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Abstract: Because of their simple design structure, end-to-end deep learning (E2E-DL) models have
gained a lot of attention for speech enhancement. A number of DL models have achieved excellent
results in eliminating the background noise and enhancing the quality as well as the intelligibility
of noisy speech. Designing resource-efficient and compact models during real-time processing is
still a key challenge. In order to enhance the accomplishment of E2E models, the sequential and
local characteristics of speech signal should be efficiently taken into consideration while modeling.
In this paper, we present resource-efficient and compact neural models for end-to-end noise-robust
waveform-based speech enhancement. Combining the Convolutional Encode-Decoder (CED) and
Recurrent Neural Networks (RNNs) in the Convolutional Recurrent Network (CRN) framework, we
have aimed at different speech enhancement systems. Different noise types and speakers are used to
train and test the proposed models. With LibriSpeech and the DEMAND dataset, the experiments
show that the proposed models lead to improved quality and intelligibility with fewer trainable
parameters, notably reduced model complexity, and inference time than existing recurrent and
convolutional models. The quality and intelligibility are improved by 31.61% and 17.18% over the
noisy speech. We further performed cross corpus analysis to demonstrate the generalization of the
proposed E2E SE models across different speech datasets.

Keywords: E2E speech processing; Convolutional Encode-Decoder; Convolutional Recurrent Network;
speech quality; intelligibility

1. Introduction

Applications that are connected to speech signals, such as Automated Speech Recog-
nition (ASR), voice signal communication, speaker verification, and hearing aids, all play
a significant part in contemporary societies. The speech along with noise signals are
captured by the sound sensors (microphones) where speech enhancement enables the
above-mentioned applications to work effectively in noisy environments. Nevertheless, the
vast majority of these apps are not resilient when dealing with interference. As a result,
speech enhancement (SE) [1–4], a technique that tries to enhance the intelligibility and
quality of the original speech signals, has seen widespread use in the context of these
applications. Over the last few years, deep learning techniques have seen an increased
amount of use when it comes to the construction of SE systems. Enhancement of the
frequency-domain acoustic properties is carried out by a subset of SE systems, which fall
under the category of what are known as spectral-mapping-based SE method types. In
these methods [5–8], short-time Fourier transform (STFT) and inverse short-time Fourier
transform (inverse STFT) are used to analyse and reconstruct speech signals, respectively.
Then, the deep learning models, namely fully connected deep denoising auto-encoder [9],
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convolutional neural networks (CNNs) [10], recurrent neural networks (RNNs) [11] and
long short-term memory (LSTM) [12,13], are utilized as a transformation function to change
the noise degraded spectral features to clean features. Moreover, in the meantime, various
techniques are being developed by integrating various kinds of deep learning models
(for example, CNN and RNN) in order to more efficiently obtain the local and sequential
correlations [14,15].

In recent past, an SE system that was developed based on stacked simple recurrent
units (SRUs) [16,17] has demonstrated denoising performance comparable to that of the
LSTM-based SE system while needing significantly fewer computational costs for training.
This was accomplished by an SE system that was based on stacked simple recurrent units
(SRUs) [16]. Due to the absence of proper phase information, the augmented speech
signal will never be able to realize its full potential, despite the fact that the methodologies
described above are currently capable of providing remarkable performance. Some SE
systems use complex-spectral-mapping and complex-ratio-masking to improve distorted
speech [18,19]. This is conducted in order to combat the issue that was just described. In [20],
the phase estimation was recast as a classification issue, and it was used in the process of
source separation. A further category of SE techniques offers the opportunity to directly
conduct augmentation on the raw waveform in [21,22]. These methods, which are typically
referred to as waveform-mapping-based approaches, are classified as a subcategory of
SE methods. Fully convolutional networks, often known as FCNs, are one kind of deep
learning model that has seen widespread use for the purpose of directly performing
waveform mapping [23,24].

The WaveNet model, which was first suggested for use in text-to-speech applica-
tions, was also implemented in the waveform-mapping-based SE systems [25,26]. Fully
convolutional architectures have the ability to represent the frequency features of speech
waveforms more precisely than fully connected architectures because fully convolutional
architectures preserve greater local information than fully connected architectures. More
recently, it was suggested that a temporal convolutional neural network (TCNN) [10] might
properly describe temporal characteristics and carry out SE in the time domain. Some
waveform-mapping-based SE techniques [27] employ adversarial loss or perceptual loss to
obtain high-level disparities between predictions and their targets. This was conducted
in conjunction with the point-to-point loss that was used for optimization. An efficient
characterization of sequential and local patterns is a crucial factor to take into account
when evaluating the overall performance of the SE algorithms described above that are
based on waveform mapping. The high computational cost and model size of RNN may
drastically limit its use; despite the fact that the integration of CNN and RNN/LSTM may
be a workable solution, RNN’s applicability may be significantly restricted. In this research
work, we introduce and extensively explore an E2E waveform mapping-based SE technique
that makes use of a unique CRN. This technique improves efficiency by combining the
advantages of CNN with parallel recurrent models (LSTM, GRU, and SRU), allowing
us to map waveforms from start to finish. In contrast to spectral mapping-based CRN
models [14,15], the proposed solutions directly estimate feature masks from unprocessed
waveforms using highly parallelizable recurrent networks. A diagram explains the overall
speech enhancement research work highlighting the flow of the work is demonstrated in
Figure 1.

The remaining portions of the paper are structured as follows: Section 2 presents
related studies. The methodology for the proposed E2E waveform-based SE is explained
in Section 3. Section 4 presents experiments, whereas results and discussions are given in
Section 5. The concluding remarks of this study are drawn from Section 6.
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Figure 1. The overall speech enhancement research work highlighting the flow of the work.

