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Abstract: A high-efficiency dual-purpose plasmonic perfect absorber sensor based on LiNbO3 and
graphene layers was investigated in this paper for the refractive index and thermal sensing. The
sensor design was kept simple for easy fabrication, comprising a LiNbO3 substrate with a quartz
layer, thin layer of graphene, four gold nanorods, and a nanocavity in each unit cell. The nanocavity
is located in the middle of the cell to facilitate the penetration of EM energy to the subsurface layers.
The proposed sensor design achieved an output response of 99.9% reflection, which was easy to
detect without having any specialized conditions for operability. The performance of the device
was numerically investigated for the biomedical refractive index range of 1.33 to 1.40, yielding a
sensitivity value of 981 nm/RIU with a figure-of-merit of 61.31 RIU−1. By including an additional
polydimethylsiloxane polymer functional layer on the top, the device was also tested as a thermal
sensor, which yielded a sensitivity level of −0.23 nm/◦C.

Keywords: graphene for sensing; lithium niobate; refractive index sensor; temperature sensor;
sensitivity; plasmonic sensor

1. Introduction

Lately, the significance of photonic sensors has increased due to the recent pandemic
the arises the need to design devices for rapid, efficient, and non-destructive biomedical
sensing. Aside from their growing need in biomedicine and health care [1], numeral other
fields such as agriculture [2], IoTs [3], and the challenges posed by global warming are
pushing sensing technologies to new horizons [4,5]. With each passing day, innovative
and more efficient sensing techniques are gaining the attention of researchers ranging
from wearable sensors [6] to self-monitoring vital signs of life [7], and meeting the new
expectation of the industry 4.0 era [8]. Over the decades, photonic crystal (PhC) based
devices such as sensors, filters, waveguides [9,10], and nanowires have proven to be very
useful and gradually becoming a major part of the photonics industry. However, localized
surface plasmon polariton (LSPP) based sensors have been given close attention due to
their highly sensitive nature and the use of new and simplified materials [11,12]. LSPPs
have been an integral part of most of the new sensor designs by investing metal layers in
the form of gold (Au) or silver (Ag) inside the sensors in a variety of geometrical shapes
and structures, thereby proving to be game-changers [13,14]. The high dependency of
surface plasmon resonance (SPR) on the sensor perimeter, geometry, and refractive index
(RI) of the surrounding medium makes them ideal for sensing applications [15]. Thus far, a
countless number of sensors with unique designs have become part of the sensing world.
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The research carried out by Ricardo Janeiro et al. [16] proposed a sensor design
composed of silicon gratings on a SiO2 substrate covered with a polydimethylsiloxane
(PDMS) layer operating at around the 1566 nm wavelength range, yielding a sensitivity of
234.8 pm/% for the chemical concentrations and thermal sensitivity of 0.9 nm/◦C. On the
other hand, in [17], multiple designs of Au rings and split Au rings over a graphene layer
with notches were proposed for RI sensing and it was shown that the sensor design was
acceptable with a range of applications. However, the design can be complex from the fab-
rication point of view. In another concept investigated by Zhu et al. [18], plasmonic sensor
design on fiber optics tips based on PDMS was experimented and a maximum sensitivity
level of −4.13 nm/◦C was reported. Similarly, a sensor design comprising Ag nanoparti-
cles [19] was also investigated and tested as the RI sensor with glucose samples showing
a maximum sensitivity of 1144 nm/RIU. Nejat et al. [20] claimed a highly sophisticated
sensor design by using MIM Ag-air grating with a complex grooved structure and reported
a sensitivity as high as 1460 nm/RIU for glucose syrup and other biological fluids. In a
few research works [21–25], new and improved designs have been proposed for RI sensing
with different levels of complexity and suitability for various practical applications.

