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Abstract: In this paper, a Deep Reinforcement Learning (DRL)-based approach for learning mobile
cleaning robot navigation commands that leverage experience from expert demonstrations is pre-
sented. First, expert demonstrations of robot motion trajectories in simulation in the cleaning robot
domain are collected. The relevant motion features with regard to the distance to obstacles and the
heading difference towards the navigation goal are extracted. Each feature weight is optimized with
respect to the collected data, and the obtained values are assumed as representing the optimal motion
of the expert navigation. A reward function is created based on the feature values to train a policy
with semi-supervised DRL, where an immediate reward is calculated based on the closeness to the
expert navigation. The presented results show the viability of this approach with regard to robot
navigation as well as the reduced training time.

Keywords: Deep Reinforcement Learning; mobile robot navigation; semi-supervised learning;
autonomous cleaning robots

1. Introduction

Over the last couple of decades, robotic technologies have proliferated in various
fields with a high rate of repetitive and manual labor-intensive tasks. Highly repetitive
tasks could be described by a set of commands and automated without requiring complex
decision-making mechanisms. Expert demonstrations were enough to encode the robot
states and reactions to them in safe and static environments. With recent advancements
in Deep Learning (DL), machine learning technologies are more capable of being applied
in highly dynamic environments and solving complex tasks in ambiguous settings. Such
functions as floor vacuuming, lawn mowing, and even autonomous driving have been
delegated to autonomous systems with differing levels of artificial intelligence [1,2]. Their
necessity for human-like behavior is highly dependent on their domain’s requirements,
and the performance’s optimality is not always required. In navigation tasks for floor
cleaning robots, it is not only important to perform the cleaning without wasting resources,
but also to do it in a manner that resembles the experience of a qualified operator. It should
be reasonably understandable to non-experts in order to build confidence in the robot’s
observable skills, as cleaning environments are often shared with workers or clients of the
respective establishment. A Behavioral Cloning (BC) approach is often used to embed the
robot with human-like navigation. Recorded human trajectories are used to learn how to
replicate them when encountering the same situation. However, BC has reported issues
when dealing with generalization [3]. For generalization, it requires a specific setting or a
large amount of unbiased expert data. The expert demonstrations alone are not enough to
gain all the required knowledge in some domains where the state-space is so large that it is
essentially impossible to collect all the relevant experiences in order to learn a generalizable
policy. Deep Reinforcement Learning (DRL) is a popular method to overcome this bottle-
neck. DRL learns in its given environment through trial and error, optimizing its policy
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by evaluating its reactions to states through the returned reward. A state representation
is input into the neural network, and the resulting action is obtained. This action is then
performed in the environment, and a reward is calculated based on the new state. Then the
state–action pair can be optimized based on the returned reward. However, engineering
this reward in DRL is a daunting task, especially when a particular behavior is desired. It is
difficult to predict what behavior will result from a hand-engineered function and whether
it will be acceptable for other human agents in the environment. Therefore, we propose to
implement the idea, borrowed from BC, to use the expert demonstrations and assume them
as a guideline for training a neural network for cleaning robot navigation by using DRL.
We propose to collect a dataset of expert demonstrations, define characteristic features of
motion in the floor cleaning domain, and calculate a reward function based on them. Then
use this reward to train a neural network through trial and error, without needing extensive
expert data, while maintaining their characteristic behavior. During the training, expert
demonstrations can be used as training samples to expose the neural network to optimal
navigation, thus speeding up the learning process. Our contributions in this paper can be
itemized as follows:

• Introduce expert motion features in the floor cleaning robot domain.
• Develop a reward calculation method from expert motion features.
• Implement an expert replay buffer in the DRL pipeline and introduce a combined

batch creation with an experience replay buffer for optimized training.

The remainder of this paper is organized as follows. In Section 2 related works are
reviewed. The method to obtain an expert feature-based reward is described in Section 3.
The proposed neural network architecture is discussed in Section 4 and its training setup
presented in Section 5. Experimental results are given in Section 6 and conclusions given in
Section 7.

2. Related Work

The relevant related works to the proposed cleaning robot navigation commands by
leveraging expert demonstrations with DL can be separated into two parts. First, the pro-
posed method aims to perform learned motion in continuous action space by employing
a neural network in order to obtain smooth and immediate motion output to incoming
environment description. Therefore, the relevant research in autonomous robot motion
control through DL is discussed. Second, the learned motion policy introduces expert expe-
rience into the training process while maintaining the exploration strategies inherent to RL,
so methods of introducing expert demonstrations into neural network-based approaches
are reviewed.

2.1. Neural Network-based Navigation

With the advancement of Deep Learning, there has been a significant amount of work
focusing on creating autonomous navigation systems based on neural networks [4,5]. While
many of these works focus on high-level planning and leave the execution of control and
motion to low-level controllers [6,7], various methods of direct action execution from sensor
inputs have also been considered [8]. A popular DL-enabled motion policy training method
is performed with neural networks based on the Q-learning approach [9–12]. A set of
possible action outputs is given to a neural network and a Q-value estimation for each
action is learned, conditioned on the input state. This method learns to evaluate the possible
future reward for all the given actions at each timestep and selects one of them for execution
based on set criteria. In [13], a robot learns navigation behavior directly from the depth
images of the environment and is capable of selecting one of five actions to avoid collisions
while moving in an unknown environment. However, such approaches require a specified
discrete set of actions. Since these algorithms cannot output actions in continuous action
space, they are unsuitable for mimicking expert behavior in the floor cleaning robot domain,
where human inputs are recorded and executed as analogous signals.
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Deep Deterministic Policy Gradient-based (DDPG) architectures are often used to
tackle mobile robot navigation tasks in continuous action space. DDPG is an actor–critic-
based model where the actor network outputs motion controls as real scalars, and the critic
evaluates the state–action pair. In [14], sparse laser inputs are used to train a DDPG-based
neural network to navigate in a simulated environment. In [15], a Soft Actor–Critic (SAC)
algorithm is used instead of DDPG to achieve similar results to those in [14]. However,
the simplified state representation has difficulty navigating around objects of complex
shapes, as shown in [16], where the DDPG network is extended to include temporal image
embedding through a Convolutional Neural Network (CNN). However, the inclusion of
the CNN drastically increases the number of network parameters, making it difficult to
transfer it to real robot devices. A negative aspect of the DDPG algorithm is its tendency to
overestimate the Q-value, thus making the learning unstable [17].

