations are used in this manuscript:

COAG Council of Australian Government
NSW New South Wales
AIoT Artificial Intelligence of Things
YOLO You Only Look Once
RCD Remondis Contamination Dataset
SSD Single Shot Detector
RPN Region Proposal Network
CmBN Cross Mini Batch Normalizations
CSP Cross Stage Partial Connections
SAT Self Adversarial Training
GPU Graphical Processing Unit
SGD Stochastic Gradient Descent
Adam Adaptive Momentum
FPS Frames Per Second
mAP Mean Average Precision
TP True Positive
FP False Positive
FN False Negative
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