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Abstract: The performances of position synchronization and force interaction of the teleoperation
system provide a safe and efficient way for operators to perform tasks in remote, hazardous envi-
ronments. In practice, however, communication delays and dynamic uncertainties can impair the
performance of position synchronization controls. Under the above factors, it is necessary to study and
design appropriate bilateral control methods to achieve stable and effective position synchronization
control. In this paper, a new adaptive control architecture based on velocity feedback filter and radial
basis function neural network is proposed. In the proposed control scheme, only the position signal
is transmitted during the communication process, and the speed feedback filter and compensation
method are designed and adopted to avoid the use of acceleration signals. In addition, a new auxil-
iary variable with a tracking error integral term is used to reduce the steady-state error of position
tracking under nonzero external environmental forces. Using the Lyapunov–Krasovskii method, the
stability of closed-loop remote operating systems is demonstrated. In the simulation and experiment
sections, the algorithm was verified separately and compared with other algorithms. The results of a
master–slave robot system verify the tracking performance of our proposed control scheme.

Keywords: teleoperation system; adaptive control; position tracking; velocity feedback filter; time-
varying delay

1. Introduction

The biological laboratory has very high requirements for cleanliness, and operators
must implement three-level protection before entering for operation. Using teleoperation
robots to replace humans to work in the high cleanliness laboratory can avoid the op-
erator from polluting the experimental area and affecting the experimental results. The
teleoperation system is a typical network robot system, which has also been widely prac-
ticed in many engineering fields, such as space exploration [1], deep-sea operation [2],
telesurgery [3], disposal of hazardous materials [4], and so on. In the teleoperation system,
the human operator can control and operate the remote slave robot through the master
robot and force feedback devices. The force of the slave robot generated by contacting with
the task environment can also be feedback to the human operator. Between the master
and slave robots, the position, speed, and other information of the robots are transmitted
through the communication channel to realize the information interaction and the position
synchronization control. It is well known that communication will lead to signal transmis-
sion delay, which will weaken the performance of position synchronization control of the
teleoperation system and even cause system instability. Therefore, achieving stable and
high-performance master–slave position tracking is one of the important indicators for the
teleoperation system.

Many research works have been studied to improve tracking performance in prac-
tice [5]. For one thing, as the signals of the local robot and remote robot are transmitted
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by the communication channel, the communication delays in the transmission cannot be
evitable. Communication delay, especially asynchronous communication delay, can reduce
the control performance of the teleoperation system and even cause system instability [6].
For another, it is well known that the robot model is nonlinear and time-varying dynamic.
Especially, the friction, high-frequency model parameter perturbations, uncertain external
disturbances, and unknown environment descriptions are difficult to estimate and identify,
which can impede the improvement of operating performance in the teleoperation.

For decades, some classic methods are proposed to deal with the adverse effects of time
delays, such as scattering approach [7,8], wave variable method [9,10], PD control [11,12],
sliding mode control [13–15], H∞ control [15], output feedback control [16,17], feedforward-
feedback position control [18], and observer approach [4,19]. These control algorithms
are based on passive theory, Lyapunov theory, and the main force on the stability of the
system with time delays. The uncertainties of teleoperation dynamics have not been
adequately considered.

Adaptive control is a more effective method for improving the performance of a
complex nonlinear system with poor structure dynamics and unknown disturbance. Some
researchers have applied the adaptive method to the teleoperation system control. The main
principle of these adaptive methods is to use the fuzzy logic system, Radial Basis Function
(RBF) neural network, and linear parametric model to estimate the uncertain model and
external interference.

In [20], a novel fuzzy adaptive control method is proposed, the dynamic uncertain
parts are defined as a nonlinear function, and the fuzzy system is applied to estimate
it. In [21,22], the adaptive linearly parameterizable method is employed to estimate the
uncertainties parts and time-varying delay is considered. In [22], two adaptive control
schemes are developed for position tracking of master–slave robots. The RBF neural
network is applied to approximate the model uncertainties. In [23], the robust mechanism
is introduced to enhance the robustness of the system and the adaptive controllers are
developed for master and slave robots. In [24], the uncertainties in both kinematics and
dynamics of the teleoperation system are considered, and an adaptive control approach
based on the fuzzy logic system is developed.

The above research works are mainly focused on the position tracking control of the
teleoperation with fixed time delays, and time-varying delays have not been fully consid-
ered. Furthermore, researchers have paid more attention to the position tracking of the
teleoperation with time-varying delays, which has more practical engineering significance.
At the same time, the parametric uncertainties are also taken into account. In [25,26], Yang
and Li investigate two adaptive control schemes based on multiple fuzzy logic systems
for teleoperation systems. In [27], Yang et al. introduce the RBF neural network and
propose a new adaptive wave variable structure for the teleoperation system with time
delays. In [28,29], two bilateral control schemes based on type-2 Takagi Sugeno (T-S) fuzzy
system are proposed for position tracking of the teleoperation system. The T-S fuzzy
model is utilized to represent the dynamic for controller design and guarantee the motion
synchronization when time-varying delays and uncertainties exist. In [29], the authors
address the problem of task motion tracking in the teleoperation system with uncertain
dynamic/kinematic and time-varying delays. A new adaptive controller and related adap-
tive laws are designed. Huang et al. [30] develop a new adaptive sliding mode controller
based on the projection mapping method, and the adaptive laws and control laws are
designed for parameter estimation and position tracking control. In [31,32], the signal
smoothing filter is introduced into the communication process from the master robot
to the slave robot to smooth the position information transmitted with time delay and
enhance the stability of the system. In [33,34], adaptive fixed-time control methods for
position tracking of the teleoperation system are presented to implement fast position error
convergence performance.

