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Abstract: Restless legs syndrome (RLS) is a sensorimotor disorder accompanied by a strong urge
to move the legs and an unpleasant sensation in the legs, and is known to accompany prefrontal
dysfunction. Here, we aimed to clarify the neural mechanism of working memory deficits associated
with RLS using machine-learning-based analysis of single-trial neural activities. A convolutional
neural network classifier was developed to discriminate the cortical activities between RLS patients
and normal controls. A layer-wise relevance propagation was applied to the trained classifier in order
to determine the critical nodes in the input layer for the output decision, i.e., the time/location of
cortical activities discriminating RLS patients and normal controls during working memory tasks. Our
method provided high classification accuracy (~94%) from single-trial event-related potentials, which
are known to suffer from high inter-trial/inter-subject variation and low signal-to-noise ratio, after
strict separation of training/test/validation data according to leave-one-subject-out cross-validation.
The determined critical areas overlapped with the cortical substrates of working memory, and the
neural activities in these areas were correlated with some significant clinical scores of RLS.

Keywords: restless legs syndrome; working memory; event-related potential; explainable machine
learning; convolutional neural network

1. Introduction

Restless legs syndrome (RLS) is a sensorimotor disorder accompanied by a strong
urge to move the legs and an unpleasant sensation in the legs [1,2]. Most patients with RLS
complain of several sleep disorders, including insomnia and poor sleep quality. Prefrontal
lobe function deterioration has been reported to be associated with RLS, for example,
reduced test scores in the verbal fluency test and the Trail Making Test [3,4]. Several studies
also reported working memory (WM) deficits in RLS patients [3,5,6], which also implies
prefrontal region dysfunction considering the recognized role of this area in working
memory [7,8].

Previously, we showed that the working memory dysfunction in RLS is accompanied
by reduced P300 event-related potential (ERP) amplitude compared with normal controls
during working memory retrieval, and the P300 amplitude reduction is correlated with the
duration of RLS history [5]. In addition, the phase synchronization between the theta band
activities of frontal and posterior areas was also significantly decreased in RLS patients [6].
These results seem to reflect the problems of attention allocation and stimulus evaluation
associated with RLS. Thus, frontal lobe dysfunction has been consistently implied in RLS
patients [3–6,9–12]. The dopaminergic pathway linking prefrontal cortex and ventral
tegmental area is known to play an important role in frontal cognitive function [13]. This
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is in line with low iron in deep brain structures, which are common in RLS patients and
known to inhibit dopaminergic function [10,11]. The neural mechanism of cognitive deficit
in RLS including working memory has not been sufficiently elucidated in spite of several
electrophysiological studies.

In conventional statistical analysis of ERP, a significant amount of information is
lost as a result of averaging of single-trial activities for each individual subject. Another
problem is that the statistical comparison of cortical activities at thousands of cortical points
converted from scalp electroencephalogram (EEG) results in a heavy multiple comparison
problem [14], thus it becomes difficult to find out information on the critical cortical points,
which is essential to identify abnormal cortical functions in RLS patients. Our approach
can avoid these problems of conventional statistical analysis by identifying the critical
input nodes that most significantly affected the performance of the CNN classifier. These
input nodes correspond to the cortical regions, in which the neural activity is substantially
different between normal controls and RLS patients. Recent advances in machine learning,
especially deep neural networks, have enabled improved analysis of multidimensional
data such as high-density EEG, and are extensively adopted for pattern recognition and the
estimation of neural information [15–18].

Structural magnetic resonance imaging (MRI) is not suitable to clarify the cortical
regions that show functional differences between the RLS patient and normal controls.
Our purpose was to identify the regions that may underlie impaired cognitive functions
associated with the RLS, especially during the working memory task. Functional MRI may
be applied to reconfirm our results, but, because of the low temporal resolution, it is not
possible to extract the neural activity during the short time interval, which is critical for
performing the task.

In this study, we aimed to reveal the neural mechanism of working memory deficits
associated with RLS using machine-learning-based analysis of cortical activities derived
from multichannel ERP recordings. A pattern classifier based on a convolutional neural
network (CNN) was developed to discriminate the cortical activities between RLS patients
and normal controls. An explainable machine learning approach was applied to the trained
classifier to determine the critical nodes in the input layer for the output decision. These
critical input nodes can be regarded to represent the time/location of cortical activities
discriminating RLS patients and normal controls during working memory tasks. Our
methods enabled highly accurate discrimination of RLS patients based on single-trial ERP.
Considering the accuracy and generalization performances, this may provide the basis for
a prescreening tool for the RLS.

Recent studies have applied deep neural network for the EEG classification and
have reported on important EEG features for the decision of the neural network [18–21].
Those studies used two-dimensional (2D) images of time–frequency representation or scalp
topography as the inputs to the deep neural network. Here, we applied a deep neural
network along with an explainable machine learning approach to discriminate between
RLS patients and normal controls based on 2D images of cortical current densities. This
enabled us to identify the spatial location of critical neural activities on the cortical surface.