2. Related Studies

The majority of existing speech enhancement systems involve spectrogram features [28–30],
which require a complex transformation and result in phase information loss. Convolu-
tional networks have been used in earlier research to solve these problems by learning the
temporal correlation amongst high-resolution speech waveforms. However, the memory-
intensive dilated convolution and aliasing problems caused by upsampling restrict the
performance of these models. Due to its straightforward design workflow, E2E deep
learning models have received a lot of attention for speech enhancement. The local and
sequential (speech waveforms) characteristics of speech should be effectively taken into
consideration during modeling in order to enhance the performance of an E2E model.

The study [31] presents a completely E2E recurrent neural network (RNN) for en-
hancing single-channel speech. By lowering the feature resolution without sacrificing
the information, an hourglass-shaped network effectively captured long-range temporal
correlation. Additionally, the study leveraged residual connections to increase model
adaptation and stop gradient deterioration across the layers. According to experimental
findings, the E2E-RNN model performs better than cutting-edge techniques in six quantita-
tive performance indicators. The study [21] presents a fully convolutional network (FCN)
for waveform-based SE where waveforms have been modeled using convolutional layers.
FCN only has convolutional layers, so local temporal speech features are retained with
little weights. Experiments reveal that simple DNN and CNN-based models are not able to
recover high-frequency waveform components, thereby reducing speech intelligibility. The
proposed FCN model recovers waveforms successfully and outperforms the LPS-based
DNN baseline in terms of intelligibility and speech quality. The study [32] presents an
efficient E2E SE model which employs the CNN module to retrieve speech locality features
and the SRU module to represent their sequential properties. SRU can be effectively paral-
lelized in computation, using fewer model parameters than LSTM and GRU. With the SRU
and the constrained feature map, the model performs favourably to other latest techniques
with decreased computational cost and running time.

A wavenet-based E2E SE is proposed [26], where the suggested model adaption
preserves the Wavenet’s outstanding acoustic modeling capabilities while decreasing its
temporal complexity. The model uses non-causal, dilated convolutions and predicts target
signals. The discriminative model adapts by reducing regression loss with supervised learn-
ing. These changes make training and inference parallelizable. Both computational and
perceptual assessments recommend the suggested technique above Wiener filtering, which
evaluates the magnitude spectrogram. Due to high speech sampling rates, using a lengthy
temporal input context at the sample level is challenging yet essential for high-quality SE
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results. For this, the study [33] presents the Wave-U-Net, which resamples feature maps to
calculate and aggregate information at various time scales. With architectural changes, the
study provides an additional output layer, an upsampling approach, and a context-aware
prediction framework to decrease artifacts. Experiments for speech separation show that
the Wave-U-Net architecture performs similarly to a state-of-the-art spectrogram-based
U-Net architecture. Finally, the study highlights an issue with outliers in existing SDR
assessment criteria and advises presenting rank-based data.

The study [34] presents CNN for real-time SE in the temporal-domain. The suggested
CNN uses an encoder-decoder architecture with a temporal convolutional module. The
encoder part of temporal CNN low-dimensionalizes a noisy input frame. The temporal
convolutional module employs causal and dilated convolutional layers to exploit present
and previous frames of encoder output. The Decoder reconstructs improved frames from
the outputs. The model is speaker as well as noise-independent and, according to experi-
ments, consistently outperformed the SOTA real-time convolutional recurrent model. Fully
convolutional models have fewer trainable parameters than other models. The study [35]
proposes the temporal CRN, an E2E neural model that maps the noisy waveforms to the
clean waveforms. The model efficiently exploited both short-term and long-term informa-
tion. In addition, the study offered a forward propagation architecture that downsamples
and upsamples the speech waveforms. The proposed model outperformed CRNs and also
provided crucial training stabilization approaches. In terms of speech intelligibility and
quality, the temporal CRN model exceeded the previous techniques.

The study [36] examined how the loss functions affect the time-domain deep learning
SE. Perceptually inspired loss functions may be better than MSE. The study demonstrated
that the learning rate is a significant design parameter even for adaptive gradient-based
optimizers, which is typically disregarded. In addition, waveform matching performance
measurements may fail totally in certain cases. Finally, it has been demonstrated that
a loss function based on scale-invariant signal-to-distortion ratio yields strong overall
performance across a variety of common SE assessment metrics, suggesting that signal-
to-distortion ratio is a solid general-purpose loss function for SE systems. The study [23]
presents an E2E utterance-based SE framework employing FCNs. Due to utterance-based
optimization, temporal correlation information is used to directly improve the perception-
based objective measures. The FCN is utilised to optimise speech intelligibility. Due to
consistency between training and assessment measures, the experimental findings have
suggested that the proposed SE improves the intelligibility over standard MSE-optimized
speech. By adding intelligibility into model optimization, human subjects and automated
ASRs can understand the enhanced speech better than with the least MSE criteria.

Using generative adversarial networks (GANs) on the raw signal, the study [27] offers
a generative technique to regenerate noisy signals into their clean versions. Different
variants of the proposed system are investigated to determine the best architecture for
an adversarially trained convolutional auto-encoder applicable for speech signals. The
suggested approach is objectively and subjectively evaluated. The former lets us pick
among variants and tweak hyperparameters, while the latter is employed in a 42-subject
listening experiment to confirm the approach’s success. In addition, showed how the
method may be used to regenerate whispered speech. The research [37] offers time-
domain SE using GAN, an extension of the generative adversarial network in the time-
domain with metric assessment to alleviate the scale issue and give model training stability,
thereby improving performance. In addition, provides a novel approach based on objective
function mapping to analyse Metric GAN’s performance and explain why it is superior to
Wasserstein GAN. Experiments prove that the suggested technique works and show the
benefits of Metric GAN. Table 1 summarizes the various neural models with research gap
for SE.
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Table 1. Summary of Related Studies.