The above-discussed sensor designs provide promising sensitivity values with the
trade-off between different factors such as design complexity, the use of costly materials,
and cost-effectiveness with less-complex designs. This research work presents a compact,
easy to fabricate, and cost-effective plasmonic sensor design comprising of a multi-layered
structure that operates in the visible spectral range between 400 and 500 nm. The multi-
layer design is comprised of lithium niobate (LiNbO3) layer, quartz glass, graphene, Au
rings, and a PDMS functional layer, making up a compact design with a 400 nm perimeter
and 260 nm height. The materials used are quite economical and the response window
is easily tunable, depending on the thickness of the incorporated layers or by scaling
the geometry of the overall sensor design. In sensor design, the material cost is reduced
by introducing Au cylinders that are deposited in a comparatively lesser quantity, only
necessary to achieve plasmonic properties. As a crucial replacement, the same can also
be investigated with Ag or other suitable plasmonic materials to decrease the cost even
further. Au and Ag are often taken as comparatively better plasmonic candidates than
other metals due to their oxidation resistance characteristics [26]. This design proposes both
rods and holes—often used alternatively in the majority of sensor designs—for obtaining
a sharper sensor response in terms of figure of merit (FOM) and sensitivity. The Au rods
coupled with a dielectric layer, is stacked with an adjacent graphene layer to enhance the
energy coupling between the two surfaces. Additionally, this paper presents LiNbO3 as a
potential key material, acting as the base foundation for plasmonic sensors, considered as
a comparatively new entry to photonics field, and it was noticed that this material acted
better than either of the traditional dielectric materials (i.e., MgF2, and TiO2), which are
in majority of cases used for waveguiding. The investigated model was designed in CST
Studio that incorporates the finite element method (FEM) technique using the tetrahedral
meshing for calculations.

2. Sensor Design and Materials

The material composition of the sensor was kept simpler for the sake of easier fabrica-
tion and characterization. The base was composed of a 200 nm thick LiNbO3 layer for better
trapping and confinement of the EM energy. Furthermore, it helps to suppress any energy
transmission through the model, which is desirable for all perfect absorber RI sensors. Ad-
ditionally, LiNbO3 is ideal for a variety of optical applications considering its outstanding
piezoelectric, electro-optic, and nonlinear optical characteristics. Integrated optical devices
are increasingly being made on LiNbO3 substrates due to its extended transmission range
and the absence of residual birefringence. Therefore, it is presumed as a good contender for
many applications because of its excellent resistance to thermal expansion and contraction.
It is also considered as a good choice for second harmonic generation (SHG) lasers and
other optoelectronic devices because of its stability under high-power situations [27–30].
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Since the proposed sensor device is also tested for temperature sensing, therefore, a LiNbO3
substrate was selected for more stable and reliable temperature sensing applications.

The graphene layer is segregated from the substrate using a 20 nm thick SiO2 layer,
compulsory for the adherence of contrast materials with each other [31]. The graphene layer
is critical for the overall sensor design as it forms a thin and highly conductive surface over
the two dielectric layers. Graphene is well-known for its efficiency to detect RI variation
over its surface, hence enhancing the overall sensitivity of the sensor. Its thickness was
kept at 0.34 nm for an optimum sensor design [32,33]. The four Au nanorods were placed
from the top layer down to the LiNbO3 foundation layer for creating stronger plasmonic
pulses across all adjacent layers. The dimensions of the Au nanorods were chosen to be
50 nm in radius and 60 nm in height. For better EM penetration and the containment of
photons within the sub-layers, a nanohole with a 20 nm radius was carved at the center to
form a PhC structure. All the geometrical parameters of the sensor model were optimized
in the numerical simulations for a range of best-fitting values to enable proper tuning and
impedance matching. The simulation model with its exploded view is shown in Figure 1a,b.
All of the parametric measurement values of the model design are listed in Table 1.
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Figure 1. (a) Sensor model and (b) sensor’s exploded view for the conceptualization of
individual layers.

Table 1. Dimensions of the layers used in sensor design.