2. Materials and Methods
2.1. Experimental Methods

The details on ERP data were reported previously [5]. ERP signals were recorded from
13 RLS patients and 13 healthy normal controls while performing a modified version of
Sternberg’s working memory task. The subjects were cross-matched with the subjects in
our previous publication [5]. Subjects were instructed to sleep for at least 8 h on the night
before the experiment and asked to refrain from caffeine intake and excessive exercise for
at least 24 h prior to the experiment. The task consisted of 200 trials of encoding, retention,
and retrieval. During the encoding, two, three, or four single digits between zero and nine
were displayed randomly on a screen, after presenting a cue sign (‘+’) for visual orienting.
After the retention interval of 2200 ms following the presentation of the digits, a target
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number between zero and nine was presented, and the subjects should respond as soon
as possible by pressing a button if the target item was presented previously during the
encoding phase. The subjects were instructed to respond with either their left (matched
items) or right hand (unmatched items). Each single trial lasted for 7.8–10.6 s, depending
on the number of items (memory load size).

At the end of each trial, feedback for the response was presented as “correct” or “incor-
rect”. Both reaction time and the correct answer rate (hit rate) were measured. The visual
stimuli were presented using commercial software (PRESENTATION; Neurobehavioral
Systems, Berkeley, CA, USA).

Electroencephalogram signals were recorded from 19 electrodes using the AS40-PLUS
amplifier system (GRASS® Comet-PLUS®, West Warwick, RI, USA) in this study. The
impedances for all electrode channels were kept below 10 kΩ. The signals were amplified
and filtered by a bandpass filter with cut-off frequencies of 0.1–70 Hz and stored with a
sampling rate of 400 samples/s.

The single-trial ERP waveforms were segmented from −200 ms to 1500 ms using
the probe stimulus during the retrieval phase. The waveforms severely contaminated
by non-stereotyped artifacts, such as drift or high-frequency noise, were removed by
visual inspection. In addition, the waveforms were excluded if the absolute value of the
electrooculogram was larger than 100 µV. Finally, independent component analysis was
performed to correct stereotyped artifacts such as ocular and muscular artifacts. All the
erroneous trials were eliminated from further analysis.

Before the experiment, all subjects were requested to complete the tests for the assess-
ments of sleep qualities and RLS symptoms. The international RLS Severity Scale (IRLS)
score was used to assess the severity of RLS symptoms [22]. Sleep quality and distur-
bances were assessed using the Pittsburgh Sleep Quality Index (PSQI) [23]. The Epworth
Sleepiness Scale (ESS) represents the subject’s general level of daytime sleepiness [24]. An
impact of insomnia was evaluated by the Insomnia Severity Index (ISI) [25]. A severity of
depressive symptom was estimated using the Korean version of Back Depression Inventory
II (BDI) [26]. The Hospital Anxiety and Depression Scale (HADS) was used to quantify the
symptoms of anxiety (HADS Anxiety) and depression (HADS depression) [27].

2.2. Data Analysis Methods

Convolutional neural networks (CNNs) were applied to cortical current density de-
rived from ERP to classify RLS patients and normal controls [28]. The input features critical
to the classification outputs of the CNNs were obtained through layer-wise relevance
propagation (LRP) [29]. The entire analysis consisted of the following steps: (1) generat-
ing input data through cortical current density estimation from a single trial ERP using
Mollweide projection [30], (2) learning 2D CNN using the generated data and assessing the
performance of the classifier, and (3) calculating the contribution of each input feature to
the determination of the CNN classification by applying LRP to the well-developed CNN.

2.2.1. Preparation of Input Data

The signals from four RLS patients were discarded because of heavy contamination of
noise and artifacts. A single-trial ERP waveform was extracted from −200 ms to 1500 ms ac-
cording to the target onset (retrieval phase) and converted to the current density time-series
at 15,002 points on the cortical surface by standardized low-resolution brain electromag-
netic tomography (sLORETA) [31]. The boundary element method was applied to solve the
forward problem in the Brainstorm toolbox [32]. A critical temporal period was determined
to be 150–250 ms, because it is known to be dedicated to major cognitive processing to
recall an item in WM [7,33,34]. Thus, a map of a 2D image of cortical current densities
averaged during this critical period was obtained as the input to the CNN classifier.

The current densities at 15,002 cortical points were first projected onto a spherical
surface and then reconstructed to a rectangular 2D image by applying Mollweide projection,
a method to flatten the surface of a sphere onto a 2D plane so that the ratio of the equator
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to half of meridian is 2:1, which is effective to preserve the sizes of each area on the sphere
after flattening [30,35]. The gap between the latitude lines and the horizontal lines on
the sphere becomes narrower at high latitudes, in order to preserve the relative sizes of
all the areas. The left and right hemispheres were projected onto two square images of
60 × 60 pixels, resulting in a 2D input image with 60 × 120 pixels, representing a single-trial
cortical activity. The pixel intensities were transformed to z-scores by standardization.

2.2.2. Convolutional Neural Network Classifier

A pattern classifier based on CNN was devised to classify RLS patients and normal
people using the 2D images representing single-trial cortical activities. The CNN is recog-
nized to be efficient for image processing as it can learn the spatial structure of the data
by mimicking visual information processing of the human brain [36,37]. The local spatial
structure of the data is exploited to extract underlying information based on multiple
convolutional filters. Our input data are suitable for the CNN as they consist of the current
densities on the cortical surface, which is essentially a 2D image. By applying the methods
for the image processing to multichannel EEG, recently, it has been shown that the CNN
provides successful applications such as motor imagery classification, seizure detection,
and sleep stage scoring [38–40].