To counter this issue, a Twin Delayed Deep Deterministic Policy Gradient (TD3) ar-
chitecture uses two critic networks instead of one and chooses the values of the critic that
provides the lower values, thus limiting the overestimation [18]. TD3-based algorithms
have been used to successfully train stable neural network-based motion policies [19,20]. In
the mobile robot domain, the authors in [21] develop a TD3-based approach for combining
path planning and motion execution and report outperforming DDPG and SAC approaches.
In [22], a TD3 neural network is used as a backbone for a goal-oriented exploration al-
gorithm in unknown environments. Both approaches show the capacity of TD3 to carry
out local robot motion with a high success rate, which can be used in real robot motion
scenarios. Therefore, we have taken this information into account and selected a TD3-based
architecture for implementing learning motion policies in continuous action space with a
reward function derived from expert motion features.

2.2. Expert Feature Extraction

Expert knowledge exploitation in mobile robots has been an active research area
for decades [23]. From expert systems, where fuzzy control is derived from recorded
expert motions [24], to BC-based methods, where a policy is learned directly from expert
demonstrations [25], prior knowledge helps to develop motion policies with human-like
behavior. BC sets the policy learning as a supervised learning task that trains a model to
predict an expert action from environmental input and has been widely used in autonomous
driving scenarios [26,27]. The role of an expert in the autonomous car driving domain
is well understood, and the backing of large corporations has allowed to collect and
freely distribute various driving datasets. Generally, this is not the case for mobile robots,
which are mostly specialized devices performing specific tasks and, as such, do not have
freely available expert motion datasets. Therefore, authors have to rely on manually
collected data and deal with the associated issues. Learning from manually collected
human demonstrations based on goal point and laser data is proposed in [28]. In [29] the
authors train a neural network to navigate a personal mobility device in a small area based
on RGB images, overcoming the issues related to a small and noisy dataset. Authors in [30]
develop a lifelong learning network that improves its policy from an initial policy based on
the Dynamic Window Approach (DWA) planner. However, these approaches either require
extensive data for the environments that they are trained in or do not generalize well in
unknown spaces.

Another way of embedding the motion policy with human-like behavior is to extract
the reward function from expert actions and use it to evaluate the learned policy during the
training. This method is referred to as Inverse Reinforcement Learning (IRL) and is widely
used in trajectory prediction and action selection tasks [31]. In the mobile robot domain,
IRL has been successfully applied in [32] to predict and execute trajectories observed from
human motion. Sample efficient IRL for robot navigation from human motion is proposed
in [33]. However, the ego agent is conditioned only on other agents in the simulation and
not on the surroundings. Navigation based on environment features is introduced in [34],
but the learned actions are considered in discrete action space. In general, IRL methods
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suffer from challenges in tasks, such as proper feature selection, sensibility to features,
difficulty in posing the IRL problem and lack of appropriate data to query [35]. To solve
the data querying problem, RL methods are still required. Methods without using IRL,
but still infusing human supervision in RL setting, are proposed in [36,37]. Here, instead
of obtaining the expert knowledge beforehand, a human-in-the-loop approach is used to
query an expert for advice on action and reward. While beneficial to the overall progress of
policy learning, this requires active interaction of human experts during the online training,
which can be cumbersome and time-consuming. In our implementation, we propose to
combine the BC-based approach of evaluating the performance against the designed expert
motion features in the cleaning robot domain, which are expressed as a reward function,
thus allowing to use DRL for learning a motion policy in unknown environments without
the need to learn the reward function through IRL.

3. Expert Feature-Based Reward Engineering

Neural network weight optimization in DRL is facilitated by the selected reward
function. In guided robot motion tasks, the main reward selection criteria are rather clear
and well documented—if the goal is reached, the environment returns a high positive
reward, but if a failure state is reached, the environment returns a large negative reward.
However, training a policy based on just these two reward criteria can be very difficult,
especially if the returned rewards are sparse. The neural network might not encounter
any of these states during the exploration, thus limiting the learning capabilities from such
trajectories. Additionally, this excludes embedding the motion with any kind of behavior,
as the policy will optimize only reaching the goal and not the motion itself. To rectify
this issue, an immediate reward function is often used. Each individual motion step is
evaluated, and a reward is attributed to it. Through this immediate reward, it is not only
possible to guide the policy to the goal, but also embed a desired behavior of the motion. In
the case of robot motion for floor cleaning tasks, prior knowledge can be used to engineer
the features of the immediate reward function. For natural motion, the robot should control
its linear and angular velocities with respect to obstacles and select a natural turning radius
considering its goals. This allows for the use of floor cleaning expert domain knowledge
and determines four motion parameters that are selected as the main features for describing
the expert trajectories:

• Linear velocity with respect to distance from obstacles.
• Angular velocity with respect to distance from obstacles.
• Linear velocity with respect to orientation to the goal.
• Angular velocity with respect to orientation to the goal.

The described features allow for detection of speed and turning rate of the expert
when faced with obstacles and heading towards a goal and calculate an immediate reward
function based on them.

3.1. Expert Demonstration Collection

A database of expert demonstrations is collected to calculate the reward function
from motion features. It is assumed that the cleaning strategy follows a global plan,
delegating target points in the environment and ensuring the coverage of the cleaning
surface. Therefore, only the local motion between the target goal points is gathered to
learn the motion policy. A human is tasked to navigate in a simulated environment
between randomly placed goal points. Navigation is performed by inputting continuous
actions using analogous joystick commands, the action is translated into linear and angular
velocities and executed in the simulation. Each expert action execution as well as the state
of the environment is recorded as the following tuple:

hi = (li, δi, θi, vi, ωi) (1)
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where the state history h consists of lidar scan data l, distance to the goal δ, heading
difference to the goal θ, linear velocity v and angular velocity ω at the iteration i.