Layers (Bottom to Top) Material Measurement

Layer 1 LiNbO3 200 nm
Layer 2 SiO2 20 nm
Layer 3 Graphene 0.34 nm (0.00034 µm)
Layer 4 Gold Nano-rod 50 nm radius × 60 nm L

PhC-hole Air 20 nm radius
Layer 5 Testing Material or PDMS 50 nm/16.6 nm

3. Methodology
3.1. Modeling and Simulation Presets

The numerical modeling of the sensor was carried out in CST Studio based on the
finite element method (FEM) and the tetrahedral meshing technique was used for the
calculations. To reduce the simulation time phenomenally in the dense mesh frequency
domain technique (which has a higher accuracy over time domain in nanoscale models), the
unit cell model technique was used. To terminate the simulation domain, Floquet periodic
boundary conditions (PBC) were used in the x- and y-directions and open boundaries were
used in the z-direction. Additionally, the perfectly matched layer (PML) condition was used
to absorb the unwanted EM field and suppress any higher-order energy modes generated
by the periodic structure. Within the boundary of PML, two Floquet-ports named Zmax and
Zmin were introduced in the z-direction above and below the structure with the background
spacing of 100 nm each, so that they could act as a source and sink for the calculation of the
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reflection and transmission spectra of EM energy in the form of S-parameters. The port
setup and PML boundary are indicated in Figure 2a,b.
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boundary to suppress the unwanted EM energy.

Only the initial modes of EM and TM were considered in settings in the Floquet ports
for both the source and sink layers and the higher order modes were kept unused to save
on the simulation time. However, only the electric field focused on the output results for
their higher significance and more prominence in the results. The orientation choice was
selected as an ‘inward’ direction in the general setup. Furthermore, the Drude–Lorentz
model parameters were used for the material properties of the Au ring. As known from
fundamental theory, the dispersion properties of Au are linked to the frequency components
of the incident EM field described by the Drude–Lorentz model [34]. For the graphene
layer, a 0.5 eV potential difference was kept as default.

3.2. S-Parameters and the Output Response

The CST ports for calculating the S-parameters for the reflection and transmission
spectra of the model were S11 and S21, respectively, and denoted as in Equations (1) and (2):

S21 =

(
1 − Z2

)
Γ

1 − Z2Γ2 (1)

S11 =

(
1 − Γ2)Z

1 − Z2Γ2 (2)

where Z is the impedance parameter and Γ is either the reflection or transmission coefficient
depending on the case. The absorbance was later calculated by using Equation (3):

A = 1 − T − R (3)

Since the transmission (T) is approximately zero in the case of this sensor (a desirable
characteristic), therefore, the absorbance solely relies on reflection. Moreover, in the case of
perfect absorption at the time of total energy coupling, the reflectance of the sensor also
approaches zero and the absorbance value approaches unity.

4. Results and Discussion

The output spectra (transmission/reflection) are commonly monitored based on either
the change in the density, wavelength, or phase of the testing material for calculating the
sensor’s efficiency [35]. In this case, a shift in wavelength was utilized as a characteristic
performance factor. The intermediate values between the biological refractive index range
of 1.33 and 1.40 with an increment of 0.01 were set as the input to check the refractive
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index unit (RIU) sensing of the device. This biomedical index range covers various types of
cancer cells, malaria, and different density levels in the human blood. The sensitivity of
any RI-based sensor is defined in Equation (4):

S =
δλ

δn
(4)

where S is the sensitivity, which is a ratio between the shift in response wavelength of
a sensor (δλ) with a change in refractive index (δn) due to sample deposition. On the
other hand, the FOM parameter is defined as the S divided by full width at half maximum
(FWHM), as stated in Equation (5):

Figure of Merit (FOM) =
S

FWHM
(5)

4.1. Testing the Device as an RIU Sensor

As a first case study, a 50 nm thick test material was placed on top of the sensor to
mimic any real-world solution for RI sensing, as depicted in Figure 3. To evaluate the
performance of the sensor, the RI of the test material varied from 1.33 to 1.40.
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Figure 3. Unit cell design of the sensor with a 50 nm layer of test material deposited on the top.

The simulation was performed for each step variation in RI and the value of S was
calculated as per Equation (4). In the output spectra illustrated in Figure 4a, it can be
observed that a red-shift occurred in the response wavelength of the reflectance (as well as
in absorbance) of the sensor. Since the design was optimized to be a perfect absorber, the
transmittance is ideally non-existent, and therefore the output response value reached close
to unity. Considering the reflectance spectra, the highest shift in the response wavelength
was noted as 9.81 nm from 487.45 nm to 497.26 nm for a change in RI from 1.39 to 1.40,
which corresponded to a sensitivity value of 981 nm/RIU. The minimum shift in the
response wavelength was observed as 7.95 nm from 439.27 nm to 447.22 nm for a RI
variation between 1.33 and 1.34.