Here, we adopted the structure of VGGNet, which is known to be optimized for image
classification [28]. The VGGNet is different from a typical CNN architecture consisting of
the repetitions of a convolutional layer and a pooling layer, in that the number of features
can be preserved after passing through multiple layers. This advantage is due to the use
of a convolution layer with a fixed size (3 × 3) and the reduced use of pooling layers.
Because of the stack of deeper layers while preserving the feature sizes, the classification
performance can be improved [28].

Figure 1 illustrates the detailed structure of the CNN classifier. The CNN consisted
of two 3 × 3 convolutional layers and one 2 × 2 max pooling layer, repeated twice. Two
identical convolutional layers were followed by a single max pooling layer. The outputs
from the last pooling layer were 128 2D images of 12 × 27 sizes. All convolutional layers
were followed by a rectified linear unit (ReLU) activation function. After being converted
to the vectors with 41,472 (=128 × 12 × 27) dimensions, these were connected to three
fully connected layers, which yielded the outputs corresponding to the class labels. A 50%
dropout rate was applied to the first and second fully connected layers after the ReLU
activation function. The output of the last fully connected layer is connected to a sigmoid
activation function.
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2.2.3. Training and Test of the Classifier

In total, 3594 single-trial cortical activities were obtained (RLS patients: 1580, normal
controls: 2014). For each session of training, 1580 trials were randomly selected from the
normal controls to eliminate the class imbalance problem [41]. We used the leave-one-
subject-out cross validation (LOOCV) 22 times because our subjects include 22 persons
(13 normal controls, 9 RLS patients) [41]. Each time, the CNN was trained for 21 subjects,
while one subject’s data were used for the test of the trained classifier. For each training
session, 1/11 of the training data were used as a validation set for early stopping [42], that
is, if the accuracy for the validation set did not change for more than 20 epochs, the training
was terminated. The binary cross entropy loss function and Adam optimizer were used
for training CNN [43]. Grid search was applied to determine the optimal learning rate for
each training session [44]. The algorithm was developed based on an open-source machine
learning library, PyTorch, with four NVIDIA GeForce RTX 2080 Ti GPUs.

2.2.4. Determination of Critical Input Features by LRP

We determined the input nodes that were critical to the CNN classifier by LRP [29].
The LRP was applied to all of the trained classifiers, not choosing a specific classifier, then
the LRP heatmap was obtained for the correctly classified test data. This enabled finding
the cortical regions reflecting the differences in neural activities between the RLS and
normal control groups. The LRP is a method to determine the contribution of a single input
node to the final output by repetitive decomposition of a single node’s output into the
contributions from all of the nodes in the previous layer, in the backward direction [45], as
can be illustrated by Equation (1):

Rj = ∑
k

zjk

∑j zjk
Rk (1)

Here, Rj is the relevance score, which quantifies the contribution of a single node j, and
zjk is the influence of node k in the next layer on node j. Rj is calculated from the relevance
scores of the next layer Rk, i.e., in the backward direction. The weight zjk is calculated from
the activation of each node and the weights of the trained network. Equation (1) represents
the basic propagation rule (LRP0 rule), which redistributes the contribution of the higher
layer on the lower layer [45]. The basic rule was varied to obtain a less noisy distribution of
relevance scores at input nodes, as shown below in Equations (2) and (3) [45]. By adding a
small positive number ε to the denominator of Equation (1), the stability of the LRP result
is enhanced so that the relevance score does not diverge, as follows:

Rj = ∑
k

zjk

ε + ∑j zjk
Rk (2)

Equation (2) represents the LRP-epsilon rule. Another variation (Equation (3)) repre-
sents the LRP-gamma rule.

Rj = ∑
k

zjk + γ·z+jk
∑j

(
zjk + γ·z+jk

)Rk (3)

Here, z+jk is the positive part of zjk, which indicates a positive contribution to prediction.
γ denotes the control parameter. As γ increases, the negative effect for the prediction is
reduced We adopted the LRP0 rule for the fully connected layers, the LRP-epsilon rule for
the middle layers, and the LRP-gamma rule for the lower layers, as shown in Figure 1.

A heatmap representing the relevance of each cortical points was constructed from
the relevance scores for the nodes in the input layer. We developed the LRP codes based
on the source codes available at http://heatmapping.org (accessed on 17 September 2021).

http://heatmapping.org
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The relevance scores for the nodes in the input layer provide a heatmap representing the
contribution of each cortical point to the classifier output.

2.2.5. Statistical Analysis

Repeated measures analysis of variance was applied to investigate the behavioral
response. The between-subject factors included group (two levels: RLS patients, normal
controls) and the within-subject factors included memory load size (three levels: item 2,
item 3, and item 4).

We calculated the Spearman’s rank correlation coefficients to identify the relationship
between the neural activity of the identified critical regions and clinical scores for the nine
RLS patients included in analysis. For each critical region, Spearman correlation coefficients
were calculated between the current density averaged over the cortical points with the
relevance scores of the top 3% and clinical scores.