Reference# Neural Model Processing Domain Research Gaps

[28] CNN+LSTM Frequency-Domain Handy-crafted features with no phase estimation. High
computational Load

[29] DNN+EMD Frequency-Domain Handy-crafted features with no phase estimation, High
computational Load

[30] DNN,RNN Frequency-Domain Handy-crafted features with iterative phase estimation but
high computational Load

[31] GRU,RNN Time-Domain No handy-crafted features, requires no phase estimation,
Computationally efficient

[32] CNN+BiSRU Time-Domain No handy-crafted features, requires no phase estimation,
Computationally efficient

[33] CNN Time-Domain No handy-crafted features, computationally efficient but no
spectral analysis is performed

[34] CNN Time-Domain No handy-crafted features, computationally efficient but
encoder-decoder architecture with various skip connections

[35] CNN Time-Domain No handy-crafted features, requires no phase estimation, but
computationally not efficient

[37] GAN Time-Domain Generative networks which require high computational load

In this paper, we propose and thoroughly examine an E2E waveform mapping-based
SE approach utilising an alternative CRN. This method achieves better efficiency by com-
bining the benefits of CNN and parallel recurrent models (LSTM, GRU, and SRU), which
enables us to map waveforms from end-to-end. In contrast to CRN models that are based on
spectral mapping, the proposed methods directly estimate feature masks from unprocessed
waveforms using highly parallelizable recurrent networks. The contributions of this study
include: (a) Unlike CRNs proposed in [14,15] based on spectral mapping, the proposed
E2E-models directly generate feature masks from raw waveforms using highly paralleliz-
able recurrent modules. For SE, we have examined our methodology using accessible
datasets [38–40] and obtained high speech quality ratings equivalent to the state-of-the-art
technique while using a very straightforward architecture and l1 loss function. (b) There
is no need for handmade acoustic features or their processing while using raw speech
waveforms as model inputs. Furthermore, no linear interpolation techniques are needed
for upsampling, which might result in the loss of essential information. The suggested
E2E-model is a simple design which outperforms a number of complex neural network
techniques. This architecture, we believe, may be used for regression challenges other than
speech enhancement, which involves long-term dependency and high-resolution time-
series data. We examined our E2E model using various objective measures, confirming its
potential to greatly improve the voice quality and intelligibility.

3. Proposed E2E Waveform-Based SE Algorithm

This section describes the proposed E2E SE system in detail. The architecture is a
completely discrete E2E neural network without any preprocessing or customized acoustic
features. It jointly represents local and sequential information by leveraging the benefits of
CNN and parallel RNNs. Figure 2 illustrates the model’s general structure of the proposed
SE algorithm.

Our model has adopted the 1D CNN input module for SE implementation based on
waveform mapping. WaveCRN [18] is the foundation for these SE models. For feature
map extraction, the frames of input noisy speech and two-dimensional (2D) tensors are
convolved. The convolution stride is selected to half the kernel size to decrease the length
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of the feature map. With such arrangements, the feature map is reduced from speech length
to time steps in order to properly compute sequences. Following the 1-D convolutional
layer (Conv-1D), there is a batch normalization (BN), PReLU activation, Bi-LSTM/Bi-
GRU/Bi-SRU modules, and a 1-D deconvolutional layer (Deconv-1D). Conv-1D with
Recurrent Net is an effective module for transforming noisy waveforms to clean waveforms.
Convolution and recurrent networks may process speech at the frame and utterance levels,
respectively. Three types of temporal encoders are used for this purpose: the bidirectional
LSTM (Bi-LSTM), the bidirectional GRU (Bi-GRU), and the bidirectional SRU (Bi-SRU).
Bi-LSTM, Bi-GRU, and Bi-SRU-based feature extractors are used to construct encoded
features for all batches of feature maps. It is applied to the feature maps using a restricted
feature mask (RFM). Bi-LSTM/Bi-GRU/Bi-SRU then encodes feature maps into restricted
feature masks (RFM), which are element-wisely multiplied by feature maps to generate
a masked feature map. There are two residual connections; (i) adding the recurrent net
input to the recurrent net output and (ii) adding the input to the Deconv-1D layer output.
These residual connections, we discovered, are important for developing a deep neural
architecture. Finally, a transposed 1D convolution layer estimates the improved waveform
y from the masked feature map.

Figure 2. Architecture of the proposed E2E model. It integrates 1D-CNN with bidirectional RNNs:
Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Unit(SRU). There
are two residual connections; (i) adding recurrent net input to recurrent net output and (ii) adding
input to the Deconv-1D layer output.

Usually, the short-time Fourier Transform (STFT) is used to transform speech wave-
forms into the spectral domain in the case of spectral mapping-based SE systems. However,
to perform waveform mapping-based SE, we replaced the STFT processing with a 1D CNN
module. Different local patterns of speech signals are captured by a 1D convolutional mod-
ule. Various feature maps relate to various periodic signal elements. In terms of signal pro-
cessing, convolutional kernels can be considered as a collection of finite-impulse-response
(FIR) filters. Convolutional kernels have the capacity to resemble ordinary filter banks [20].
The outputs of the time-convolution are thus viewed as a concealed Time-Frequency (T-F)
representation. The CNN module is completely trainable owing to the nature of neural nets.
The input noisy audio Y ∈ RN×1×L is convolved with a two-dimensional tensor M ∈ RC×K

for every batch to extract the feature map M ∈ RN×C×T with the batch size N, channels
number C, size of kernel K, time steps T, and speech length L, respectively. Furthermore, in
order to limit the sequence length for computational performance, the convolution stride
was set to half the size of the kernel size, resulting in reducing the length of M from L to
T = 2L

K+1 .
With a high computational load, RNN-based SE models can obtain good results [19].