3.2. Expert Feature Coefficient Calculation

To simplify the expert feature expressions, a linear relation is assumed between the
action taken by the expert and the relevant trigger for it—closeness to the obstacle or
heading difference to the goal. That allows calculating a single coefficient value for each
feature that describes the expert behavior. Working with this assumption, in floor cleaning
scenarios, prior domain knowledge is used to conclude that linear velocity decreases and
angular velocity increases with the decreased proximity to an obstacle as the robot needs to
navigate away from it safely. On the other hand, the linear velocity increases while angular
velocity decreases with the decrease in heading difference between the robot and the goal.
This allows the formation of an equation to calculate the expert action values, dependent
on feature coefficients:

v = lmin × ov (2)

ω =
oω

lmin
(3)

v =
φv

θ
(4)

ω = θ × φω (5)

where lmin is the minimum lidar reading signifying the distance to the closest obstacle,
ov and oω are the coefficients for calculating the linear and angular velocity based on the
distance to the obstacle, φv and φω are the coefficients for calculating the linear and angular
velocity based on the heading angle difference towards the goal, respectively.

The full set of the collected data is used to calculate the values of coefficients that
describe the features of expert actions. Reforming Equations (2)–(5) allows calculating the
values of ov, oω, φv and φω over all the iterations of collected data:

ov =
∑Nh

i
vi

lmin,i

Nh
(6)

oω =
∑Nh

i ωi × lmin,i

Nh
(7)

φv =
∑Nh

i vi × θi

Nh
(8)

φω =
∑Nh

i
ωi
θi

Nh
(9)

where Nh is the total number of expert sample iterations.

3.3. Reward Engineering

Knowing the expert feature coefficient values allows for calculating the action values
for previously unseen states. Reformulating the Equations (2)–(5) as reward signals, it is
possible to evaluate every state–action pair for every expert feature as follows:

ro
v,t = |vt − lmin,t × ov| (10)

ro
ω,t =

∣∣∣∣ωt −
oω

lmin,t

∣∣∣∣ (11)

rφ
v,t =

∣∣∣∣vt −
φv

θt

∣∣∣∣ (12)



Sensors 2022, 22, 7750 6 of 17

rφ
ω,t = |ωt − θt × φω | (13)

where ro
v,t, ro

ω,t, rφ
v,t and rφ

ω,t at the time step t is the linear velocity reward for the obstacle
feature, angular velocity reward for the obstacle feature, linear velocity reward for heading
difference feature and angular velocity reward for heading difference, respectively. The
smaller the reward, the smaller the difference between the taken action and the action
calculated based on the expert feature. Following, the immediate state action reward rt at a
single timestep then can be expressed as:

rt = −ro
v,t − ro

ω,t − rφ
v,t − rφ

ω,t (14)

The function negatively rewards large deviations from actions calculated by the expert
features. To allow for positive rewards, Equation (14) is normalized in the range [−1,1].
The use of the immediate reward function allows for training the policy to follow the
behavior of the expert, with the possibility of training on samples outside the available
trajectories in the dataset.

4. Neural Network Architecture

With an engineered immediate reward function, a neural network has a feedback signal
from the environment to update its internal weights and optimize the calculated policy. To
facilitate the backpropagation, a Twin Delayed Deep Deterministic Policy Gradient-based
(TD3) neural network is designed. TD3 is an actor–critic type neural network architecture
that employs two critic networks to stabilize the value function estimation while still
optimizing the policy of the actor network.

4.1. TD3-Based Architecture

The TD3-based architecture consists of one actor and two critic networks that take
as inputs the representation of the environmental state and outputs motion commands
of the policy. The parameters of actor and critic networks are not shared and are calcu-
lated independently. As an input at the timestep t, the actor network A takes a tuple of
environmental states s defined by:

sA
t = (lt, δt, θt, vt−1, ωt−1) (15)

The values in the state are formed into two single dimension vectors. The first vector
consists of all the lidar values l, and the second vector consists of combined values of
δ, θ, vt−1 and ωt−1. Both vectors are presented as an input to the actor network and
independently passed through an encoder, consisting of a fully connected layer, followed
by the Rectified Linear Unit (ReLU) activation function and another fully connected layer.
We refer to these sequences of encoding layers as external state encoder and internal
state encoder, respectively. Afterward, external and internal state encoder outputs are
concatenated and passed through an encoder to obtain the final state encoding. State
encoding is passed through two more fully connected layers, each followed by ReLU
activation. Another fully connected layer follows, with its output passed through the
Hyperbolic Tangent (Tanh) activation function to obtain the results in the range (−1, 1).

The architecture of the critic networks C is similar, with its input state also including
the output at = (vA

t , ωA
t ) that consists of linear and angular velocities calculated by the

actor network and its tuple is defined as:

sC
t = (lt, δt, θt, vt−1, ωt−1, at) (16)

External and internal state encoding is obtained the same way as in the actor network
with the subsequent state encoding. at is encoded with a single fully connected layer.
State and action encoding are combined by using the Transformation Fully Connected
(TFC) layer method from [22]. ReLU activation is performed on the TFC layer output and
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then passed through the final fully connected layer to obtain the estimated Q value of the
state–action pair.

4.2. Leveraging Expert Samples in Experience Replay

During the training, the neural network employs a replay buffer to collect and store a
set of samples on which it will be trained. An action is performed with the policy, the rele-
vant information is obtained and saved in the memory in the form of the following tuple:

Ht = (st, at, rt, st+1, dt+1) (17)

where H is the obtained transition information between states st and st+1, dt+1 indicates
whether the state st+1 is terminal. Owing to the attribute that the proposed TD3 network is
an off-policy algorithm, it is possible to learn updated policy by using samples collected
from older policies. Nonetheless, keeping all the samples in the replay buffer might force
an overfit to the sample data and slow down the learning of the network weights, as well
as increase the required memory storage. Therefore, only a limited number NH of the most
recent samples are kept in the buffer.