3. Results
3.1. Behavioral Responses

Detailed results of behavioral responses were reported in our previous paper [5]. The
mean hit rate was 96.42% for RLS patients and 96.27% for normal controls. The hit rate was
not significantly different between RLS patients and normal controls. The mean reaction
time was 852.68 ms for RLS patients and 657.48 ms for normal controls. The reaction
time was significantly different between RLS patients and normal controls (F(1,24) = 9.498,
p < 0.01).

3.2. Classifier Performance

The classification accuracy was 99.32 ± 0.49% and 94.05 ± 3.87% for the training and
test, respectively. As shown in Figure 2, the area under the receiver operating characteristic
(ROC) curve was 0.93, meaning high classification accuracy. The ratios of true positives
and true negatives were both above 90%. We could obtain test accuracies over 80% for all
of the subjects, as shown in Figure 2b.
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Figure 2. The classification performance of the CNN classifier. (a) Confusion matrix; (b) classification
accuracies for all subjects; (c) ROC curve.

3.3. Distribution of Critical Features on the Cortical Surface

The cortical regions critical for the discrimination of the RLS patients were identified
by the LRP. The heatmaps in Figure 3 show the distribution of the relevance scores on the
cortical surface for correct prediction. The critical areas included the left superior frontal,
right-left temporal, left superior parietal, lateral occipital, and left insular regions. These
areas are known to play important roles in selective attention enforcement and later visual
function in working memory recall [46,47]. The areas with relevance scores of the top 3%
are shown in blue in Figure 3. By comparing each panel in Figure 3a,b, the areas showing
high relevance scores were consistent across different subjects.
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Figure 3. The distribution of the relevance scores on the cortical surface. (a) The LRP heatmap
averaged over multiple subjects. The critical regions with the top 3% relevance scores (denoted by
a blue shading). The solid and dotted lines indicate the cortical areas related to visual processing
and executive control, respectively. (b) The LRP heatmaps for all subjects obtained from correctly
classified results.

3.4. Correlations of the Critical Region’s Activities and Clinical Scores

Significant correlations were found in several critical regions, as shown in Table 1.
Left insular was correlated with PSQI, ISI, HADS anxiety, and IRLS. PSQI and IRLS were
negatively correlated with the left inferior temporal region. ESS was negatively and strongly
correlated with the right superior temporal region.

Table 1. Correlations of critical regions’ activities and clinical scores.

ESS ISI BDI PSQI HADS
Anxiety

HADS
Depression IRLS

left

Superior frontal 0.185 0.353 0.529 −0.218 0.562 0.458 0.042
Inferior temporal 0.328 −0.529 −0.361 −0.644 * −0.468 −0.322 −0.639 *

Insular 0.227 0.622 * 0.378 0.628 * 0.587 * 0.254 0.630 *
Superior parietal −0.210 −0.227 −0.067 0.075 −0.289 −0.068 −0.269
Lateral occipital −0.176 0.235 0.429 −0.276 0.196 0.509 0.067

right Superior temporal −0.672 * −0.067 −0.361 −0.243 0.068 −0.322 0.168

*: p < 0.05. IRLS, International RLS Severity Scale; ESS, Epworth Sleepiness Scale; ISI, Insomnia Severity
Index; BDI-II, Beck Depression Inventory-II; PSQI, Pittsburgh Sleep Quality Index; HADS, Hospital Anxiety and
Depression Scale.
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4. Discussion

In this study, we developed a CNN-based classifier for the discrimination of RLS
patients and normal controls based on single-trial ERPs recorded during a working memory
task. In addition to high classification accuracy, our method revealed the characteristics of
cortical activities discriminating RLS patients from normal controls. It is remarkable that
these results were obtained from single-trial ERP, which is known to suffer from high inter-
trial and inter-subject variation as well as a low signal-to-noise ratio, after strict separation
of training/test/validation data according to LOOCV.

The hit rate was not significantly different between groups, while the reaction time
was significantly slower for the RLS patients as compared with normal controls. This is
interpreted as reflecting the delayed responses due to impaired attention in RLS patients [5].
Our analysis methods based on the CNN classifier and LRP successfully identified the
relevant cortical areas that underlie attentional information processing.

The single-trial ERPs are contaminated because of a significant amount of noise and
distortion, even when we try our best to minimize and remove noise and artifacts. Moreover,
the signal amplitude is very small. In addition, significant intra-class variability exists, i.e.,
the single-trial ERP waveforms are significantly different among the subjects within the same
class. We expected that the superb learning and generalization performance of the deep neural
network (i.e., CNN) may cope with this problem so that useful buried information can be
utilized under a great amount of inter-person variability, noise, and distortion.

The deterioration of frontal function may underlie working memory dysfunction
in RLS patients. The 150–250 ms epoch is known to be devoted to selective attention
for working memory retrieval, which is exploited to compare the stored and incoming
items. Left inferior temporal, left lateral occipital, and superior parietal areas were included
in the critical areas identified by the LRP. These are important parts of the secondary visual
association area, which affects top-down modulation along with the frontal area [7,8,47–50]. The
top-down modulation contributes to recall efficiency by allocating attention to incoming
visual stimuli. These areas are known to be highly activated by more difficult recall
tasks [47,51]. Previously, we showed that the response of RLS patients was delayed as
compared with normal controls, presumably owing to inefficient top-down modulation of
visual information processing for memory recall [5].