It is noted that the auxiliary variable and sliding surface in the above works are com-
posed of tracking error and error differential. The steady-state error of motion tracking
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may exist under the active operation forces and external interference acting. In [35,36],
the integral term of position tracking error is introduced to provide more accurate motion
tracking. In [35], an integral sliding mode control structure is proposed for synchroniza-
tion control. In [36], a novel finite-time control based on the error integral is developed.
However, there are still problems in the above research works: for one thing, the position
acceleration signals are used to calculate the control laws and estimate the uncertain parts
of the teleoperation system; for another, in the above control structure, both position and
velocity signals are transmitted through the communication network, which increases the
amount of data transmitted by the signal. If only the position information is transmitted
and the velocity information is obtained by deriving the position signals at the controller
side, the amount of data transmitted can be reduced. However, the change effect of delay is
also superimposed in the position and speed information, which may weaken the control
performance of the system.

Therefore, following the line of challenges in the above works, this paper mainly
solves the problem of position tracking control of the teleoperation system in the presence
of time-varying delays and uncertain models. At the same time, the proposed new control
scheme can improve position tracking accuracy and avoid the use of acceleration signals.
The main contributions of our work can be summarized as follows:

• A novel auxiliary variable constructed by position error integral term is proposed,
and a new adaptive control scheme for teleoperation system is also developed. Com-
pared with the existing auxiliary variables constructed by errors and error differential
terms, the proposed auxiliary variables and control method have better robustness
and smaller steady-state error.

• The new velocity feedback filter and velocity delay adaptive compensation are de-
signed to avoid the use of acceleration signals and improve the stability of the system.
On the other hand, only the position information is transmitted by communication to
reduce the amount of communication data, and the velocity is obtained by calculating
the time derivative of the position at the controller side. In this way, the time delay
information will be added to the velocity signals. If the communication time delay
changes greatly, it will produce a large time delay superimposed on the velocity infor-
mation and weaken the stability of the system. Therefore, we design and introduce an
adaptive compensation term of velocity delay to improve the stability of the system.

The remainder of this paper is presented as follows. In Section 2, the dynamic de-
scriptions of the teleoperation system are described and some preliminary definitions are
given. In Section 3, the proposed adaptive control scheme is investigated. Subsequently,
in Section 4, the stability analysis is discussed. The simulation and experiment results and
illustrations are given in Section 5. Finally, this work is concluded in Section 6.

2. Problem Formulation
2.1. Master–Slave Telerobotic System

In this paper, the dynamic description of a telerobotic system based on the Euler–
Lagrange method are given as{

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + Gm(qm) + Bm = τm + τh,

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs) + Bs = τs − τe.
(1)

where both the master and slave robots are revolute joint manipulators with n Degree of
Freedom (DOF). The subscripts {m, s} represent the master robot and slave robot, respec-
tively. For j = m, s, Mj(qj) ∈ Rn×n is the mass inertia matrix; Cj(qj, q̇j) ∈ Rn×n is the
coriolis and centripetal matrix; Gj(qj) ∈ Rn is the vector of gravitational torque; Bj ∈ Rn is
the vector of friction torque; qj ∈ Rn, q̇j ∈ Rn, and q̈j ∈ Rn are the vectors of joint position,
joint velocity, and joint acceleration, respectively; τj ∈ Rn is the input control torque vector;
τh ∈ Rn and τe ∈ Rn are the external torque vectors acted by the human operator and task
environment, respectively. In our work, the external environment torque τe is defined as



Sensors 2022, 22, 7798 4 of 21

the spring damper model, which is described as τe = Deq̇s + Seqe. De, Se ∈ Rn×n are the
unknown damping matrix and spring matrix of the environment.

There are some properties and assumptions of teleoperation dynamics in (1), which
are as follows:

Property 1. The inertia matrix Mj(qm) is the positive and symmetric definite matrix. Moreover,
∃λj,min and ∃λj,max, there is 0 < λj,min In×n ≤ Mj(qm) ≤ λj,max In×n.

Property 2. Ṁj(qm)− 2Cj(qs, q̇s) is the skew symmetric matrix, and for any vector y ∈ Rn,
the following equation always holds:

yT(Ṁj(qm)− 2Cj(qs, q̇s)
)
y = 0.

Assumption 1. In a teleoperation system, the signals of master and slave robots are transmitted to
each other by the communication channels. We define dm(t) as the communication delay from the
master robot to the slave robot, and ds(t) as the time delay from the slave robot to the master robot.
In addition, as dm(t) and ds(t) are both time-varying, bounded, and asynchronous delays, we can
have 0 ≤ dm(t) ≤ d̄m, 0 ≤ ds(t) ≤ d̄s, |ḋm(t)| ≤ Dm, and |ḋs(t)| ≤ Ds.

Assumption 2. The human operator torque τh and environment torque τe are all bounded, and we
have ‖τh‖2 ≤ τ̄h and ‖τe‖2 ≤ τ̄e.

