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Abstract: There exist several methods aimed at human–robot physical interaction (HRpI) to provide
physical therapy in patients. The use of haptics has become an option to display forces along a given
path so as to it guides the physiotherapist protocol. Critical in this regard is the motion control
for haptic guidance to convey the specifications of the clinical protocol. Given the inherent patient
variability, a conclusive demand of these HRpI methods is the need to modify online its response
with neither rejecting nor neglecting interaction forces but to process them as patient interaction. In
this paper, considering the nonlinear dynamics of the robot interacting bilaterally with a patient, we
propose a novel adaptive control to guarantee stable haptic guidance by processing the causality
of patient interaction forces, despite unknown robot dynamics and uncertainties. The controller
implements radial basis neural network with daughter RASP1 wavelets activation function to identify
the coupled interaction dynamics. For an efficient online implementation, an output infinite impulse
response filter prunes negligible signals and nodes to deal with overparametrization. This contributes
to adapt online the feedback gains of a globally stable discrete PID regulator to yield stiffness control,
so the user is guided within a perceptual force field. Effectiveness of the proposed method is verified
in real-time bimanual human-in-the-loop experiments.

Keywords: human robot physical interaction; artificial intelligence; assisting robotics

1. Introduction
1.1. Background and Motivation

Research on motor rehabilitation therapy has provided advanced strategies for upper
limb of people with cerebrovascular accident (CVA) [1,2], ranging from induced movement
therapy [3], electromechanical assisted training [4], to robot-based haptics [5,6]. The emerg-
ing technologies of virtual reality [7,8], features rehabilitation by promoting repetition,
and task-oriented training in a ludic, motivating and playful environment [9], facilitating
functional, useful and improved experience. These not only benefit the user from this expe-
rience, but also the therapists who perform and evaluate and document online the tasks,
with studies on upper limb motor recovery of CVA patient [10,11]. However, virtual body
representation remains an involved issue [12], including its critical variable of interaction

Sensors 2022, 22, 7729. https://doi.org/10.3390/s22207729 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22207729
https://doi.org/10.3390/s22207729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9667-6408
https://orcid.org/0000-0002-9663-8089
https://orcid.org/0000-0002-8715-9641
https://orcid.org/0000-0003-1237-1258
https://orcid.org/0000-0002-1813-0394
https://orcid.org/0000-0003-3106-2864
https://orcid.org/0000-0002-1104-8195
https://doi.org/10.3390/s22207729
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22207729?type=check_update&version=1


Sensors 2022, 22, 7729 2 of 27

force of the patient [13], for viable and feasible interaction given the motor variability of
each patient [14]. Platforms that integrate visual rendering with haptic stimuli conveys
the user a multimodal perception for improved interaction [15]. There has been studied
for motor training and/or rehabilitation protocols to generate a novel environment by
executing the time and spatial patters of movements accurately through practice [16–18].
However, it remains unclear how to deal with volitional patient interaction force [19].

Neuropsychological rehabilitation offers also promising results based on programming
specific tasks from the qualitative analysis of symptoms, some based on motor learning,
i.e., changes in patient movements that reflect changes in the structure and function of the
nervous system. In [20], it is presented an experimental study to improve the prediction
time and reduce the robot response taken to reach a desired position, based on hand and eye-
gaze motion determination, to foresee the point of user interaction in a virtual environment.
However, the essential patient force interaction is not assessed. The development of
haptic technology is incipient for rehabilitation purposes, though mature for computer and
gaming interaction [21], it stands for subject of research how to deal patient interaction
force, given their deviated motor patters, to promote their improvement under kinesthetic
stimulus. It stands for a subject of research in several fields, including clinical tests have
been implemented [22].

The so-called Porteus Maze Test (PMT) consists of solving mazes ordered in a pattern
of increasing difficulty, it has been studied for upper limb rehabilitation of stroke patients;
though PMT was proposed originally as a psychometric nonverbal test to measure psy-
chological planning capacity and foresight (performance intelligence) [17]. The PMT is
also currently used as a test associated with the activation of the frontal region of the brain,
involved in the planning factor and capable of detecting perseverative errors [17]. Thus, it
can be extended to evaluate executive functioning since it qualifies observable behaviors
in neuropsychological rehabilitation [23], by inferring dysfunction of the Central Nervous
System [24]. Then, it becomes a subject of interest to evaluate PMT under haptic guidance.