The critical areas in Figure 3a included the insular and superior temporal areas.
Previous studies reported that the lesions in these operculum areas are associated with
semantic memory deficits [52–54]. Considering that semantic memory may contribute to
working memory efficiency [51,55,56], the dysfunction of these areas in RLS patients may
result in reduced behavioral performance as well as the deterioration of verbal fluency test
scores reported in a previous study [3,4].

The activities in several critical regions were found to be correlated with some RLS
symptoms. The scores representing sleep deprivation, such as PSQI, ISI, HADS anxiety,
and IRLS, were correlated with the activities of left inferior temporal and insular regions.
Anxiety is highly associated with sleep deprivation [57]. We found that the ESS was
significantly correlated with the neural activity of the right superior temporal region.
This is in line with the study of Mu et al., which showed that sleep deprivation affects
working memory function [8], owing to the difficulty in verbal rehearsal. We interpret these
correlations as suggesting that the differences in neural activities between the patients and
normal controls originate from a secondary effect due to sleep dysfunction, rather than the
intrinsic pathophysiology of RLS.

The results on spatial locations on cortical surfaces should be interpreted with caution
because of the inherent limitation of the accuracy of estimating the current source densities
from surface EEG recordings [58,59]. Considering that our EEG recordings include a
relatively small number of channels, owing to the difficulty in the clinical environment,
further studies using higher-density EEG or magnetoencephalogram may be necessary. In
addition, it may be possible to improve the performance by adopting more advanced deep
neural network structures.
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5. Conclusions

In conclusion, we developed a method to reveal the neural mechanism of working
memory deficits in RLS patients, based on a CNN pattern classifier applied to single-trial
cortical current source density and an explainable machine learning approach. This may
lead to a useful and easy-to-use prescreening tool for early discrimination of RLS because
of the use of single-trial ERPs. Although further tests with a large number of cohorts may
be required, we expect that our method will yield a promising result for a larger database,
as it was tested based on leave-one-subject-out cross-validation after strict separation of
training/test/validation data. The determined critical areas overlapped with the cortical
substrates of working memory, and the neural activities in these areas were correlated with
some important clinical scores of RLS. These results suggest that the recognized cognitive
dysfunction in RLS patients originates from the impairment of neural activities in relevant
cortical regions and may contribute to the development of useful biomarkers for the RLS
derived from neural signals.

Author Contributions: Conceptualization, K.H.K. and K.-Y.J.; methodology, M.K. and H.K.; software,
M.K.; validation, M.K., H.K. and K.H.K.; formal analysis, M.K.; investigation, M.K., K.H.K. and
K.-Y.J.; resources, K.-Y.J.; data curation, K.-Y.J.; writing—original draft preparation, M.K. and K.H.K.;
writing—review and editing, M.K., H.K., P.S. and K.H.K.; visualization, M.K. and K.H.K.; supervision,
K.H.K.; project administration, K.H.K. and K.-Y.J.; funding acquisition, K.H.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Brain Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant 2017M3C7A1029485.

Institutional Review Board Statement: The Institutional Review Board of Seoul National University
Hospital approved all procedures (IRB no. 1705–118–855).

Informed Consent Statement: Patient consent was waived owing to the retrospective nature of the
study and the analysis used anonymized data. Waiver of consent was approved by the IRB.

Data Availability Statement: The data are not publicly available owing to privacy issues. The data
presented in this study are available upon request from the corresponding author. If necessary, please
contact the author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The list of acronyms used in this manuscript.

RLS Restless legs syndrome
EEG Electroencephalogram
WM Working memory
ERP Event-related potential
MRI Magnetic resonance imaging
CNN Convolutional neural network
CNNs Convolutional neural networks
2D Two-dimensional
IRLS International RLS severity scale
PSQI Pittsburgh Sleep Quality Index
ESS Epworth Sleepiness Scale
ISI Insomnia Severity Index
BDI Back Depression Inventory II
HADS Hospital Anxiety and Depression Scale
LRP Layer-wise relevance propagation
sLORETA Standardized low resolution brain electromagnetic tomography
ReLU Rectified linear unit
LOOCV Leave-one-subject-out cross-validation
ROC Receiver operating characteristic



Sensors 2022, 22, 7792 10 of 11

References
1. Allen, R.P.; Picchietti, D.L.; Garcia-Borreguero, D.; Ondo, W.G.; Walters, A.S.; Winkelman, J.W.; Zucconi, M.; Ferri, R.; Trenkwalder,

C.; Lee, H.B. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: Updated International Restless Legs Syndrome
Study Group (IRLSSG) consensus criteria—History, rationale, description, and significance. Sleep Med. 2014, 15, 860–873.
[CrossRef] [PubMed]

2. Winkelman, J.W.; Redline, S.; Baldwin, C.M.; Resnick, H.E.; Newman, A.B.; Gottlieb, D.J. Polysomnographic and Health-related
Quality of Life Correlates of Restless Legs Syndrome in the Sleep Heart Health Study. Sleep 2009, 32, 772–778. [CrossRef]

3. Pearson, V.E.; Allen, R.P.; Dean, T.; Gamaldo, C.; Lesage, S.R.; Earley, C.J. Cognitive deficits associated with restless legs syndrome
(RLS). Sleep Med. 2006, 7, 25–30. [CrossRef] [PubMed]