In the practical system, there may be uncertain dynamic parts caused by inaccurate
parameters in the teleoperation system, such as Mj(qm), Cj(qs, q̇s), and Gj(qj). To deal
with the uncertainties, we introduce the nominal models and uncertain models to describe
the Mj(qm), Cj(qs, q̇s), and Gj(qj) as

Mj(qj) = Mjo + ∆Mj,

Cj(qs, q̇s) = Cjo + ∆Cj,

Gj(qj) = Gjo + ∆Gj.

(2)

2.2. The Definition of RBF Neural Network

The RBF neural network has been widely applied in the controller design of the
uncertain model system, with its property that the RBF neural network can approximate
any nonlinear smooth function with arbitrary precision [37,38]. RBF neural network has
three layers, namely, the input layer, the hidden layer, and the output layer. Based on its
excellent characteristics, RBF neural network is used in control theory, data prediction such
as electric load forecasting, fault diagnosis, classification, and so on.

For a continuous function F(x) : Ra → R f , based on RBF neural network it can be
rewritten as

F(x) = θTϕ(x)+ ε. (3)

where θ ∈ Rd×a is the weight matrix and d is the number of network nodes. x ∈ Ra is
the input of RBF neural network. ϕ(x) is the Gaussian basis function vector and can be
calculated as

ϕ(x) = e−
(x−bi)

T(x−bi)
2c2 , i = 1, 2, . . . , d. (4)

bi ∈ Ra is the Gaussian center vector of the i-th node. c is the width of Gaussian function. ε
is the bounded approximate error.

In more RBF neural network applications, there are some methods to obtain the center
vector and width of the Gaussian basis function, and the weight coefficient matrix can be
solved through the data training process. However, it should be noted that in the adaptive
control method with RBF neural network, the weight matrix of the neural network is usually
designed and obtained based on the Lyapunov stability criterion of the system. The stability
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and convergence of the system can be guaranteed by designing adaptive learning laws.
The Gaussian center vector of the i-th node bi should be determined according to the range
of the actual input value of the RBF neural network. In addition, the input data value of
the RBF neural network should be within the effective range of the Gaussian function by
giving an appropriate width c. In the following section of simulation and experiment, we
also selected the center position bi and width c of the Gaussian function through the neural
network input data values.

2.3. Control Objectives

We first define the position tracking errors em and es at the local side and remote
side as

em = qm(t)− qs(t− ds),

es = qs(t)− qm(t− dm).
(5)

For a teleoperation system with uncertain dynamics and asymmetric time-varying
delays studied in this work, the main control objective is to design the appropriate control
torques τm and τs so that the closed-loop system satisfies the following performance:

• Stability. The teleoperation system is stable with proposed control laws, asymmetric
time-varying delays, dynamic uncertainties, and bounded operator and environ-
ment torques.

• Position tracking. The joint position of the slave robot can track the master robot
when the master robot is moving. At the same time, the master robot can also track
the joint position of the slave robot, which can provide certain force feedback to the
operator.

3. Adaptive Control Scheme Design

This section proposes a novel adaptive control scheme for the teleoperation system.
First, the velocity feedback filters are designed and introduced into the master/slave control
channels. We define the velocity feedback filters νm and νs as

ν̇m = −ηm1νm + ηm2q̇s(t− ds),

ν̇s = −ηs1νs + ηs2q̇m(t− dm).
(6)

where ηm1, ηs1, ηm2, ηs2 ∈ Rn×n are the positive diagonal matrix of filter.
We design a novel form of auxiliary velocity error functions eν

m and eν
s based on the

introduced velocity signal feedback filter, which can be described as

eν
m = q̇m(t)− νm,

eν
s = q̇s(t)− νs.

(7)

The differential operation on eν
m and eν

s can be obtained as

ėν
m = q̈m(t)− ν̇m

= q̈m(t) + ηm1νm − ηm2q̇s(t− ds),

ėν
s = q̈s(t)− ν̇s

= q̈s(t) + ηs1νs − ηs2q̇m(t− dm).

(8)

Then, we propose the novel auxiliary variables sm and ss based on the functions of
auxiliary velocity error and the terms of tracking error as

sm = eν
m + λm1em + λm2

∫ t

0
em dτ,

ss = Eν
s + λs1es + λs2

∫ t

0
es dτ.

(9)
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where λm1, λm1, λs1, and λs1 are the positive controller parameter matrices. Then, the
derivative of the auxiliary variables sm and ss can be expressed as

ṡm = ėν
m + λm1ėm + λm2em,

ṡs = ėν
s + λs1ės + λs2es.

(10)

Based on the differential definition of eν
m and eν

s in (8), (10) can be rewritten as

ṡm = q̈m(t) + ηm1νm − ηm2q̇s(t− ds) + λm1ėm + λm2em,

ṡs = q̈s(t) + ηs1νs − ηs2q̇m(t− dm) + λs1ės + λs2es.
(11)

To simplify the descriptions of the analysis, the expression of Mj ṡj is directly given
as follows:

Mj ṡj =Mjq̈j(t) + Mj

[
ηj1νj − ηj2q̇j′(t− dj′) + λj1ėj + λj2ej

]
=τj − τj,he + Mj

[
ηj1νj − ηj2q̇j′(t− dj′) + λj1ėj + λj2ej

]
− Cjq̇j −Gj − Bj.