Therefore, various recurrent models are used in this study to examine SE performance
when combined with CNN. We captured and examined the temporal correlation of the
feature maps extracted by the input module in both directions using Bi-LSTM, Bi-GRU,
and Bi-SRU. The feature maps are passed through the LSTM/GRU/SRU-based recurrent
feature extractor for each batch. The encoded features are formed by concatenating the
hidden states extracted in both directions. The feature maps are multiplied to the restricted
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mask Q ∈ RN×C×T to transform the feature maps. With 1D temporal deconvolution
(Deconv-1D), we upsampled the features back to raw waveforms. The deconvolutional
layer enables the model to construct a waveform segment using the transformed features
vector. However, this process is prone to uneven overlaps, resulting in an unusual pattern
of distortions, shown in Figure 3. When the kernel size is not divisible by the stride, the
deconvolutional layer exhibits uneven overlap. For this reason, the stride was set to be half
the kernel size to ensure that the outputs are equally balanced and free of distortions. Since
the feature map length was reduced, length restoration is required to generate waveforms
that have lengths similar to the input waveforms.

Figure 3. Upper Panel: A 1-D Deconv with uneven overlaps, where kernel size K = 3 and stride λ = 2.
Bottom Panel: A 1-D Deconv with even overlaps, for K = 4 and stride λ = 2. The light blue units are
the results of an upsampling operation, where dark blue units represent overlapped upsampling.

Given the input and output lengths as Lin, Lout, whereas stride and padding are as λ
and γ, the relationship between input and output lengths is expressed as:

Lout = (Lin − 1)× (λ− 2)× γ + (K + 1) + 1 (1)

With Lin = T = 2L
K+1 , λ = K

2 , and γ = K
2 , Lout is same as L which indicates that output

waveforms have the same length as input waveforms. The waveform error łwe is used as
the time-domain loss function. For the output time-domain signal and the corresponding
target signal with N samples, the łwe is defined as:

łwe =
1
N

N

∑
j=1

(xi − x̂i)
2 (2)

where łwe is the waveform error (loss function), N are samples of target speech, xi is
input speech and x̂i is output (estimated speech). We investigated each of the three RNNs
separately and created E2E SE models. To reduce the computational cost of deep models
while preserving noise suppression efficacy, RNNs are incorporated to capture temporal
correlations. The internal structures of three RNN variations (LSTM, GRU, and SRU)
are illustrated in Figure 4. The three E2E SE models are denoted as E2E-BLSTM-CRN,
E2E-BGRU-CRN, and E2E-BSRU-CRN, respectively.

The attention mechanism in the residual connections of the proposed model is com-
posed of three components: Query Q, Key K, and Value V. The correlation scores of rows
in Q are first calculated with all the rows in K using the expression, given as:

W = QKT (3)

where KT is the transpose of K. The correlations scores are than converted to the probabili-
ties using the Softmax operator as:
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So f tmax(Wi,j) =
expWi,j

∑T−1
j=1 exp(Wi,j)

(4)

Finally, the rows of V are linearly combined using weights in Softmax (W) to obtain
the attention output.

A = So f tmax(W)V (5)

The attention mechanism is termed as self-attention if Q and K are computed from the
same sequence.

Figure 4. Internal structures of LSTM (Left), GRU (Middle), and SRU (Right).

4. Experiments
4.1. Datasets

Experiments are carried out to evaluate the performance of the proposed SE by col-
lecting utterances from the TIMIT [39], LibriSpeech [38], and VoiceBank [40] databases,
respectively. The clean speech utterances are collected from the databases (TIMIT, Lib-
riSpeech and VoiceBank). With this arrangement, we have created a combined dataset
consisting of three separate datasets which has increased the generalization of the dataset.
The TIMIT dataset consists of phonetically balanced speech waveforms sampled at 16 kHz,
while LibriSpeech has 1000 h of speech waveforms. The Voice Bank database contains
28 speakers from the English accent group (England) and 56 speakers from other English-
speaking regions (Scotland and the United States). In our tests, we solely used clean speech
utterances from three databases. Noise sources from the Aurora-4 [41], NOISEX-92 [42],
and DEMAND [43] databases are used to examine the proposed SE models in noisy envi-
ronments. Three SNRs (signal-to-noise ratios) ranging from −5 dB to 5 dB with a 5 dB step
size are used to generate noisy utterances. SNR is a measure of the strength of the desired
speech signal relative to background noise (undesired signal). A collection of utterances
is chosen from the TIMIT, LibriSpeech, and VoiceBank databases to train the proposed
model. The training utterances comprise both genders and are mixed with all noises to
improve speaker generalization. As a result, a large number of utterances from the TIMIT,
LibriSpeech, and Voicebank databases are included in model training. The model testing
uses a distinct collection of utterances collected at random from the TIMIT, LibriSpeech,
and Voicebank databases. All noises, with the exception of two, are used in training and
testing. As unseen noises, factory2, and cafe noises are included. Seen noises appear both
in training and testing whereas unseen noises are not appeared in the training process.

4.2. Evaluation Measures

The experiments use four objective metrics to quantify the suggested SE, including
the STOI (short-time objective intelligibility), the PESQ (perceptual evaluation of speech
quality), and the composite measures (CM). Quality, Intelligibility, distortion, and residual
noise are determined by STOI, PESQ, and CM, respectively. The majority of the objective
methods have been proven to be insufficient for evaluating a wide variety of distortions,
including those that are often present when speech passes over communication systems.

PESQ [44], an ITU-T P.862 recommendation, scores perceptual speech quality from
−0.5 to 4.5. The PESQ measure considers positive and negative loudness variations
differently, in contrast to other objective measures, which treat both in the same way.
This is because the perceived quality is affected differentially by positive and negative
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loudness variances. A positive difference would suggest the addition of a component to
the spectrum, such as noise, while a negative difference would suggest the removal or
significant attenuation of a spectral component.The average disturbance value dsym and
the average asymmetrical disturbance value dasym are combined linearly to get the final
PESQ score, as given in Equation (6).