4. Fulda, S.; Msc, M.E.B.; Reppermund, S.; Winkelmann, J.; Wetter, T.C. Short-term attention and verbal fluency is decreased in
restless legs syndrome patients. Mov. Disord. 2010, 25, 2641–2648. [CrossRef]

5. Kim, S.M.; Choi, J.W.; Lee, C.; Lee, B.U.; Koo, Y.S.; Kim, K.H.; Jung, K.-Y. Working memory deficit in patients with restless legs
syndrome: An event-related potential study. Sleep Med. 2014, 15, 808–815. [CrossRef]

6. Cha, K.S.; Sunwoo, J.-S.; Byun, J.-I.; Kim, T.-J.; Shin, J.-W.; Kim, K.H.; Jung, K.Y. Working memory deficits in patients with
idiopathic restless legs syndrome are associated with abnormal theta-band neural synchrony. J. Sleep Res. 2021, 30, e13287.
[CrossRef]

7. McEvoy, L.K.; Pellouchoud, E.; E Smith, M.; Gevins, A. Neurophysiological signals of working memory in normal aging. Cogn.
Brain Res. 2001, 11, 363–376. [CrossRef]

8. Mu, Q.; Nahas, Z.; Johnson, K.A.; Yamanaka, K.; Mishory, A.; Koola, J.; Hill, S.; Horner, M.D.; Bohning, D.E.; George, M.S.
Decreased Cortical Response to Verbal Working Memory Following Sleep Deprivation. Sleep 2005, 28, 55–67. [CrossRef]

9. Koo, B.B.; Bagai, K.; Walters, A.S. Restless Legs Syndrome: Current Concepts about Disease Pathophysiology. Tremor Other
Hyperkinetic Mov. 2016, 6, 401. [CrossRef]

10. Rizzo, G.; Li, X.; Galantucci, S.; Filippi, M.; Cho, Y.W. Brain imaging and networks in restless legs syndrome. Sleep Med. 2016, 31,
39–48. [CrossRef] [PubMed]

11. Unrath, A.; Juengling, F.D.; Schork, M.; Kassubek, J. Cortical grey matter alterations in idiopathic restless legs syndrome: An
optimized voxel-based morphometry study. Mov. Disord. 2007, 22, 1751–1756. [CrossRef]

12. Galbiati, A.; Marelli, S.; Giora, E.; Zucconi, M.; Oldani, A.; Ferini-Strambi, L. Neurocognitive function in patients with idiopathic
Restless Legs Syndrome before and after treatment with dopamine-agonist. Int. J. Psychophysiol. 2014, 95, 304–309. [CrossRef]

13. Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002, 67, 53–83. [CrossRef]
14. Maksymenko, K.; Giusiano, B.; Roehri, N.; Bénar, C.-G.; Badier, J.-M. Strategies for statistical thresholding of source localization

maps in magnetoencephalography and estimating source extent. J. Neurosci. Methods 2017, 290, 95–104. [CrossRef]
15. Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard,

W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38,
5391–5420. [CrossRef]

16. Mayor-Torres, J.M.; Medina-DeVilliers, S.; Clarkson, T.; Lerner, M.D.; Riccardi, G. Evaluation of Interpretability for Deep Learning
Algorithms in EEG Emotion Recognition: A Case Study in Autism. arXiv 2021, arXiv:2111.13208.

17. Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng.
2019, 16, 031001. [CrossRef]

18. Sturm, I.; Lapuschkin, S.; Samek, W.; Müller, K.-R. Interpretable deep neural networks for single-trial EEG classification.
J. Neurosci. Methods 2016, 274, 141–145. [CrossRef]

19. Dubreuil-Vall, L.; Ruffini, G.; Camprodon, J.A. Deep Learning Convolutional Neural Networks Discriminate Adult ADHD from
Healthy Individuals on the Basis of Event-Related Spectral EEG. Front. Neurosci. 2020, 14, 251. [CrossRef]

20. Ruffini, G.; Ibañez, D.; Castellano, M.; Dubreuil-Vall, L.; Soria-Frisch, A.; Postuma, R.; Gagnon, J.-F.; Montplaisir, J. Deep Learning
with EEG Spectrograms in Rapid Eye Movement Behavior Disorder. Front. Neurol. 2019, 10, 806. [CrossRef]

21. Vahid, A.; Mückschel, M.; Stober, S.; Stock, A.-K.; Beste, C. Applying deep learning to single-trial EEG data provides evidence for
complementary theories on action control. Commun. Biol. 2020, 3, 112. [CrossRef]

22. Horiguchi, J.; Hornyak, M.; Voderholzer, U.; Kryger, M.; Skomrow, R.; Lipinski, J.F.; Masood, A.; Phillips, B.; Oertel, W.H.; Stiasny,
K.; et al. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med.
2003, 4, 121–132. [CrossRef]

23. Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. Pittsburgh Sleep Quality Index (PSQI): A New Instrument for
Psychiatric Research and Practice. Psychiatry Res. 1989, 28, 193–213. [CrossRef]

24. Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [CrossRef]
[PubMed]

25. Bastien, C.H.; Vallieres, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research.
Sleep Med. 2001, 2, 297–307. [CrossRef]

26. Yu, B.; Lee, H.; Lee, K. Validation and Factor Structure of Korean Version of the Beck Depression Inventory Second Edition
(BDI-II): In a University Student Sample. Korean J. Biol. Psychiatry 2011, 18, 126–133.