(12)

where if j = m, j′ = s and τj,he = τh; if j = s, j′ = m and τj,he = −τe.
In addition, the differential of tracking errors em and es can be described as

ėm(t) = q̇m(t)− q̇s(t− ds)(1− ḋs),

ės(t) = q̇s(t)− q̇m(t− dm)(1− ḋm).
(13)

It is obvious that the unknown time-varying delay information ḋm and ḋs are intro-
duced in the ėm(t) and ės(t). Therefore, in order to simplify the presentation and avoid
introducing the unknown time delay information into the controller design, we define an-
other form of velocity error functions emv and esv instead of ėm(t) and ės(t), respectively, as

emv = q̇m(t)− q̇s(t− ds),

esv = q̇s(t)− q̇m(t− dm).
(14)

Then, ėm(t) and ės(t) can be rewritten as

ėm(t) = emv + q̇s(t− ds)ḋs,

ės(t) = esv + q̇m(t− dm)ḋm.
(15)

Mj ṡj in (12) can be rewritten as

Mj ṡj =τj − τj,he + Mj

[
ηj1νj − ηj2q̇j′(t− dj′) + λj1ėjv

+λj2ej + λj1q̇j′(t− dj′)ḋj′
]
− Cjq̇j −Gj − Bj.

(16)

With the definition of dynamic uncertainties in (2) and environment torque τe, we have

Mm ṡm =τm − τh + Mmo[ηm1νm − ηm2q̇s(t− ds)

+λm1ėmv + λm2em + λm1q̇s(t− ds)ḋs
]

− Cmoq̇m −Gmo + Pm,

Ms ṡs =τs + Mso[ηs1νs − ηs2q̇m(t− dm)

+λs1ėsv + λs2es + λs1q̇m(t− dm)ḋm
]

− Csoq̇s −Gso + Ps.

(17)

where Pj is the term of dynamic uncertainties, which has
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Pm =− ∆Mm[ηm1νm − ηm2q̇s(t− ds) + λm1ėmv

+λm2em + λm1q̇s(t− ds)ḋs
]

− ∆Cmq̇m − ∆Gm − Bm,

Ps =− ∆Ms[ηs1νs − ηs2q̇m(t− dm) + λs1ėsv

+λs2es + λs1q̇m(t− dm)ḋm
]

− (∆Cs + De)q̇s − ∆Gs − Bs − Seqs.

It is well known that the RBF neural network can approximate the smooth nonlinear
function with arbitrary precision. The Pj can be described as

Pj = θT
j Yj(Zj) + εj. (18)

where θj ∈ Rk×n is the ideal approximate parameter matrix of RBF neural network,

Y
(
Zj
)
=
[
yj1(Zj), yj2(Zj) , . . . , yjl(Zj)

]
∈ Rl×1 is the Gaussian basis function vector,

which can be calculated by Zj:

yji(Zj) = e
− (

Zj−ci)
T
(Zj−ci)

2b2
j , i = 1, 2, . . . , l.

(19)

where ci ∈ R1×5n is the Gaussian center function vector of i-th hidden layer node and

bj is the width of Gaussian function. Zj =
[
µT

j1, µT
j2, q̇T

j′(t− dj′), qT
j , q̇T

j

]T
. µj1 and µj2 are

defined as
µj1 = −ν̇j + λj1ėjv + λj2ej,

µj2 = sj − q̇j.
(20)

Remark 1. In this paper, the dynamic uncertainties are defined as a new form Pm and Ps, so that
the acceleration signals cannot be utilized for parameter estimation. We first give the Lyapunov
function as V1 = 1

2 sT
m Mmsm + 1

2 sT
s Msss, and then define the uncertain parts in V̇1 as the dynamic

uncertainties to estimate. However, in most of the existing work, ∆Mjq̈j, ∆Cjq̇j, and ∆Gj are
directly considered as the uncertain part to compensate, which means the acceleration signal has to
be introduced to obtain the parameters of ∆Mj.

Then, the adaptive control scheme of the teleoperation system with asymmetric time-
varying delays and dynamic uncertainties is shown in Figure 1.

The control laws are proposed as

τj =τj1 + τj2. (21)

where τj1 and τj2 are designed as

τj1 =−Mjo

[
ηj1νj − ηj2q̇j′(t− dj′) + λj1ėjv

+λj2ej
]
− Cjo

(
sj − q̇j

)
+ Gjo,

τj2 =− θ̂T
j Yj(Zj)−

D̂j′µ
T
j3µj3sj

2a2
j1

−
ω̂jsj

2a2
j2
− Kjsj.

(22)

where µj3 = λj1Mjoq̇j′(t− dj′); the adaptive laws are presented as
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˙̂θj = Λj1Yj(Zj)sT
j − θ̂j,

˙̂Dj′ =
Λj2

2a2
j1

(
sT

j µj3

)2
− D̂j′ ,

˙̂ωj =
Λj3

2a2
j2

sT
j sj − ω̂j.

(23)

Remark 2. Different from the assumption of the time delay derivation ḋj in [17,25], the bounds
of ḋj need not be known and set as ḋj < 1 in our proposed control scheme. In control laws, ėjv in
(14) is applied instead of ėj, which means the ḋj does not need to be used. We design the adaptive
parameter D̂j to compensate this replacement.