PESQ = A0 + A1dsym + A2dAsym (6)

where dsym and dAsym are symmetric and asymmetric distributions, respectively, whereas
A0, A1, and A2 are the parameters with predefined fixed values 4.5, 0.1, and 0.0309,
respectively.

STOI [45] assesses speech intelligibility that generates values ranging from 0 to 1.
STOI presents a correlation between the temporal envelopes of the clean and distorted
speech in short-time speech segments. STOI is different from many objective measures
which usually consider the entire speech signal or use a very short speech segment of
10–20 ms for analysis.

The composite measures [46] is the combination of different measures including CSIG
(determines the distortion of speech) and CBAK (determines the residual noise). The reason
behind the composite measure is to combine different objective measures to get a strong
correlation between signals.

CSIG = 3.093− 1.029LLR + 0.603PESQ− 0.009WSS (7)

CBAK = 1.634− 0.478PESQ− 0.007WSS− 0.063SSNR (8)

where LLR is log-likelihood ratio, WSS is the weighted spectral slope, and SSNR is segmen-
tal SNR, respectively.

4.3. Model Architecture

The number of channels (C), kernel size (K), and stride size (λ) in the input Conv-1D
module were set to 256, 96, and 48, respectively, with padding (48). Padding was applied to
the raw speech signals to make them divisible by the stride size. The number of channels
was used to determine the size of the Bi-LSTM/Bi-GRU/Bi-SRU hidden state (6 stacks).
To change the masked feature maps, all the hidden states were linearly shifted to a half
dimension. Finally, a deconvolutional layer was applied in the waveform generation
step to translate the 2D feature maps into a 1D sequence, that was then passed through an
activation function to obtain the enhanced speech waveform. The model’s input features are
512 dimensional, whereas the output features are 256 dimensional. Figure 5 demonstrates
the model architecture.

Figure 5. Model Architecture

5. Results and Discussions

This section discusses the results of this study. We examined the proposed E2E SE
models objectively, as indicated in the following subsections.
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5.1. Speech Enhancement in Seen Noises and SNRs

In terms of the STOI and PESQ, Table 2 compares the proposed SE methods for the
four example seen noises. When using the proposed E2E SE models, we noted improved
intelligibility and quality compared to the noisy speech. For example, the E2E-BLSTM-CRN
increased the STOI and PESQ over the noisy speech (UNP) at −5 dB babble noise by
23.37% and 36.02%, respectively. Similarly, important improvements in STOI and PESQ
were observed by E2E-BGRU-CRN over the noisy speech at −5 dB exhibition hall noise,
thereby improving STOI by 27.9% and 35.15%, respectively. E2E-BSRU-CRN improved
the STOI by 22.24% and 35.51% over noisy speech in the street environment, respectively.
The overall STOI and PESQ in Table 1 for all SNRs and four noises, the E2E-BSRU-CRN,
achieved the best scores and improved by 22.62% (STOI) and 33.07% (PESQ). The other
two variants also performed very well in achieving excellent STOI and PESQ, that is,
E2E-BLSTM-CRN achieved 17.35% (STOI) and 31.2% (PESQ) whereas 21.26% and 31.74%
improvements in STOI and PESQ were obtained with E2E-BGRU-CRN.

Table 2. STOI and PESQ scores in example Seen Noises.

Noise Type Model
STOI PESQ

−5 dB 0 dB 5 dB −5 dB 0 dB 5 dB

Babble Noise

Noisy (UNP) 48.20 58.10 67.11 1.35 1.71 2.04
E2E-BLSTM-CRN 71.57 82.88 90.11 2.11 2.55 2.80
E2E-BGRU-CRN 73.06 81.76 91.23 2.09 2.58 2.83
E2E-BSRU-CRN 74.93 83.09 90.59 2.13 2.61 2.89

Exhibition Noise

Noisy (UNP) 51.09 58.91 68.61 1.42 1.66 1.96
E2E-BLSTM-CRN 77.96 79.59 78.58 2.19 2.57 2.82
E2E-BGRU-CRN 79.71 85.41 87.77 2.22 2.58 2.84
E2E-BSRU-CRN 79.66 86.88 88.24 2.23 2.62 2.90

Street Noise

Noisy (UNP) 55.21 61.70 69.79 1.39 1.77 2.16
E2E-BLSTM-CRN 75.77 83.81 91.19 2.09 2.56 2.79
E2E-BGRU-CRN 75.85 84.12 91.01 2.13 2.57 2.84
E2E-BSRU-CRN 77.44 84.76 91.31 2.15 2.60 2.87

Restaurant Noise

Noisy (UNP) 54.96 66.54 68.52 1.41 1.73 2.09
E2E-BLSTM-CRN 75.37 83.72 89.59 2.13 2.58 2.83
E2E-BGRU-CRN 75.03 83.74 87.73 2.15 2.61 2.84
E2E-BSRU-CRN 78.24 87.04 91.13 2.21 2.65 2.92

Table 3 summarizes the average STOI and PESQ scores, averaging the findings
across all types of seen noises. The results show unequivocally that E2E-BSRU-CRN
accomplished significant outcomes in terms of the STOI and PESQ. Figure 3 shows the
average improvements (STOIi and PESQi) in different seen noise categories. The average
STOI and PESQ scores in Table 2 show that E2E-BSRU-CRN effectively reduced the noise
signals with better speech intelligibility and perceptual quality as compared to its counter
E2E models (E2E-BLSTM-CRN and E2E-BGRU-CRN) for speech enhancement. Figures 6
and 7 demonstrates the average STOI and PESQ scores in seen noisy environments.