27. Djukanovic, I.; Carlsson, J.; Årestedt, K. Is the Hospital Anxiety and Depression Scale (HADS) a valid measure in a general
population 65–80 years old? A psychometric evaluation study. Health Qual. Life Outcomes 2017, 15, 1–10. [CrossRef]

http://doi.org/10.1016/j.sleep.2014.03.025
http://www.ncbi.nlm.nih.gov/pubmed/25023924
http://doi.org/10.1093/sleep/32.6.772
http://doi.org/10.1016/j.sleep.2005.05.006
http://www.ncbi.nlm.nih.gov/pubmed/16198145
http://doi.org/10.1002/mds.23353
http://doi.org/10.1016/j.sleep.2014.03.010
http://doi.org/10.1111/jsr.13287
http://doi.org/10.1016/S0926-6410(01)00009-X
http://doi.org/10.1093/sleep/28.1.55
http://doi.org/10.5334/tohm.322
http://doi.org/10.1016/j.sleep.2016.07.018
http://www.ncbi.nlm.nih.gov/pubmed/27838239
http://doi.org/10.1002/mds.21608
http://doi.org/10.1016/j.ijpsycho.2014.12.005
http://doi.org/10.1016/S0301-0082(02)00011-4
http://doi.org/10.1016/j.jneumeth.2017.07.015
http://doi.org/10.1002/hbm.23730
http://doi.org/10.1088/1741-2552/ab0ab5
http://doi.org/10.1016/j.jneumeth.2016.10.008
http://doi.org/10.3389/fnins.2020.00251
http://doi.org/10.3389/fneur.2019.00806
http://doi.org/10.1038/s42003-020-0846-z
http://doi.org/10.1016/s1389-9457(02)00258-7
http://doi.org/10.1016/0165-1781(89)90047-4
http://doi.org/10.1093/sleep/14.6.540
http://www.ncbi.nlm.nih.gov/pubmed/1798888
http://doi.org/10.1016/S1389-9457(00)00065-4
http://doi.org/10.1186/s12955-017-0759-9


Sensors 2022, 22, 7792 11 of 11

28. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556v6.
29. Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.-R.; Samek, W. On Pixel-Wise Explanations for Non-Linear Classifier

Decisions by Layer-Wise Relevance Propagation. PLoS ONE 2015, 10, e0130140. [CrossRef]
30. Kang, X.; Herron, T.J.; Cate, A.D.; Yund, E.W.; Woods, D.L. Hemispherically-Unified Surface Maps of Human Cerebral Cortex:

Reliability and Hemispheric Asymmetries. PLoS ONE 2012, 7, e45582. [CrossRef]
31. Pascual-Marqui, R.D. Standardized Low-Resolution Brain Electromagnetic Tomography (SLORETA): Technical Details. Methods

Find. Exp. Clin. Pharmacol. 2002, 24 (Suppl. D), 5–12.
32. Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis.

Comput. Intell. Neurosci. 2011, 2011, 1–13. [CrossRef] [PubMed]
33. E Crowley, K.; Colrain, I.M. A review of the evidence for P2 being an independent component process: Age, sleep and modality.

Clin. Neurophysiol. 2004, 115, 732–744. [CrossRef]
34. Burnham, B.R.; Sabia, M.; Langan, C. Components of working memory and visual selective attention. J. Exp. Psychol. Hum.

Percept. Perform. 2014, 40, 391–403. [CrossRef]
35. Boggs, S.W. A New Equal-Area Projection for World Maps. Geogr. J. 1929, 73, 241. [CrossRef]
36. O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458.
37. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. In Proceedings of the 2017

International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.
38. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural

network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [CrossRef]
39. Jemal, I.; Mezghani, N.; Abou-Abbas, L.; Mitiche, A. An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction

Using EEG Data. IEEE Access 2022, 10, 60141–60150. [CrossRef]
40. Vilamala, A.; Madsen, K.H.; Hansen, L.K. Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage

Scoring. In Proceedings of the 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo,
Japan, 25–28 September 2017; pp. 1–6. [CrossRef]

41. Pauli, M.P.; Pohl, C.; Golz, M. Balanced Leave-One-Subject-Out Cross- Validation for Microsleep Classification. Curr. Dir. Biomed.
Eng. 2021, 7, 147–150. [CrossRef]

42. Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [CrossRef]
43. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
44. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
45. Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-Wise Relevance Propagation: An Overview. Explain. AI

Interpret. Explain. Vis. Deep Learn. 2019, 1, 193–209.
46. Gazzaley, A.; Nobre, A.C. Top-down modulation: Bridging selective attention and working memory. Trends Cogn. Sci. 2012, 16,

129–135. [CrossRef] [PubMed]
47. Gazzaley, A.; Rissman, J.; Cooney, J.; Rutman, A.; Seibert, T.; Clapp, W.; D’Esposito, M. Functional Interactions between Prefrontal

and Visual Association Cortex Contribute to Top-Down Modulation of Visual Processing. Cereb. Cortex 2007, 17, i125–i135.
[CrossRef]