During the early stages of the training, the policy is not yet capable of navigating
around the environment and collecting varied samples. It is also difficult to collect data
where the policy would lead to the goal, as the motions are largely based on random
initialization of the neural network weights. However, there exists a large amount of
collected expert demonstration data in various settings that not only show the navigation
in the environment but also lead it to sparse goals. Moreover, learning and optimizing for
this data is desired as it is representative of the desired optimal behavior of the agent. Since
the replay buffer H only holds NH number of samples, direct infusion of expert data is not
possible, as newly collected samples would replace them over time. Therefore, we propose
introducing a secondary expert replay buffer E of set size Nh consisting of all the expert
samples. To create the expert replay buffer, each collected sample from (1) is formed in
a tuple form of (17). To form the tuple, two consecutive expert iterations hi and hi+1 are
combined and evaluated by (14) to obtain the state–action pair reward.

The neural network learns on a batch of samples from the replay buffer. To obtain
the batch, both replay buffers H and E are sampled individually, and the selected samples
from each buffer are combined. This allows the network to learn directly from the optimal
policy data, as well as generalize to situations unseen during the expert demonstrations.
The introduction and working mechanism of this approach are visualized in Figure 1.

Figure 1. Flowchart of expert experience leveraging in the neural network training process. Red
arrows represent actions that happen once during the initialization of neural network learning. Black
arrows represent processes happening once every training cycle. Green arrows represent processes
taking place during every timestep t of execution.
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5. Neural Network Training Setup

To train the neural network, described in Section 4, a pipeline is built with the PyTorch
framework. Full network parameters are displayed in Tables 1 and 2 as well as Figure 2.
The Robot Operating System (ROS) Noetic version serves as a middleware between the
network output and the execution in the simulation. ROS Gazebo is used as a simulator for
executing actions on a simulated agent and gathering experience data from the experts.

Table 1. Network parameters and structure of actor network.

Actor Network

Layer Input Size Output Size

External State Encoder:
Linear 20 20
ReLU 20 20
Linear 20 10

Internal State Encoder:
Linear 4 4
ReLU 4 4
Linear 4 8

State Encoder:
Concatenation 10 + 8 18

Linear 18 18
ReLU 18 18
Linear 18 36

Action Decoder:
Linear 36 800
ReLU 800 800
Linear 800 600
ReLU 600 600
Linear 600 2
Tanh 2 2

Table 2. Network parameters and structure of both critic networks.

Critic Network

Layer Input Size Output Size

External State Encoder:
Linear 20 20
ReLU 20 20
Linear 20 10

Internal State Encoder:
Linear 4 4
ReLU 4 4
Linear 4 8

State Encoder:
Concatenation 10 + 8 18

Linear 18 18
ReLU 18 18
Linear 18 36

Q-Value Decoder:
Linear 36 800
ReLU 800 800

Linearstate 800 600
Linearaction 2 600

TFC 600 + 600 600
ReLU 600 600
Linear 600 1
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Figure 2. (a) Visualization of Actor Network architecture in TD3. (b) Visualization of Critic Net-
work Architecture in TD3. FC represents a fully connected layer, numbers represent the out-
put parameters of the respective layer, TFC represents the transformation fully connected layer,⊕

represents concatenation.

5.1. Reward Function

To create reward signals for the neural network training, the description of the im-
mediate reward rt function is given in Section 3.3. However, termination states also need
to be rewarded. Therefore, the following reward function for neural network training
is employed:

r(st, at) =


rg if δt < ηδ

rc if lmin,t < ηl

rt otherwise,

(18)

where ηδ is the distance threshold to the goal at which it is considered reached, ηl is the
distance threshold to the closest obstacle at which a collision is considered to have occurred.

5.2. Expert Demonstration Collection

To calculate the reward function used in training and collect the samples of optimal
policy, a human expert is tasked to perform navigation in a simulated environment. For this
purpose, an environment is designed in the ROS Gazebo simulator to replicate a similar
learning environment to that of a recorded real-life location of Riga Technical University,
where cleaning tasks would be carried out in the future, as visualized in Figure 3a. The
designed simulated environment is visualized in Figure 3b. The expert is tasked with
navigating to randomly placed goals in the environment using an analogous joystick
input. The expert inputs, as well as environmental states, are recorded as described in
(1). Each action is executed at 0.1-s intervals, which is the time difference between the
iterations. After reaching a goal, the full trajectory of iterative motions is saved in a separate
JavaScript Object Notation (JSON) format data file and the environmental state, as well as
the goal, are randomly reset and new trajectory data collection begins. To perform reward
engineering analysis from the expert demonstration files, all JSON files are loaded into
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memory, and calculation is performed over all the iterations. When reformatting the expert
demonstrations to the form described in (17) for expert replay buffer, each JSON file is
loaded individually and the final iteration in each file is assumed to reach the goal and is
rewarded with the value of rg, according to (18). In total, 160 trajectories were collected
with 6448 motion samples.

Figure 3. (a) Point cloud mapping of the cleaning environment in Riga Technical University. (b) ROS
Gazebo simulated representation for expert demonstration collection. (c) ROS Gazebo simulated
environment used for training of the neural network.