Table 4 shows test findings for speech distortion (CSIG) and residual noise distortion
(CBAK). It is clear that in terms of residual noise and speech distortion, the proposed
CNN and recurrent networks with residual connections outperformed. The background
additive noise frequencies were successfully decreased and less speech distortion was
caused by all three CRN models (E2E-BLSTM-CR, E2E-BGRU-CRN, and E2E-BSRU-CRN).
The E2E-BSRU-CRN, E2E-BLSTM-CRN, and E2E-BGRU-CRN improved the average CSIG
and CBAK scores from 1.78 and 1.59 with noisy speech at −5 dB to 2.89, 2.82, and 2.85.
This increased the CBAK by factors of 1.12 (38.40%), 1.04 (36.87%), and 1.07 (37.54%),
respectively. The CSIG was raised by factors of 0.69 (30.39%), 0.63 (28.50%), and 0.74
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(31.89%), respectively, by bringing the average CBAK to 2.27, 2.21, and 2.32. As shown
in Table 3, the suggested approaches greatly decreased the residual noise and speech
distortion for SNRs other than-5dB. A better CSIG and CBAK scores are obtained with
E2E-BSRU-CRN as compared to other two E2E models. The average CSIG and CBAK
scores with E2E-BSRU-CRN are improved from 2.02 and 1.73 to 3.10 (34.83%) and 2.66
(34.96%), respectively.

Table 3. Average STOI and PESQ scores in all Seen Noises.

Measure Model −5 dB 0 dB 5 dB Average

STOI

Noisy (UNP) 55.51 61.31 68.52 61.78
E2E-BLSTM-CRN 70.17 79.85 87.37 79.13
E2E-BGRU-CRN 75.92 83.76 89.43 83.04
E2E-BSRU-CRN 77.56 85.34 90.31 84.41

PESQ

Noisy (UNP) 1.39 1.72 2.06 1.72
E2E-BLSTM-CRN 2.13 2.57 2.81 2.50
E2E-BGRU-CRN 2.14 2.59 2.84 2.52
E2E-BSRU-CRN 2.18 2.62 2.90 2.57

Figure 6. Average STOI Scores (Seen Noisy Environments).

Figure 7. Average PESQ Scores (Seen Noisy Environments).

Table 4. Average CSIG and CBAK scores in all Seen Noises.

Measure Model −5 dB 0 dB 5 dB Average

CSIG

Noisy (UNP) 1.78 2.22 2.69 2.23
E2E-BLSTM-CRN 2.85 3.22 3.74 3.27
E2E-BGRU-CRN 2.82 3.19 3.71 3.24
E2E-BSRU-CRN 2.89 3.31 3.81 3.34

CBAK

Noisy (UNP) 1.59 1.83 2.14 1.85
E2E-BLSTM-CRN 2.27 2.65 2.92 2.61
E2E-BGRU-CRN 2.21 2.60 2.86 2.56
E2E-BSRU-CRN 2.32 2.68 2.98 2.66
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5.2. Speech Enhancement in Unseen Noises

Table 5 compares the proposed SE methods for the two example unseen noises. The
two noise types (factory2 and cafeteria) were not included in the training. When using the
proposed E2E SE models, we noted improved intelligibility and quality compared to the
noisy speech. For example, the E2E-BLSTM-CRN increased the STOI and PESQ over the
noisy speech (UNP) at 0 dB factory2 noise by 24.14% and 33.87%, respectively. Similarly,
important improvements in STOI and PESQ were observed by E2E-BGRU-CRN over
the noisy speech at 0 dB cafeteria noise, thereby improving STOI by 26.44% and 34.84%,
respectively. E2E-BSRU-CRN improved the STOI by 24.95% and 35.68% over noisy speech
in the cafeteria environment, respectively. The overall STOI and PESQ in Table 4 for all
SNRs and two unseen noises, the E2E-BSRU-CRN, achieved the best scores and improved
by 24.45% (STOI) and 35.11% (PESQ). The other two variants also performed very well
in achieving excellent STOI and PESQ, that is, E2E-BLSTM-CRN achieved 16.21% (STOI)
and 29.34% (PESQ), whereas 20.01% and 29.55% improvements in STOI and PESQ were
obtained with E2E-BGRU-CRN.

Table 5. STOI and PESQ scores in Unseen Noises.

Noise Type Model
STOI PESQ

−5 dB 0 dB 5 dB −5 dB 0 dB 5 dB

Factory2 Noise

Noisy (UNP) 47.68 57.80 66.96 1.31 1.64 1.99
E2E-BLSTM-CRN 71.04 81.94 89.92 2.02 2.48 2.74
E2E-BGRU-CRN 72.53 81.42 91.05 2.00 2.51 2.77
E2E-BSRU-CRN 74.40 82.75 90.39 2.05 2.55 2.82

Cafeteria Noise

Noisy (UNP) 51.32 58.61 68.45 1.33 1.51 1.91
E2E-BLSTM-CRN 77.43 79.25 78.40 2.11 2.48 2.76
E2E-BGRU-CRN 79.18 85.05 87.58 2.13 2.58 2.78
E2E-BSRU-CRN 79.11 86.15 88.06 2.16 2.56 2.86