The proposed sensor design showed a 99.9% absorbance response at the output and
therefore, it will require less specialized conditions for practical usage. The right-projection
tendency of red-shift response with each deposited sample is understandable because the
deposited samples ultimately corresponded to an increase in the surrounding RI of the
sensor. It can also be noted that the value of sensitivity increased for higher RI values that
corresponded to the shifting of resonant modes to longer wavelengths. Additionally, it is
also a known factor for cavity-based sensor designs due to the suppression of low-frequency
modes and the enhancement of longer wavelengths [20]. The inset in Figure 4b–d portrays



Sensors 2022, 22, 7790 6 of 12

the E-field distribution along each material layer, E-density distribution, and surface current
over the structure, respectively. Most of the field energy and current were confined around
the conductive surfaces that ultimately triggered plasmons with the adjacent dielectric
layers. The noted sensitivity and FOM of the sensor for each RIU variation are summarized
in Figure 5a,b. It is conspicuous from both figures that the sensitivity value was higher
whereas the FOM was less for longer wavelengths.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. (a) Spectral response of the sensor device with reflectance vs. wavelength showing a red 
shift for variation in RI. (b) The E-field distribution showing localization of the EM field on gold 
nanorods depicting the concentration of surface plasmons. (c) The E-field density across sensor de-
sign. (d) Depiction of the surface current over the metal deposition and graphene layer. 

The proposed sensor design showed a 99.9% absorbance response at the output and 
therefore, it will require less specialized conditions for practical usage. The right-projec-
tion tendency of red-shift response with each deposited sample is understandable because 
the deposited samples ultimately corresponded to an increase in the surrounding RI of 
the sensor. It can also be noted that the value of sensitivity increased for higher RI values 
that corresponded to the shifting of resonant modes to longer wavelengths. Additionally, 
it is also a known factor for cavity-based sensor designs due to the suppression of low-
frequency modes and the enhancement of longer wavelengths [20]. The inset in Figure 
4b–d portrays the E-field distribution along each material layer, E-density distribution, 
and surface current over the structure, respectively. Most of the field energy and current 
were confined around the conductive surfaces that ultimately triggered plasmons with 
the adjacent dielectric layers. The noted sensitivity and FOM of the sensor for each RIU 
variation are summarized in Figure 5a,b. It is conspicuous from both figures that the sen-
sitivity value was higher whereas the FOM was less for longer wavelengths. 

 
Figure 5. (a) Sensitivity vs. RIU for the biological RI range of 1.33 to 1.44. Redline showing the step 
size of wavelength shift for the tested RI range. (b) FOM vs. RIU for the RI range of 1.33 to 1.40. 

Figure 4. (a) Spectral response of the sensor device with reflectance vs. wavelength showing a red
shift for variation in RI. (b) The E-field distribution showing localization of the EM field on gold
nanorods depicting the concentration of surface plasmons. (c) The E-field density across sensor
design. (d) Depiction of the surface current over the metal deposition and graphene layer.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. (a) Spectral response of the sensor device with reflectance vs. wavelength showing a red 
shift for variation in RI. (b) The E-field distribution showing localization of the EM field on gold 
nanorods depicting the concentration of surface plasmons. (c) The E-field density across sensor de-
sign. (d) Depiction of the surface current over the metal deposition and graphene layer. 