48. Boettcher, S.E.P.; Gresch, D.; Nobre, A.C.; van Ede, F. Output planning at the input stage in visual working memory. Sci. Adv.
2021, 7, eabe8212. [CrossRef]

49. Pratt, N.; Willoughby, A.; Swick, D. Effects of Working Memory Load on Visual Selective Attention: Behavioral and Electrophysi-
ological Evidence. Front. Hum. Neurosci. 2011, 5, 57. [CrossRef]

50. Miller, E.K.; Li, L.; Desimone, R. A Neural Mechanism for Working and Recognition Memory in Inferior Temporal Cortex. Science
1991, 254, 1377–1379. [CrossRef] [PubMed]

51. Schacter, D.L.; Norman, K.A.; Koutstaal, W. The Cogntive Neuroscience of Constructive Memory. Annu. Rev. Psychol. 1998, 49,
289–318. [CrossRef]

52. Hillis, A.E.; Oh, S.; Ken, L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann. Neurol. 2004, 55,
268–275. [CrossRef]

53. Tranel, D.; Kemmerer, D.; Adolphs, R.; Damasio, H.; Damasio, A.R. Neural correlates of conceptual knowledge for actions. Cogn.
Neuropsychol. 2003, 20, 409–432. [CrossRef] [PubMed]

54. Manes, F.; Springer, J.; Jorge, R.; Robinson, R.G. Verbal memory impairment after left insular cortex infarction. J. Neurol. Neurosurg.
Psychiatry 1999, 67, 532–534. [CrossRef]

55. Salisbury, D.F. Semantic Activation and Verbal Working Memory Maintenance in Schizophrenic Thought Disorder: Insights from
Electrophysiology and Lexical Amibiguity. Clin. EEG Neurosci. 2008, 39, 103–107. [CrossRef] [PubMed]

56. Antonucci, S.M.; Reilly, J. Semantic Memory and Language Processing: A Primer. Semin. Speech Lang. 2008, 29, 005–017. [CrossRef]
57. Goldstein, A.N.; Greer, S.M.; Saletin, J.M.; Harvey, A.G.; Nitschke, J.B.; Walker, M.P. Tired and Apprehensive: Anxiety Amplifies

the Impact of Sleep Loss on Aversive Brain Anticipation. J. Neurosci. 2013, 33, 10607–10615. [CrossRef]
58. Pascual-Marqui, R.D.; Faber, P.; Kinoshita, T.; Kochi, K.; Milz, P.; Nishida, K.; Yoshimura, M. Comparing EEG/MEG Neuroimaging

Methods Based on Localization Error, False Positive Activity, and False Positive Connectivity. bioRxiv 2018, 269753. [CrossRef]
59. Song, J.; Davey, C.; Poulsen, C.; Luu, P.; Turovets, S.; Anderson, E.; Li, K.; Tucker, D. EEG source localization: Sensor density and

head surface coverage. J. Neurosci. Methods 2015, 256, 9–21. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0130140
http://doi.org/10.1371/journal.pone.0045582
http://doi.org/10.1155/2011/879716
http://www.ncbi.nlm.nih.gov/pubmed/21584256
http://doi.org/10.1016/j.clinph.2003.11.021
http://doi.org/10.1037/a0033753
http://doi.org/10.2307/1784714
http://doi.org/10.1088/1741-2552/aace8c
http://doi.org/10.1109/ACCESS.2022.3176367
http://doi.org/10.1109/MLSP.2017.8168133
http://doi.org/10.1515/cdbme-2021-2038
http://doi.org/10.1016/S0893-6080(98)00010-0
http://doi.org/10.1016/j.tics.2011.11.014
http://www.ncbi.nlm.nih.gov/pubmed/22209601
http://doi.org/10.1093/cercor/bhm113
http://doi.org/10.1126/sciadv.abe8212
http://doi.org/10.3389/fnhum.2011.00057
http://doi.org/10.1126/science.1962197
http://www.ncbi.nlm.nih.gov/pubmed/1962197
http://doi.org/10.1146/annurev.psych.49.1.289
http://doi.org/10.1002/ana.10812
http://doi.org/10.1080/02643290244000248
http://www.ncbi.nlm.nih.gov/pubmed/20957578
http://doi.org/10.1136/jnnp.67.4.532
http://doi.org/10.1177/155005940803900217
http://www.ncbi.nlm.nih.gov/pubmed/18450179
http://doi.org/10.1055/s-2008-1061621
http://doi.org/10.1523/JNEUROSCI.5578-12.2013
http://doi.org/10.1101/269753
http://doi.org/10.1016/j.jneumeth.2015.08.015
http://www.ncbi.nlm.nih.gov/pubmed/26300183

	Introduction 
	Materials and Methods 
	Experimental Methods 
	Data Analysis Methods 
	Preparation of Input Data 
	Convolutional Neural Network Classifier 
	Training and Test of the Classifier 
	Determination of Critical Input Features by LRP 
	Statistical Analysis 


	Results 
	Behavioral Responses 
	Classifier Performance 
	Distribution of Critical Features on the Cortical Surface 
	Correlations of the Critical Region’s Activities and Clinical Scores 

	Discussion 
	Conclusions 
	References