5.3. Comparison with Competing SE Models

In this part, we provide the average test results in terms of the STOI and PESQ
for the proposed models and the alternative SE models. The findings demonstrate that
the suggested E2E models outperformed the LSTM [47], DNN [48], CNN [49], GAN (3-
layer ReLU MLP) [50], CNN-GRU [51], FCNN [52], and CRN [32] models in terms of
speech quality and intelligibility. Table 6 provides the generalizations of the proposed and
competing models, all of which were trained using the same training and testing data from
both gender. For this section of experiments, separate set speech utterances is used to obtain
the generalization of the proposed models. The noise types and SNRs are averaged to
provide the findings. The results clearly show that the suggested E2E models for SE raised
the quality and understandability. For instance, the E2E-BSRU-CRN and E2E-BGRU-CRN
increased the average STOI over LSTM by 3.1% and 1.9%, respectively. Similarly, the E2E-
BSRU-CRN and E2E-BGRU-CRN increased the average STOI over DNN by 6.8% and 5.6%,
respectively. Additionally, E2E-BSRU-CRN outperformed the CNN and GAN in terms of
STOI by 10.5% and 6.0%, respectively. When it comes to the PESQ, the E2E-BSRU-CRN
outperformed the FCNN, GAN and CNN by factors of 0.37 (14.39%), 0.47 (18.28%), and
0.35 (13.61%), respectively. Furthermore, the E2E-BGRU-CRN outperformed the FCNN,
DNN and LSTM by factors of 0.32 (12.69%), 0.36 (14.28%), and 0.18 (7.14%), respectively.
Figure 8 displays the total average improvement of the proposed and competing models
over the noisy speech.
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Table 6. Comparison with other SE Models.

SE Models
STOI PESQ

−5 dB 0 dB 5 dB Avg −5 dB 0 dB 5 dB Avg

Noisy (UNP) 55.5 61.3 68.5 61.8 1.39 1.72 2.06 1.72
LSTM [47] 74.2 82.4 88.9 81.8 2.03 2.33 2.67 2.34
DNN [48] 70.0 78.7 85.6 78.1 1.75 2.19 2.53 2.16
CNN [49] 70.0 79.8 86.8 78.9 1.83 2.25 2.59 2.22
GAN [50] 65.0 75.7 82.6 74.4 1.72 2.15 2.44 2.10

CNN-GRU [51] 74.6 83.1 90.1 82.6 2.01 2.34 2.65 2.33
FCNN [52] 71.6 79.3 86.3 79.1 1.78 2.21 2.59 2.20
CRN [32] 76.4 84.2 89.3 83.3 2.04 2.40 2.73 2.40

E2E-BLSTM-CRN 75.2 83.8 90.4 83.2 2.13 2.57 2.81 2.50
E2E-BGRU-CRN 75.9 84.3 90.9 83.7 2.14 2.59 2.84 2.52
E2E-BSRU-CRN 77.6 85.5 91.6 84.9 2.18 2.62 2.90 2.57

Figure 8. PESQ and STOI Percentage Improvements of All Speech Enhancement Models over the
Noisy speech (Unprocessed).

In order to highlight the advantages of supervised learning over unsupervised deep
learning, we also compared the proposed models with three unsupervised approaches.
Low-rank sparse decomposition (LRSD) [53], Nonnegative RPCA (NRPCA) [54], and
MMSE [55] are among some of the unsupervised algorithms for SE Both the LRSD and
the NRPCA estimated binary masks. Table 7 displays the test results in terms of STOI
and PESQ for the SE models where the average STOI of three E2E-CRN models is raised
by 11.2%, 10.9%, and 13.1% over LRSD, NRPCA, and MMSE, respectively. In addition,
the PESQ results are boosted by factors of 0.49 (19.36%), 0.48 (18.97%), and 0.71 (28.06%),
respectively, over unsupervised SE algorithms.

Table 7. Comparison against Unsupervised Deep Learning.

Measure SE Algorithms −5 dB 0 dB 5 dB Average

STOI

Noisy (UNP) 55.51 61.31 68.52 61.78
LRSD [53] 63.2 70.6 79.43 71.0

NRPCA [54] 63.3 70.4 80.3 71.3
MMSE [55] 60.5 68.8 78.1 69.1

E2E-CRN (Proposed) 74.5 82.9 89.0 82.2

PESQ

Noisy (UNP) 1.39 1.72 2.06 1.72
LRSD [53] 1.71 1.98 2.28 2.04

NRPCA [54] 1.78 2.02 2.33 2.05
MMSE [55] 1.51 1.88 2.15 1.82

E2E-CRN (Proposed) 2.15 2.59 2.85 2.53
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Less distortion and residual noise are evident in the enhanced speech generated by the
proposed E2E SE models, as shown in Figure 9. The spectrogram of speech generated using
the proposed models shown to have substantially less residual noise and speech distortion.
Figure 9 shows example spectrograms of speech signals corrupted by babble noise at−5 dB
SNR. There is less significant residual noise in the spectrogram of speech processed by
E2E-BSRU-CRN. The other two variants (E2E-BLSTM-CRN and E2E-BGRU-CRN) also
reduced the background noise with less speech distortion.

Figure 9. Example Spectrograms of Speech utterance degraded by −5 dB Babble Noise. The spectro-
grams of three E2E models show less residual noise.

5.4. Model Depth

As examined in the above discussions, the performance of the SRU-based RNN is better
than that of LSTM and GRU in terms of STOI and PESQ. To examine the depth of models,
we evaluated the training time and trainable parameters of three RNNs. In experiments, we
have used 6stacked LSTM/GRU/SRU. The depth of the models has a great impact on the
SE performance. As a result, in this experiment we examined the impact of model depth
on the training time (computational load). The total number of trainable parameters (in K),
forward and back propagation (in ms) for three E2E models and WaveNet [26] are given in
Table 8, where E2E-BSRU-CRN indicates the lower number of trainable-parameters and
better forward and back propagation results. On the other hand, LSTM contains a large
number of trainable parameters. GRU shares 25% less trainable-parameters as compared
to LSTM. In the forward/back propagation pass during the training stage, E2E-BSRU-
CRN outperforms Wave-U-Net, E2E-BLSTM-CRN, and E2E-BGRU-CRN while using fewer
parameters than Wave-U-Net and the other two E2E-CRNs. Table 8 provides the model
size and computational cost.