5.3. Simulated Training Environment and State Representation

To train the neural network, another virtual training environment is created, filled
with various shapes to help generalize the learned policy. Additionally, virtual cube objects
are placed in the environment, and they change their location to a new randomly selected
coordinate on every completion of an episode to randomize the learning environment. The
environment is designed with ROS Gazebo simulator and visualized in Figure 3c. As an
agent, a simulated Pioneer 3DX robot device is used, through which the action execution
and observation of the state take place. The state is collected through simulated robots’
odometry and a simulated 16-channel lidar mounted on top of it. Random Gaussian noise
is added to sensor data to help generalize the learning process. The information obtained
from the odometry and lidar is processed and prepared for use as a one-dimensional,
vectorized representation of the environment. The robot’s position in the environment is
represented with respect to the goal by δt and thetat, calculated by comparing the global
coordinates of the robot and heading from the odometry information to the goal. Lidar
information from the simulation is returned as a 3D point cloud with a 180-degree field of
view (FOV). First, filtering out of the ground plane is performed. Then, the data is prepared
as a 2D representation of the 3D data, where the minimal distance measurement is returned
for any discreet angle in the FOV of the lidar as described in:

lλ = min(Lc
−90+z×λδ

), ∀z =

{
1, 2, ...,

180
λδ

}
, ∀c = {1, 2, ..., n} (19)

where λ is the discretized angle value, λ∆ is the discretization size of λ, c is the respective
lidar channel and n is the number of remaining channels after floor filtering. To reduce the
input size of the lidar data, the 2D lidar representation is further discretized by performing
data bagging. The lλ data is sequentially placed in b number of bags of equal length and
the minimal value of each bag the representative value of the respective bag. This allows
for the creation of a single dimension vectorized representation of b number of elements
from the full lidar data.

5.4. Training Parameters

Examples of neural network parameters are shown in Tables 1 and 2 as well as Figure 2.
The actor-network parameters in Table 1 show the inputs and outputs of each sequential
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layer. Lidar and goal information is encoded separately, combined by concatenation,
and further encoded in the state encoder. Afterward, state encoded information is mapped
to an action by the action decoder.

The architecture of the critic networks, described in Table 2, is similar to the actor
network. External and internal information is encoded with respective encoders and their
combined encoding is obtained by the state encoder. A Q-value decoder follows to estimate
the value of the state–action pair. State information is given by the state encoder with
an additional sequence of linear layers and ReLU activations performed in the Q-value
decoder. Linearstate maps this information to 600 parameters through another linear layer.
In parallel, action from the state–action pair is also mapped to 600 parameters through the
Linearaction layer. The encoded state and action information is combined in the TFC layer
followed by mapping to a single Q-value with the final output linear layer.

Additional parameters describing the selected sparse rewards, calculated immediate
reward coefficient values, robot velocity, and other training-dependent values are depicted
in Table 3. The seed represents the set value for random weight initialization. Maximal
episode length represents the maximal steps before termination of the training episode
if no goal was reached or no collision occurred. Hbatch represents the number of random
samples in a batch selected from experience replay buffer H. Ebatch reflects the number of
random samples in a batch selected from expert replay buffer E. The full batch size for each
learning iteration is Hbatch + Ebatch number of samples.

Table 3. Training parameter values.

Parameter Value Measurement Units

rg 100 -
rc −100 -
ov 0.6911 -
oω 0.4445 -
φv 1.1073 -
φω 0.6615 -
ηδ 0.3 m
ηl 0.3 m
λ∆ 1 degrees
b 20 -

vmax 1 m/s
vmin 0 m/s
ωmax 1 r/s
ωmin −1 r/s
seed 0 -

max. episode length 500 steps
Hbatch 40 samples
Ebatch 2 samples

6. Results

To evaluate the validity of the proposed approach, a series of experiments in a simu-
lated environment were carried out. The proposed method is compared to other popular
immediate reward calculation methods implemented in the TD3 and Deep Deterministic
Policy Gradient (DDPG) architectures. Additionally, effects with and without expert replay
buffer E are presented.

6.1. Experiments in Simulated Environment

In general BC tasks, the precision of the learned policy can be evaluated by the
closeness of the executed trajectories to the expert trajectories. Since the task of the proposed
method is to generalize the policy, the exact closeness to expert demonstrations is not
expected. To evaluate the closeness of the learned policy to the expert baseline in action
space, a direct comparison is made between the action of an expert and a policy. A state
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representation is obtained from all the samples in the expert motion database, collected
in the simulated environment depicted in Figure 3b. All samples are processed with the
trained neural network and the obtained action is directly compared to the expert motion.
To show the effects of the expert buffer, the proposed method is trained and evaluated
with and without it and the elements are referred to as Ours w/ buffer and Ours w/o buffer,
respectively. To evaluate the expert feature coefficient calculation method, the proposed
method is compared to handcrafted immediate reward methods based on the reward used
in [16], which are designed to evaluate the expert motion as precisely as possible. These
methods are based on an immediate reward function:

rt = vt − |ωt| (20)

and
rt = vt − |ωt| − robs (21)

where

robs =

{
1− lmin if lmin < 1
0 otherwise,

(22)

Here robs represents the inverse reward for closeness to the obstacle. These handcrafted
methods are referred to as H.C w/o obs. and H.C w/ obs. for (20) and (21), respectively. A
comparison is also made with policies trained with immediate rewards presented in [38,39].
They are referred to as r1 and r2, respectively. The results are presented in Table 4.

Table 4. Experiments in simulated environment.

Ours w/o
Buffer

Ours w/
Buffer

H.C. w/o
Obs.

H.C. w/
Obs. r1 r2

Mean vδ 0.17 0.20 0.13 0.12 0.02 −0.14
S.D. vδ 0.32 0.32 0.33 0.35 0.42 0.49

Mean ωδ 0.29 0.23 0.18 0.19 0.37 0.43
S.D. ωδ 0.36 0.36 0.36 0.36 0.35 0.34

From the experiment results, it can be seen that the performed action on each policy
slightly differs from the expert action. In general, policies that have been conditioned
on expert trajectory data learn to move with higher linear velocity and the increase in
rotational velocity is proportional. This can be explained by introducing a goal reward,
which incentivizes the policy to arrive at the goal as quickly as possible. Thus, the policy
moves faster, but also has to increase the rotational velocity in order to comply with the
expert feature reward. The policies that are not conditioned on expert data show different
behavior with either increased rotational velocity or even moving slower than the expert,
as in the case of r2. Therefore, they exhibit different behavior than the experts.