Velocity 
Feedback Filter

Nominal Model 
Controller

RBFNN 
Adaptive 

Controller

Master Controller

Auxiliary 
Variable 

Master 
Robot

qm(t)

em(t)

Emv

sm τm

νm

mν

m ( )q tqm(t)

Velocity 
Feedback Filter

Nominal Model 
Controller

RBFNN 
Adaptive 

Controller

Slave Controller

Auxiliary 
Variable 

Slave 
Robot

qs(t)

es(t)

Esv

ssτs

νs

qs(t) s ( )q t

sν

ds(t) dm(t)

Figure 1. Proposed control structure.

4. Stability Analysis

Theorem 1. With the velocity feedback filter (6), auxiliary variable (9), proposed control laws
(21), (22) and adaptive laws (23), if Assumptions 1 and 2 hold, the parameters satisfy that Kj, ηj1,
ηj2, λj1, λj2, and Λj1 are all positive definite diagonal matrices; and Λj1 and Λj3 are all positive
constants, for j = m, s. Then, the closed-loop teleoperation system under time-varying delays and
model uncertainties is asymptotically stable.

Proof. We design the Lyapunov–Krasovskii function V as

V = V1 + V2 + V3. (24)

where for j = m, s, j′ = s, m, we have

V1 = ∑
m,s

1
2

sT
j Mjsj. (25)

V2 = ∑
m,s

[
1
2

tr
(

θ̃T
j Λ−1

j1 θ̃j

)
+

Λ−1
j2 D̃2

j′

2
+

Λ−1
j3 ω̃2

j

2

]
. (26)

V3 = ∑
m,s

Lj

∫ t

t−d̄j

d̄j − t + β

d̄j
sT

j sjdβ. (27)

where θ̃ = θ− θ̂, D̃j′ = Dj′ − D̂j′ , ω̃j = ωj − ω̂j, and Lj ≥ 0 is a known constant.
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First, the time derivative of V1 can be described as

V̇1 = ∑
m,s

(
sT

j Mj ṡj +
1
2

sT
j Ṁjsj

)
. (28)

Based on Property 2 of dynamic (1) and the description of (17), we can obtain that

V̇1 =∑
m,s

sT
j
(

Mj ṡj + Cjsj
)

=∑
m,s

sT
j

{
τj − τj,he + Mjo

[
ηj1νj − ηj2q̇j′(t− dj′) + λj1ėjv

+λj2ej
]
+ λj1Mjq̇j′(t− dj′)ḋj′ + Cjo

(
sj − q̇j

)
−Gjo + Pj

} (29)

With the control laws in (22) and the RBF neural network description of Pj in (18),
we have

V̇1 =∑
m,s

{
sT

j

[
θ̃T

j Yj(Zj)−
D̂j′µ

T
j3µj3sj

2a2
j1

−
ω̂jsj

2a2
j2

]
− sT

j Kjsj

+sT
j λj1Mjq̇j′(t− dj′)ḋj′ + sT

j

(
εj − τj,he

)}
≤∑

m,s

{
sT

j

[
θ̃T

j Yj(Zj)−
D̂j′µ

T
j3µj3sj

2a2
j1

−
ω̂jsj

2a2
j2

]
− sT

j Kjsj

+
|ḋj′ |
2a2

j1
sT

j µT
j3µj3sj +

‖εj − τj,he‖2

2a2
j2

sT
j sj +

a2
j1 + a2

j2

2

}
.

(30)

As |ḋj′ | ≤ Dj′ and ‖εj − τj,he‖2 ≤ ωj, we can obtain

V̇1 ≤∑
m,s

{
sT

j θ̃T
j Yj(Zj) +

D̃j′

2a2
j1

sT
j µT

j3µj3sj +
ω̃j

2a2
j2

sT
j sj − sT

j Kjsj +
a2

j1 + a2
j2

2

}
. (31)

The time derivative of V2 can be calculated as

V2 = ∑
m,s

[
tr
(

θ̃T
j Λ−1

j1
˙̃θj

)
+ Λ−1

j2 D̃j′
˙̃Dj′ + Λ−1

j3 ω̃j ˙̃ωj

]
(32)

With the definition of θ̃j, D̃j′ , ω̃j, and the adaptive laws in (23), V̇2 can be written as

V̇2 =∑
m,s

{
tr
[
θ̃T

j Yj(Zj)sT
j

]
−

D̃j′

2a2
j1

(
sT

j µj3

)2
−

ω̃j

2a2
j2

sT
j sj

+tr
(

θ̃T
j Λ−1

j1 θ̂j

)
+ Λ−1

j2 D̃j′ D̂j′ + Λ−1
j3 ω̃jω̂j

}
.

(33)

For tr
(

θ̃T
j Λ−1

j1 θ̂j

)
, Λ−1

j2 D̃jD̂j, and Λ−1
j3 ω̃jω̂, the following inequalities are always estab-

lished:

tr
(

θ̃T
j Λ−1

j1 θ̂j

)
≤ −1

2
tr
(

θ̃T
j Λ−1

j1 θ̃j

)
+

1
2

tr
(

θT
j Λ−1

j1 θj

)
,

Λ−1
j2 D̃jD̂j ≤ −

Λ−1
j2

2
D̃2

j +
Λ−1

j2

2
D2

j ,

Λ−1
j3 ω̃jω̂ ≤ −

Λ−1
j3

2
ω̃2 +

Λ−1
j3

2
ω2.