SRU has been shown [17] to provide performance similar to that of LSTM with greater
parallelism. Gate dependencies in LSTMs enable training and inference to be slower. The
sequential correlation is represented by adding highway connection across the recurrent
layers, while all the gates in SRU solely rely on the input of the present time. As a result,
the SRU gates are determined sequentially. SRU and LSTM have forward propagation and
time complexity as O(T N C) and O(T N C2), respectively. Due to the benefits listed above,
SRU is a good candidate for CNN integration.
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Table 8. Model Depth and computational cost.

Model E2E-BLSTM-CRN E2E-BGRU-CRN E2E-BSRU-CRN Wave-UNet

Forward Pass 37.5 ± 2.0 28.12 ± 1.22 2.15 ± 0.006 23.77 ± 0.009
Back Pass 58.47 ± 1.05 43.48 ± 0.22 4.98 ± 0.005 23.76 ± 0.20

Parameters 9203 6902 4976 17537

5.5. Automatic Speech Recognition

According to the speech enhancement assessments, the suggested E2E-CRN models
significantly reduced the background noise and restored a high-quality, recognizable speech.
Therefore, we expected improved speech recognition performance in adverse noise settings.
As shown in Figure 10, the suggested SE models are applied at the front-end to provide
superior ASR results. We used the Google ASR [56] for this task.

Figure 10. Google ASR system with Speech Enhancement at Front-End.

We assessed ASR performance using word error rates (WERs). To train the suggested
E2E-CRN speech improvement models, 2000 speech utterances were randomly chosen from
the TIMIT and LibriSpeech datasets. We enhanced speech using the trained models, and
then we created new training and testing datasets by generating time-domain utterances.
Both the new training dataset and the new testing dataset were used to test the ASR models.
As shown in Figure 11, the ASR system outperformed other SE models when evaluated
using utterances processed by E2E-CRN models. With the good SNR levels, the WERs
steadily dropped. The suggested SE may be used as a front-end to improve the ASR
performance as seen by the average 13% WERs obtained with the utterances processed by
the proposed E2E-CRNs.

Figure 11. WERs using Google ASR system.

5.6. Cross Corpus Analysis

To investigate how well the proposed neural models generalise across the corpora,
we conducted an experimental investigation. The speech quality and clarity of three
datasets—TIMIT, LibriSpeech, and VoiceBank—are investigated. A speech dataset is often
made up of multiple utterances made by different speakers. The spoken utterances are
recorded in restricted settings for clear recordings that are suitable for speech applications.
Speech utterances may have distinct components as a result of the utterances being captured
in preference contexts for various datasets. For instance, the quality of an utterance collected
by the same individual using several microphones might vary greatly. We give Table 9
which presents the average PESQ and STOI values across all noise types and SNR levels
to investigate the impact of the deep neural models for various speech datasets. The
same number of training utterances are used for all models, and they are all subsequently
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assessed using the same collection of utterances. The cross-corpus findings show that
suggested and other deep models outperformed LibriSpeech and TIMIT when trained
with the VoiceBank dataset. The average of three E2E models is represented as E2E-CRNs
for simplicity.

Table 9. Cross Corpus Analysis of STOI and PESQ scores.

Models
LibriSpeech TIMIT VoiceBank

STOI PESQ STOI PESQ STOI PESQ

E2E-CRNs 79.7 2.29 79.2 2.31 81.1 2.39
LSTM 78.4 2.17 77.3 2.18 78.5 2.27
DNN 71.9 2.05 70.8 1.94 72.0 2.09
CNN 75.1 2.18 74.0 2.07 75.2 2.22
GAN 71.1 2.07 70.0 1.96 71.2 2.11

CNN-GRU 79.0 2.30 77.9 2.19 79.1 2.34
FCNN 75.4 2.16 74.3 2.05 75.5 2.20
CRN 78.1 2.25 77.5 2.20 78.7 2.29

6. Conclusions

For improving degraded speech, end-to-end deep learning models have attracted a lot
of interest. The local and sequential attributes of speech signal should be effectively taken
into consideration while modelling in order to enhance the performance of E2E models. We
have developed resource-effective and compact neural models for waveform-based end-
to-end speech enhancement that are noise-resistant. We developed three distinct speech
enhancement systems based on LSTM, GRU, and SRU by fusing the Convolutional Encode-
Decoder (CED) and Recurrent Neural Networks (RNNs) in the Convolutional Recurrent
Network (CRN) architecture.the experiments show that the proposed models lead to im-
proved quality and intelligibility with fewer trainable parameters, notably reduced model
complexity, and inference time than existing recurrent and convolutional models. The
E2E-BLSTM-CRN increased the STOI and PESQ over the babble noisy speech by 23.37%
and 36.02%, respectively. Important improvements in STOI and PESQ were observed by
E2E-BGRU-CRN over the noisy speech in exhibition hall noise, thereby improving STOI by
27.9% and 35.15%, respectively. The findings also concluded that the suggested E2E models
outperformed the LSTM, DNN, CNN, FCNN, CNN-GRU and GAN models in terms of
speech intelligibility and quality. Less distortion and residual noise are concluded in the
enhanced speech generated by the proposed E2E SE models. It is also concluded that the
ASR system outperformed other SE models when evaluated using utterances processed
by E2E-CRN models. In the forward/back propagation pass during the training stage,
E2E-BSRU-CRN outperforms Wave-U-Net, E2E-BLSTM-CRN, and E2E-BGRU-CRN while
using less parameters than Wave-U-Net and the other two E2E-CRNs. Finally, the cross-
corpus findings show that suggested and other deep models outperformed LibriSpeech
and TIMIT when trained with the VoiceBank dataset.

Phase is an important aspect of modern speech enhancement systems since phase
plays a significant role in improving the speech quality. This paper emphasize the speech
magnitude enhancement. We will be devoted to include the phase estimation [57] and
incorporate with the proposed SE model. Moreover, more robust loss functions will be
worked out for better results.
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