To compare the learned motion policy with the expert behavior over the whole task
of arriving at the goal, another test is carried out in the simulated environment shown
in Figure 3b, where expert trajectories were collected. This allows for direct comparison
to expert trajectories. Each policy is tasked to perform a motion from a selected starting
point to a goal point. Each learned policy’s trajectory is recorded and compared to the
expert trajectory. Visualized examples of the experiments are shown in Figure 4. Policies
are evaluated on multiple key performance indicators such as the difference in the number
of steps taken to arrive at the goal with respect to the expert trajectories, the episode reward
rep as calculated by (14), and the linear and angular velocities. The most important indicator
is the L2 difference between each point on their trajectory and the closest point in the expert
trajectory. This shows the closeness of the executed trajectory by the learned policy to the
expert trajectory. In turn, it implies taking similar motions to experts and reacting to the
same feature triggers as in the expert trajectory. The results are presented in Table 5.
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Figure 4. Examples of experimental results in a simulated environment with policy trajectory
comparison to the recorded ground truth. The ground truth trajectories were used as samples in the
proposed neural network training. (a) An example with no obstacles between the robot and a goal.
(b) An example with a compromised start location. (c,d) Examples with obstacles between the robot
and the goal. (e) An example where the learned policy does not follow the expert trajectory, but still
exhibits the expert feature properties.

Table 5. Experiments in simulated environment.

Ours w/o
Buffer

Ours w/
Buffer

H.C. w/o
Obs. H.C. w/ Obs. r1 r2 Expert

Mean stepδ −2.34 −4.04 8.78 4.71 4.03 77.36 -
S.D. stepδ 27.03 26.69 65.30 67.86 54.94 137.99 -
Mean rep 67.96 65.64 49.79 56.15 65.85 4.33 -
S.D. rep 44.22 51.41 149.26 155.51 80.91 224.71 -
Mean v 0.76 0.78 0.61 0.60 0.55 0.22 0.59
S.D. v 0.36 0.35 0.42 0.46 0.46 0.39 0.31

Mean |ω| 0.69 0.65 0.58 0.56 0.78 0.92 0.52
S.D. |ω| 0.34 0.35 0.37 0.37 0.33 0.22 0.32
Mean L2 35.60 34.60 48.92 34.96 39.45 64.38 -
S.D. L2 47.06 48.31 97.01 48.73 125.59 133.20 -

∑ L2 5696.70 5536.64 7826.77 5593.84 6312.74 10,301.18 -

From the experiments, it can be seen that the proposed approach follows closer
to the expert trajectories, although with increased speed and proportionally increased
rotational velocity. This also leads the policy to arrive at the goal position in fewer steps.
This corresponds to the observations from Table 4. This is more significantly seen in the
performance in the model that uses the samples from the expert replay buffer in the training.
Thus, the policy with an expert replay buffer takes approximately four steps less to arrive
at the goal than the expert trajectory baseline. Similarly, the method without an expert
replay buffer arrives at the goal more quickly, in contrast with other approaches that take
longer to arrive at the same goal. While handcrafted reward functions perform better
than the proposed method on individual action predictions, they do not generalize as
well over the whole trajectory. Curiously, the introduction of the obstacle reward in the
handcrafted reward function H.C. w/ obs. shows a drastic reduction in L2 scores if compared
to H.C. w/o obs., which signifies that the obstacles are a significant feature in expert motion
decision-making. r1 and r2 methods expectedly do not perform well in the task as they
are not conditioned on the expert features. While they are capable of optimizing towards
their own rewards, their executed trajectories differ from a human expert, especially in
the r2 case. Even though the obtained reward for r1 is quite close to the proposed method,
the obtained behavior still differs significantly over the whole trajectory This shows the
influence that the immediate reward and the motion features play in behavior embedding
for autonomous navigation and the necessity to address it if human-like motion is expected.

To qualitatively show the possibility of the proposed method to adapt to previously
unseen situations, experiments in additional designed scenarios are shown in Figure 5. The
expert trajectories were collected in set scenarios, but not used for neural network training.
From the experimental results, it is possible to visually see that the trained neural network,
conditioned on expert trajectories, still performs reasonably close to expert motion, even if
the policy has not been trained on such examples.
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Figure 5. Examples of experimental results in a simulated environment with policy trajectory
comparison to the recorded ground truth. The ground truth trajectories were not used as samples in
the proposed neural network training. The handcrafted scenarios show the similarity to expert motion
even in previously unseen scenarios. (a,b) Examples with obstacles between the robot and the goal.
(c) An example with a compromised start location. (d,e) Examples of navigating around corners.

6.2. Training Time Comparison

By introducing the expert replay buffer E in batch generation for neural network train-
ing, it is possible to speed up the learning process. By adding the samples from the expert
trajectory, the neural network batch has the possibility to sample a high sparse reward of
reaching the goal. This in turn serves as a bootstrapping method, with introducing the
goal reward early on in the training process. As a result, the training of TD3 with batch
sampling from E converges to the maximum Q-value more quickly than the compared
methods. The results of this comparison are visualized in Figure 6.

Figure 6. A training time representation of max. Q value per training for each policy. The training
time was executed for approximately 20 h for each policy.

A similar observation can be seen by evaluating the average Q value convergence. The
proposed method with an introduced expert replay buffer increases the average Q value in
a more stable manner and reaches the saturation point approximately 4 h into the training
time. Other methods exhibit a more unstable policy evaluation convergence and reach
the saturation point later in the training. This is most likely due to the random nature of
arriving at the sparse rewards and not having a significant number of such encounters early
in the learning process to train on. Even though the immediate reward function explicitly
guides the robot towards the goal, the proposed method without the buffer Ours w/o buffer
also exhibits unstable learning behavior during the early stages of training, albeit with
smaller oscillations than compared methods. This is visualized in Figure 7.
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Figure 7. A training time representation of average Q value seen per each training for each policy.
The training time was executed for approximately 20 h for each policy.