The proposed sensor design showed a 99.9% absorbance response at the output and 
therefore, it will require less specialized conditions for practical usage. The right-projec-
tion tendency of red-shift response with each deposited sample is understandable because 
the deposited samples ultimately corresponded to an increase in the surrounding RI of 
the sensor. It can also be noted that the value of sensitivity increased for higher RI values 
that corresponded to the shifting of resonant modes to longer wavelengths. Additionally, 
it is also a known factor for cavity-based sensor designs due to the suppression of low-
frequency modes and the enhancement of longer wavelengths [20]. The inset in Figure 
4b–d portrays the E-field distribution along each material layer, E-density distribution, 
and surface current over the structure, respectively. Most of the field energy and current 
were confined around the conductive surfaces that ultimately triggered plasmons with 
the adjacent dielectric layers. The noted sensitivity and FOM of the sensor for each RIU 
variation are summarized in Figure 5a,b. It is conspicuous from both figures that the sen-
sitivity value was higher whereas the FOM was less for longer wavelengths. 

 
Figure 5. (a) Sensitivity vs. RIU for the biological RI range of 1.33 to 1.44. Redline showing the step 
size of wavelength shift for the tested RI range. (b) FOM vs. RIU for the RI range of 1.33 to 1.40. 

Figure 5. (a) Sensitivity vs. RIU for the biological RI range of 1.33 to 1.44. Redline showing the step
size of wavelength shift for the tested RI range. (b) FOM vs. RIU for the RI range of 1.33 to 1.40.

4.2. Testing the Device as a Temperature Sensor

To test the performance of the device as a temperature sensor, the design was slightly
modified by the addition of a PDMS polymer layer over the top of the graphene layer up to
the level of the Au nanorods as shown in Figure 6. The PDMS material is known for its
incompressible and high sensitivity nature to temperature variation. It acts as a transparent
material for a wide electromagnetic spectrum except for the infrared range (heat energy).
PDMS belongs to the family of siloxane polymers and possesses qualities such as excellent
elastic and thermos-optic coefficients with little absorption loss [36]. Therefore, it has been
proposed for a variety of biomedical, chemical, and thermal sensing applications. For the
sake of simplicity and better control in the proposed device, the PDMS layer was deposited
over the top surface rather than inside the design.
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Figure 6. The sensor model showing the presence of the PDMS polymer layer (in white color).

The sensor design was tested for a range of ambient temperature values from 10 ◦C
to 70 ◦C. As mentioned earlier, the RI of the PDMS layer changes with the variation in
the ambient temperature. The analytical relation between the ambient temperature and
variation in the RI of PDMS was taken as a reference from [37] and given by Equation (6).
In the numerical simulations, the RI of the PDMS layer was varied to sense the ambient
temperature and evaluate the performance of the sensor.

RI(PDMS) = 1.4176 – 4.5 × 10−4 . T (6)

where T is the input temperature in degrees Celsius (◦C). The equation showed a negative
linear relationship between the temperature and the RI, which means that a high temper-
ature will have a lower RI of PDMS and vice versa. Therefore, a blue shift in the output
response of the device can be observed, as depicted in Figure 7a. The relation between RI
and temperature is shown in Figure 7b.
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Considering the performance of the device as a temperature sensor, an average sensi-
tivity value of −0.23 nm/◦C was achieved. However, an important aspect of the output
response is that the temperature sensitivity was not constant across all of the preset tem-
perature values (10 ◦C to 70 ◦C), but differed by a magnitude in accordance and relatively
close replication with the linear relationship between the temperature and RI of the PDMS,
as shown in Figure 7c. Likewise, the sensitivity values dropped almost linearly as the
ambient temperature rose. Table 2 lists the values of RIU, wavelength, and sensitivity that
correspond to their respective temperature readings.

Table 2. A list of the sensor applications with their associated sensitivity values.

Application Temperature Range
(◦C) Wavelength (nm) Sensitivity (nm/◦C)

Temperature sensing

10 439.27 −0.231
20 436.96 −0.228
30 434.68 −0.225
40 432.43 −0.223
50 430.20 −0.221
60 427.99 −0.219
70 425.80 −0.217

4.3. Comparative Analysis of the Sensor Design

A comparative analysis of the proposed sensor design for RI and thermal sensing
applications with the existing literature is given in Tables 3 and 4, respectively. It can be
seen that the sensor design yielded improved results in comparison to previously reported
works in this area. Hence the proposed design serves as a dual-purpose sensor and offers
multiple advantage over other designs such as higher sensitivity and FOM values as well
as an easy fabrication possibility.

Table 3. The RI comparison of the proposed work with the existing literature.