(34)

Then, we can obtain
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V̇2 =∑
m,s

{
tr
[
θ̃T

j Yj(Zj)sT
j

]
−

D̃j′

2a2
j1

(
sT

j µj3

)2 ω̃j

2a2
j2

sT
j sj

−1
2

tr
(

θ̃T
j Λ−1

j1 θ̃j

)
− 1

2
Λ−1

j2 D̃2
j′ −

1
2

Λ−1
j3 ω̃2

j + Ψj

}
.

(35)

where Ψj =
1
2 tr
(

θT
j Λ−1

j1 θj

)
+

Λ−1
j2
2 D2

j +
Λ−1

j3
2 ω2 is the positive constant.

For V3, we have

V̇3 = ∑
j=m,s

[
LjsT

j sj −
Lj

d̄j

∫ t

t−d̄j

sT
j (β)sj(β)dβ

]
(36)

In addition, it is clear that
∫ t

t−d̄j

d̄j−t+β

d̄j
sT

j (β)sj(β)dβ ≤
∫ t

t−d̄j
sT

j (β)sj(β)dβ. Then, we

can obtain

V̇3 ≤ ∑
j=m,s

[
LjsT

j sj −
Lj

d̄j

∫ t

t−d̄j

d̄j − t + β

d̄j
sT

j (β)sj(β)dβ

]
. (37)

Then, combining the V̇1 in (31), V̇2 in (35), and V̇3 in (37), we have

V̇ ≤ ∑
j=m,s

[
−sT

j Kjsj + sT
j Lj Isj −

1
2

tr
(

θ̃T
j Λ−1

j1 θ̃j

)
− 1

2
Λ−1

j2 D̃2
j′

−1
2

Λ−1
j3 ω̃2

j −
Lj

d̄j

∫ t

t−d̄j

d̄j − t + β

d̄j
sT

j (β)sj(β)dβ +
a2

j1 + a2
j2

2
+ Ψj

]
≤− ΥV + Ψ.

(38)

where for j = m, s, Υ and Ψ are defined as

Υ = min

[
2λmin

(
Kj − Lj I

)
λmax

(
Mj
) , 1,

1
d̄j

]
,

Ψ = Ψm + Ψs +
a2

m1 + a2
m2

2
+

a2
s1 + a2

s2
2

.

Based on (38), it implies that

0 ≤ V(t) ≤
[

V(0)− Ψ
Υ

]
e−Υt +

Ψ
Υ

. (39)

We can determine that V is radically bounded. In addition, sj, θ̃j, D̃j, and ω̃j are also
bounded. The stability analysis mentioned above shows that the closed-loop system is
asymptotically stable and the signals are bounded.

This completes the proof.

Remark 3. In this paper, the error integrator is utilized for control scheme development. Based on
the mathematical proof above, it is noted that auxiliary variable sj is bounded. Therefore,

∫ t
0 ejdβ is

also bounded, which implies that error ej needs to converge to 0. In some research works, the auxiliary
variable is only designed with error and error differential, and the bounded sj can only obtain the
bounded ej. Thus, the proposed control scheme can improve position tracking accuracy.

5. Simulation and Experimental Analysis
5.1. Simulation Analysis

The teleoperation system used for simulation consists of two robot manipulators with
2-Dof revolute joints. The asymmetric time-varying delays, uncertain dynamics, and ex-
ternal operator/environment forces are also considered in the simulation experiments.



Sensors 2022, 22, 7798 11 of 21

The dynamics of the local robot and remote robot are the same as (1), for which the mass
inertia matrix Mj, centripetal Coriolis matrix Cj, gravitational torque Gj, and friction torque
Bj are defined as [39]

Mj =

[
mj11 mj12
mj21 mj22

]
,

Cj =

[
cj11 cj12
cj21 cj22

]
,

Gj =
[
gj1, gj2

]T,

Bj =
[
bj1, bj2

]T.

mj11 = l2
j1(mj1 + mj2) + lj2mj2(2lj1 cos qj2 + lj2),

mj12 = mj21 = l2
j2mj2 + lj1lj2mj2 cos qj2,

m22 = l2
j2mj2,

c11 = −lj1lj2mj2 sin qj2 ˙̇qj2,

c12 = −lj1lj2mj2 sin qj2(q̇j1 + q̇j2),

c21 = lj1lj2mj2 sin qj2,

c22 = 0,

gj1 = (mj1 + mj2)lj1g cos(qj1) + mj2lj2g cos(qj1 + qj2),

gj2 = mj2lj2g cos(qj1 + qj2),

bj1 = k j1q̇j1 + k j2sign(q̇j1),

bj2 = k j3q̇j2 + k j4sign(q̇j2).

where the parameters of master and slave robots are chosen as follows: mm1 = ms1 =
3.5 kg, mm2 = ms2 = 2.5 kg, lm1 = ls1 = 0.3 m, lm2 = ls2 = 0.35 m, km1 = km3 = 0.5,
km2 = km4 = 0.2, ks1 = ks2 = ks3 = ks4 = 0.3, g = 9.8 m/s2. The environment model is the
same as the description in Section 2. The damping matrice is defined as De = diag(0.5, 0.5);
the spring matrice is set as Se = diag(10.0, 10.0). The asymmetric time-varying delays at
the master and slave side are shown in Figure 2. The operator torques in x-direction and
y-direction are assumed as shown in Figure 3.