7. Conclusions

In this paper, a method of extracting a reward from expert demonstrations on floor
cleaning operations and leveraging their experience in neural network training is intro-
duced. As the experiments show, the proposed method successfully learns a generalizable
motion policy for mobile robot navigation. It is capable of learning from expert demonstra-
tions and transfers its motion features to a learned behavior through a designed reward
function. The neural network motion policy is able to resemble the expert motion also
outside the previously seen samples, which is a benefit over BC-based approaches, and with-
out expensive Inverse Reinforcement Learning reward function estimation. Additionally,
as the results in Section 6.2 show, Q-value convergence can be achieved faster than with
compared methods.

For future works, the it is planned that the current pipeline will be extended to include
different types of real industrial floor cleaning mobile robot platforms and perform tests in
real-life settings. In order to achieve this, a method of avoiding dynamic obstacles needs
to be developed. To extract dynamic motion information, environment states of previous
timesteps should be represented in the neural network input either in the state encoder
or using Gated Recurrent Units (GRUs), Recurrent Neural Networks (RNNs), Long-Short
Term Memory (LSTM), or other methods. The additional history retention should allow to
make more informative motion policy decisions, especially when dealing with dynamic
obstacles. Additionally, the method in the proposed approach of extracting the expert
features assumes a linear relation. While in floor cleaning tasks, where absolute expert
behavior precision is not detrimental, it is sufficient, a non-linear relation will also be
explored. This might not only provide the benefit of more closely replicating the expert
behavior, but also provide better gradients for neural network learning. These are the
current active directions that should prove to be beneficial in the next iterations of this
research topic.
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Abbreviations
The following abbreviations are used in this manuscript:

DRL Deep Reinforcement Learning
BC Behavioral Cloning
DL Deep Learning
DDPG Deep Deterministic Policy Gradient
SAC Soft Actor–Critic
CNN Convolutional Neural Network
TD3 Twin Delayed Deep Deterministic Policy Gradient
DWA Dynamic Window Approach
IRL Inverse Reinforcement Learning
ReLU Rectified Linear Unit
Tanh Hyperbolic Tangent
TFC Transformation Fully Connected Layer
ROS Robot Operating System
JSON JavaScript Object Notation
FOV Field of View
GRU Gated Recurrent Unit
RNN Recurrent Neural Network
LSTM Long-Short Term Memory

References
1. Kim, J.; Mishra, A.K.; Limosani, R.; Scafuro, M.; Cauli, N.; Santos-Victor, J.; Mazzolai, B.; Cavallo, F. Control strategies for cleaning

robots in domestic applications: A comprehensive review. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419857432. [CrossRef]
2. Ni, J.; Chen, Y.; Chen, Y.; Zhu, J.; Ali, D.; Cao, W. A survey on theories and applications for self-driving cars based on deep

learning methods. Appl. Sci. 2020, 10, 2749. [CrossRef]
3. Codevilla, F.; Santana, E.; López, A.M.; Gaidon, A. Exploring the limitations of behavior cloning for autonomous driving.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 9329–9338.

4. Jiang, H.; Wang, H.; Yau, W.Y.; Wan, K.W. A brief survey: Deep reinforcement learning in mobile robot navigation. In Proceedings
of the 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020;
pp. 592–597.

5. Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691.
[CrossRef]

6. Wang, J.; Zhang, T.; Ma, N.; Li, Z.; Ma, H.; Meng, F.; Meng, M.Q.H. A survey of learning-based robot motion planning. IET
Cyber-Syst. Robot. 2021, 3, 302–314. [CrossRef]

7. Sichkar, V.N. Reinforcement learning algorithms in global path planning for mobile robot. In Proceedings of the 2019 International
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 25–29 March 2019; pp. 1–5.

8. Xiao, X.; Liu, B.; Warnell, G.; Stone, P. Motion control for mobile robot navigation using machine learning: A survey. arXiv 2020,
arXiv:2011.13112.

9. Ruan, X.; Ren, D.; Zhu, X.; Huang, J. Mobile robot navigation based on deep reinforcement learning. In Proceedings of the 2019
Chinese control and decision conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 6174–6178.

10. Xue, X.; Li, Z.; Zhang, D.; Yan, Y. A deep reinforcement learning method for mobile robot collision avoidance based on double
dqn. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada,
12–14 June 2019; pp. 2131–2136.

11. Sasaki, H.; Horiuchi, T.; Kato, S. A study on vision-based mobile robot learning by deep Q-network. In Proceedings of the 2017
56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September
2017; pp. 799–804.

12. Tai, L.; Liu, M. A robot exploration strategy based on q-learning network. In Proceedings of the 2016 IEEE International
Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 57–62.

13. Xie, L.; Wang, S.; Markham, A.; Trigoni, N. Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement
Learning. arXiv 2017, arXiv:1706.09829.

14. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 31–36.

15. De Jesus, J.C.; Kich, V.A.; Kolling, A.H.; Grando, R.B.; Cuadros, M.A.d.S.L.; Gamarra, D.F.T. Soft actor–critic for navigation of
mobile robots. J. Intell. Robot. Syst. 2021, 102, 1–11. [CrossRef]

http://doi.org/10.1177/1729881419857432
http://dx.doi.org/10.3390/app10082749
http://dx.doi.org/10.26599/TST.2021.9010012
http://dx.doi.org/10.1049/csy2.12020
http://dx.doi.org/10.1007/s10846-021-01367-5


Sensors 2022, 22, 7750 17 of 17

16. Cimurs, R.; Lee, J.H.; Suh, I.H. Goal-Oriented Obstacle Avoidance with Deep Reinforcement Learning in Continuous Action
Space. Electronics 2020, 9, 411. [CrossRef]

17. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the International Conference on Machine Learning, PMLR, Beijing, China, 22–24 June 2014; pp. 387–395.

18. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor–critic methods. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

19. Dankwa, S.; Zheng, W. Twin-delayed ddpg: A deep reinforcement learning technique to model a continuous movement of an
intelligent robot agent. In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver,
BC, Canada, 26–28 August 2019; pp. 1–5.

20. Kim, M.; Han, D.K.; Park, J.H.; Kim, J.S. Motion planning of robot manipulators for a smoother path using a twin delayed deep
deterministic policy gradient with hindsight experience replay. Appl. Sci. 2020, 10, 575. [CrossRef]

21. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep reinforcement learning for indoor mobile robot path planning. Sensors 2020, 20, 5493.
[CrossRef]

22. Cimurs, R.; Suh, I.H.; Lee, J.H. Goal-Driven Autonomous Exploration Through Deep Reinforcement Learning. IEEE Robot.
Autom. Lett. 2021, 7, 730–737. [CrossRef]

23. Weisbin, C.R.; de Saussure, G.; Einstein, J.R.; Pin, F.G.; Heer, E. Autonomous mobile robot navigation and learning. Computer
1989, 22, 29–35. [CrossRef]

24. Maeda, M.; Maeda, Y.; Murakami, S. Fuzzy drive control of an autonomous mobile robot. Fuzzy Sets Syst. 1991, 39, 195–204.
[CrossRef]

25. Torabi, F.; Warnell, G.; Stone, P. Behavioral cloning from observation. arXiv 2018, arXiv:1805.01954.
26. Ly, A.O.; Akhloufi, M. Learning to drive by imitation: An overview of deep behavior cloning methods. IEEE Trans. Intell. Veh.

2020, 6, 195–209. [CrossRef]
27. Tampuu, A.; Matiisen, T.; Semikin, M.; Fishman, D.; Muhammad, N. A survey of end-to-end driving: Architectures and training

methods. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1364–1384. [CrossRef]
28. Pfeiffer, M.; Schaeuble, M.; Nieto, J.; Siegwart, R.; Cadena, C. From perception to decision: A data-driven approach to end-to-end

motion planning for autonomous ground robots. In Proceedings of the 2017 ieee international conference on robotics and
automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1527–1533.

29. Kobayashi, T.; Enomoto, T. Towards Autonomous Driving of Personal Mobility with Small and Noisy Dataset using Tsallis-
statistics-based Behavioral Cloning. arXiv 2021, arXiv:2111.14294.

30. Liu, B.; Xiao, X.; Stone, P. A lifelong learning approach to mobile robot navigation. IEEE Robot. Autom. Lett. 2021, 6, 1090–1096.
[CrossRef]

31. Arora, S.; Doshi, P. A survey of inverse reinforcement learning: Challenges, methods and progress. Artif. Intell. 2021, 297, 103500.
[CrossRef]

32. Kretzschmar, H.; Spies, M.; Sprunk, C.; Burgard, W. Socially compliant mobile robot navigation via inverse reinforcement
learning. Int. J. Robot. Res. 2016, 35, 1289–1307. [CrossRef]

33. Baghi, B.H.; Dudek, G. Sample Efficient Social Navigation Using Inverse Reinforcement Learning. arXiv 2021, arXiv:2106.10318.
34. Xia, C.; El Kamel, A. Neural inverse reinforcement learning in autonomous navigation. Robot. Auton. Syst. 2016, 84, 1–14.

[CrossRef]
35. Ab Azar, N.; Shahmansoorian, A.; Davoudi, M. From inverse optimal control to inverse reinforcement learning: A historical

review. Annu. Rev. Control. 2020, 50, 119–138. [CrossRef]
36. Cruz, F.; Wüppen, P.; Magg, S.; Fazrie, A.; Wermter, S. Agent-advising approaches in an interactive reinforcement learning

scenario. In Proceedings of the 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), Valparaiso, Chile, 26–30 October 2017; pp. 209–214.

37. Bignold, A.; Cruz, F.; Dazeley, R.; Vamplew, P.; Foale, C. Human engagement providing evaluative and informative advice for
interactive reinforcement learning. Neural Comput. Appl. 2022, 1–16. [CrossRef]

38. Day, A. Decentralized Collision Free Velocities from Depth Maps Using Deep Reinforcement Learning; Clemson University: Clemson, SC,
USA, 2021.

39. Chiaberge, M.; Martini, M. Visual Based Local Motion Planner with Deep Reinforcement Learning. Master’s Thesis, Politecnico
di Torino, Torino, Italy, 2020.

http://dx.doi.org/10.3390/electronics9030411
http://dx.doi.org/10.3390/app10020575
http://dx.doi.org/10.3390/s20195493
http://dx.doi.org/10.1109/LRA.2021.3133591
http://dx.doi.org/10.1109/2.30718
http://dx.doi.org/10.1016/0165-0114(91)90212-9
http://dx.doi.org/10.1109/TIV.2020.3002505
http://dx.doi.org/10.1109/TNNLS.2020.3043505
http://dx.doi.org/10.1109/LRA.2021.3056373
http://dx.doi.org/10.1016/j.artint.2021.103500
http://dx.doi.org/10.1177/0278364915619772
http://dx.doi.org/10.1016/j.robot.2016.06.003
http://dx.doi.org/10.1016/j.arcontrol.2020.06.001
http://dx.doi.org/10.1007/s00521-021-06850-6

	Introduction
	Related Work
	Neural Network-based Navigation
	Expert Feature Extraction

	Expert Feature-Based Reward Engineering
	Expert Demonstration Collection
	Expert Feature Coefficient Calculation
	Reward Engineering

	Neural Network Architecture
	TD3-Based Architecture
	Leveraging Expert Samples in Experience Replay

	Neural Network Training Setup
	Reward Function
	Expert Demonstration Collection
	Simulated Training Environment and State Representation
	Training Parameters

	Results
	Experiments in Simulated Environment
	Training Time Comparison

	Conclusions
	References