Sensor Design Sensitivity
(nm/RIU) FOM (RIU−1) Research Work

D-shaped DBR fiber + Au + PDMS 487 - [38]
Silica spheres + Au 968 2.20 [39]

Periodic Au rings array 557 6.1 [40]
Ag + Si + Ag dual elliptical array 503 63 [41]

Silica + Au slab + Si + Fabry–Perot
nanocavities + Au slab 600 28 [42]

LiNb3 + graphene 981 61.31 This Work

Table 4. The temperature comparison of the proposed work with the existing literature.

Sensor Design Sensitivity (nm/◦C) Research Work

Sm+3:ZnO2 (WGM) 0.04 [43]
SMF-28 Silica Fiber −1.3 pm/◦C [44]

Au (slab) + Si (S-MAs &
HS-MAs) −0.18 [37]

LiNb3 + Graphene −0.23 This Work

5. Proposed Fabrication Steps

The fabrication process of the proposed sensor mainly involves the deposition of thin
films, lithography, and etching of the PhC cavity. In the first step, a thin layer of SiO2 can
be deposited to form the substrate using conventual deposition techniques such as plasma
enhanced chemical vapor deposition (PECVD) or ion-beam sputter deposition (IBSD) [44].
In the second step, a LiNbO3 layer can be deposited using pulse laser deposition (PLD),
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which is a modified form of pulse vapor deposition (PVD), giving better accuracy and
control over the conventional deposition techniques. In this technique, a high-power pulsed
laser beam is focused on a target of the desired material that causes vaporization to deposit
a thin film [45]. The twin-layered structure is then inverted and by using the well-known
chemical vapor deposition (CVD) method, the thin film of the graphene is added over the
SiO2 layer. The holes can then be carved using focused ion-beam (FIB) technology with
the metal etch-mask technique [46]. As a final stage, focused electron-ion beam induced
deposition (FEBID) can be utilized for shaping Au rods over the structure. This last step
contributes toward metal deposition and milling to achieve the required shape with the
desired characteristics [47]. For the case of temperature sensing, the PDMS layer can be
deposited through the direct deposition of sylgard 184 silicon elastomer with heat curing
for the proper setting of material. The step-by-step fabrication process is shown in Figure 8.
The work conducted in [48] presents the fabrication of a sensor model closely related to the
proposed model in this work by using soft nano-imprint lithography. The process involves
generating a PDMS stamp through the deposition of silicon on a chromium slab and later
using sol–gel resist to form a solid silica model. The PDMS stamp is then used to produce
an array of vertical Au nanorods. The structure in the process is annealed multiple times for
the settling of the materials. However, the PDMS stamp poses the vulnerability of traced
air that deshapes the cylinders and often reduces the heights of the majority of them [49].
Therefore, the PDMS functional layer is proposed to be deposited on top of the sensor at
the final stages.
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6. Conclusions

A plasmonic perfect absorber-based dual sensing device for RI and temperature
sensing was numerically investigated in this work. The device is composed of a compact
and easy-to-fabricate design with LiNbO3 as the base material, a SiO2 layer, a graphene
layer, Au nanorods, and a PhC-cavity in the middle. The material selection was carefully
undertaken to enhance the efficiency of the device. The LiNbO3 base enhanced the EM
absorption, and graphene was included to improve the sensing capabilities whereas Au
nano-rods integrated the plasmonic properties into the design. The device showed a
good narrow band filtering performance in the visible spectral range between 400 and
550 nm with almost unity absorption of 99.9%. The design was first tested as a RI sensor
for a biological index range of 1.33 to 1.40, which yielded a sensitivity in the range of
981 nm/RIU with a FOM of 61.31 RIU−1, which were the highest among the reported
similar works. Second, a thin PDMS layer was deposited on the sensor to investigate
the device as a thermal sensor for an ambient temperature range of 10 to 70 ◦C, which
yielded a sensitivity in the range of −0.23 nm/◦C. Considering its improved design and
sensitivity level, the device can be well proposed for experimental implementation and use
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in a variety of applications ranging from biomedical sensing to chemical laboratories and
industrial usage.
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