In simulation experiments, the model perturbation parts ∆Mj, ∆Cj, and ∆Gj are
introduced into the dynamic models of the master and slave robot; they can be presented
as ∆Mj = 0.1 sin(10t)Mj, ∆Cj = 0.1 sin(10t)Cj, and ∆Gj = 0.1 sin(5t)Gj, respectively.
In addition, the parameters of nominal models are set as mmo1 = ms1 = 2 kg, mmo2 =
ms2 = 1 kg, lm1 = ls1 = 0.3 m, lm2 = ls2 = 0.3 m. We consider simulating the uncertain
conditions of teleoperation dynamics by adding the model perturbation parts and defining
the inaccurate nominal model parameters, which are employed to verify the effectiveness of
our proposed methods. The controller parameters are set as follows: in master controller—
ηm1 = diag(5.0, 5.0), ηm2 = diag(1.0, 1.0), λm1 = diag(2.0, 2.0), λm2 = diag(1.5, 1.5),
Km = diag(25.0, 25.0), am1 = am2 = 1, Λm1 = diag(0.9, 0.9), Λm2 = Λm3 = 0.9; in
slave controller—ηs1 = diag(5.0, 5.0), ηs2 = diag(1.0, 1.0), λs1 = diag(2.0, 2.0), λs2 =
diag(2.5, 2.5), Ks = diag(25.0, 25.0), as1 = as2 = 1, Λs1 = diag(0.9, 0.9), Λs2 = Λs3 = 0.9.

We performed two parts of the simulation experiment to verify the control effectiveness
of the developed control scheme. First, The simulation experiments are performed to show
the stability and performances of the teleoperation system and verify Theorem 1. Based
on the simulation conditions and parameters set above, the results of the simulation are
shown in Figures 4 and 5, respectively. Figure 4 presents the joint position of the master
robot and the slave robot. Figure 5 shows the position tracking errors between the master
and the slave robot. It can be seen that the joint positions of master and slave robots achieve
good tracking performances. The joint positions are changed when the active operating
forces are exerted on the master robot, and the position tracking errors can still converge to
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0. Figure 5 also illustrates that the tracking errors em and es are bounded. Figures 6–8 show
the adaptive parameters of θ̂m, θ̂s, D̂m, D̂s, ω̂m, and ω̂s. It is shown that these adaptive
parameters are all bounded.

Second, the simulation comparisons with the other three control methods are pre-
sented. In this part, two adaptive control algorithms in [21,23] and an improved P + d
control scheme in [12] are introduced to illustrate the performance of our method. In the
works [21,23], the RBF neural network is implied to estimate the uncertainties. These two
control schemes have good control performance. However, compared with our method,
on the one hand, the acceleration signals are used in [21,23]; on the other hand, the integral
of position error is not considered in the controller design, which may make the system
have steady-state error under the action of different operator forces. Figure 9 shows the
control effect comparison between our proposed method and other control methods, where
simulation case 1, simulation case 2, and simulation case 3 represent the position tracking
error curves using the control methods in the works [21,23], and [12], respectively. As it can
be seen, the position tracking error of these control methods can converge to a small area of
0 with a short-time operator force. When the continuous operating forces are applied to the
master robot, there are large tracking errors with the control method in simulation case 1,
simulation case 2, and simulation case 3.
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Figure 2. Forward and backward time-varying delays dm and ds.
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Figure 3. External operator torques Fhx in x-direction and Fhy y-direction.
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Figure 4. Joint positions of master robot qm1, qm2 and slave robot qs1, qs2 .
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Figure 5. Position tracking errors at master side em1, em2 and slave side es1, es2.
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Figure 9. Comparisons of position tracking with different control methods: our proposed method,
simulation case 1, simulation case 2, and simulation case 3.

In this paper, the Root Mean Square Error (RMSE) of position tracking errors is em-
ployed to evaluate the control effect under different methods. The RMSE can be defined as

RMSE =

√
1
n

n

∑
i=1

(ei)2 (40)
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where ei represents the i-th error in the error sequence, and n represents the length of the
error sequence. In fact, the RMSE index can be introduced to characterize the degree of
position tracking error distribution of master and slave robots. The smaller the RMSE is,
the closer the tracking error distribution between the master robot and the slave robot is,
which means that the better the tracking control performance is.

The RMSEs of the position tracking errors with these three control schemes are shown
in Table 1. In Table 1, the minimum RMSE value in each row is shown in bold. It can be seen
from these data that the position tracking errors with the proposed control method have
smaller RMSE values, which means that the master and slave robots have better position
tracking performance based on the proposed control method. It also can be found that
with the action of nonzero external environmental forces, larger steady-state errors are
introduced into position tracking errors of the master and slave robots based on method 1,
method 2, and method 3. Therefore, the tracking error RMSE values based on these three
methods are relatively large. This result also verifies the validity of the auxiliary function
constructed by the error integral term in this proposed method.

Table 1. RMSE of position tracking errors with different control methods.

RMSE Proposed Method 1 Method 2 Method 3

em1 0.005325 0.018781 0.018986 0.066509
em2 0.005216 0.021510 0.033383 0.065783
es1 0.002939 0.015770 0.019065 0.041126
es2 0.002333 0.017474 0.028411 0.040475

5.2. Experiment Analysis

In this part, the experiments are performed to verify the validity of proposed control
method. The experiment system is composed of two Phantom Omni devices with actuated
3-DOF. One Phantom Omni is denoted as the master robot and another one is denoted as
the slave robot. These two devices run in the MATLAB/Simulink environment based on
OpenHaptic SDK and S-Function. In the experiment, the first three active joints of these
two robots are used, and the passive joints are fixed by ropes to prevent the influence of
their rotation. The dynamic descriptions and the parameters of the devices are obtained
from [40]. The parameters of the virtual environment force model are defined as follows:
De = diag(0.01, 0.01, 0.01) and Se = diag(0.1, 0.1, 0.1). The parameters of the master
controller and slave controller are set as follows: in master controller—ηm1 = ηm2 =
diag(15.0, 15.0, 15.0), λm1 = diag(20.0, 20.0, 20.0), λm2 = diag(15.0, 20.0, 20.0), Km =
diag(25.0, 20.0, 30.0), am1 = am2 = 5, Λm1 = 0.9I15×15, Λm2 = Λm3 = 0.9; in slave
controller—ηs1 = ηs2 = diag(10.0, 10.0, 10.0), λs1 = diag(20.0, 23.0, 24.0), λs2 = diag(25.0,
22.0, 25.0), Ks = diag(40.0, 35.0, 30.0), as1 = as2 = 5, Λs1 = 0.9I15×15, Λs2 = Λs3 = 0.9.
In order to reflect the control performance of the closed-loop teleoperation system, we have
added a spring-damped model to simulate the action of the slave Phantom Omni devices
on the environmental forces. In the experiment, the operator drags the end of the master
robot to achieve an approximate circular periodic trajectory and feels the force from the
slave robot. The slave robot moves along the trajectory of the master robot with the force
action of the virtual spring-damped model. The schematic diagram and the structure of the
environment system are shown in Figure 10.

The position tracking performances of the three joints and end position of the master
and slave robots with the proposed method are shown in Figures 11 and 12. Figure 11
shows the tracking of the three active joints of the master and slave robots under the action
of the operator dragging and the virtual environment force Figure 12 shows the trajectory
tracking of the master and slave robots under the above experimental conditions in the
Cartesian coordinate frame. We only intercepted part of the trajectory curves to better show
the trajectory tracking performances of the robot end-effectors.
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Figure 10. Experimental system used in our work, the left part is the system structure and the right
side is the actual experiment system.

Figure 11. Tracking control performance of three active joints of master and slave robots based on the
proposed algorithm.

In addition, to better verify the efficiency of the proposed method, the trajectory
tracking performances of the master and slave robots using the control algorithms in [12,23]
are also presented in Figures 13–16. For the convenience of analysis and expression, we
define the experimental results based on the method in [12] as experiment case 1, and the
results based on the method in [23] as experiment case 2. The conditions of these two
experiments are the same as the previous experiment. Figures 13 and 14 show the tracking
of the three active joints and end-effectors of the master and slave robots under the action
of the controllers presented in [12], respectively. In experiment case 1, an improved P + d
control scheme in [12] is applied to realize the position tracking of the master and slave
robots. It can be seen from Figure 13 that the gravity torque compensation is not applied
in the position tracking control, which results in the tracking curves of the three active
joints having large tracking errors with the action of external forces. The unsatisfactory
end-tracking performance in Figure 14 also verifies the above analysis.

In experiment case 2, an adaptive control method in [23] is also employed to realize the
position tracking of the master and slave robots. It can be seen from Figures 13 and 15 that
the adaptive method can compensate for the gravity torque and external forces; the joint
tracking errors of the master and slave robots are also reduced. However, there are still
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the position tracking errors compared with Figure 11. It can be seen from the comparison
between Figures 12 and 16 that the method proposed in this paper has smaller tracking
errors, and also has more performance advantages in terms of the position tracking of the
robot end-effectors. These two comparative environments verify the effectiveness of the
control scheme proposed in our paper.

Figure 12. Tracking control performance of end-effectors of master and slave robots based on the
proposed algorithm.

Figure 13. Tracking control performance of three active joints of master and slave robots under
experiment case 1.
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Figure 14. Tracking control performance of end-effectors of master and slave robots under experiment
case 1.

Figure 15. Tracking control performance of three active joints of master and slave robots under
experiment case 2.
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Figure 16. Tracking control performance of end-effectors of master and slave robots under experiment
case 2.

6. Conclusions

This paper presents a new bilateral adaptive control scheme for the teleoperation
system. The adaptive controller consists of an auxiliary variable, a nominal model controller,
and an RBF neural network adaptive controller. The velocity feedback filter and integral of
tracking error are applied to design the auxiliary variable. RBF neural network is used to
estimate the uncertain parts of the system. The proposed control scheme can effectively
achieve position tracking and eliminate the adverse effects of time-varying delays and
dynamic uncertainties. Furthermore, compared with some related work, our method does
not need to calculate the position acceleration signals. The simulation and experiment
results are given to verify the effectiveness of the proposed control structure.
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