1.2. Contribution

A self-tuning scheme based on neural network identification of nonlinear dynamics
is presented to adapt control feedback gains of a discrete PID guidance controller. Since
a PID structure can be abstracted as the addition of restitution viscoelastic and memory
generalized vector forces computed to converge to the nominal cartesian task, then the
robot end-effector guides human user hand with such a vector force, which increases
(diminishes) if position error increases (diminishes). Real-time experiments with nine
healthy volunteers are presented under bilateral PMT using two Omni haptic interfaces.
The user solves the virtual maze navigating under haptic guidance of the Omni at each
hand under two modalities: (i) passive haptic guidance (PHG), where the user perceives a
contact force each time he/she touches the maze boundaries, the less touches the better;
(ii) active haptic guidance (AHG), where the user is guided continuously with a haptic
force corresponding to how much it deviates from the nominal maze trajectory, the less
position error the better. Results shows that in AHG renders improved trajectory precision
from the self-tuning adaptation of force feedback.

2. The Problem Formulation
2.1. The Dynamics of the HRpI System

Consider a human–robot physical interaction system (HRpI) equipped with one haptic
robotic device, one per left and right hand, that exhibits a high-end electromechanical
performance, such as low friction, backdrivability and low inertia, with a high bandwidth
to display force, whose nonlinear dynamic model is [25–27]

Hσ(qσ)q̈σ + Cσ(qσ, q̇σ)q̇σ + Gσ(qσ) + τfσ
= τσ, (1)

where σ is used to indicate left l, or right r haptic device, qσ ∈ Rn, q̇σ ∈ Rn are the
generalized position and velocity joint coordinates, respectively; Hσ(qσ) ∈ Rn×n denotes



Sensors 2022, 22, 7729 3 of 27

a symmetric positive definite inertial matrix, Cσ(qσ, q̇σ) ∈ Rn×n represents the Coriolis
and centripetal forces, Gσ(qσ) ∈ Rn models the gravity loads from earth gravitation field,
and τσ ∈ Rn stands for the torque input. Term τfσ

= fbσ
q̇σ + fcσ tanh(γσ q̇σ) stands for

joint friction, where fbσ
, fcσ are positive definite n× n matrices modelling viscous damping

and the dry friction respectively and its coefficient γσ > 0. When the human operator
is grasping the haptic device through placing its fingertip into its thimble, the dynamics
changes remarkably due to human exerts a human torque τhσ

into the haptic robotic device:

Hσ(qσ)q̈σ + Cσ(qσ, q̇σ)q̇σ + Gσ(qσ) + τfσ
= τσ + τhσ

, (2)

where τhσ
is assumed Liptchitz, giving rise to a human-in-the-loop configuration [26].

System (2) can be written in continuous time state space representation xσ = [xσ1 xσ2 ]
T =

[qσ q̇σ]T as follows

ẋσ(t) = fσ(xσ(t)) + gσ(xσ(t))uσ(t) + gσ(xσ(t))τhσ
(t) (3)

yσ(t) = cσxσ(t) (4)

where gσ(xσ(t))τhσ
(t) is the map of the exogenous time-varying unmeasurable human

torque, and

fσ(xσ(t)) =
[

xσ2

−H−1
σ [Cσxσ2 + Gσ + τfσ

]

]
, gσ(xσ(t)) =

[
0

H−1
σ

]
(5)

are unknown smooth functions, and uσ = τσ is the control input.

2.2. Problem Statement

When the human operator has a motor disability, there has been proposed non-
linear robot controllers uσ to assist motion [28–30], including a high performance de-
centralized continuous nonlinear PID controller [31], however with constant feedback
gains that do not adapt to changing conditions, such a time varying persistent human
interaction term gσ(xσ(t))τhσ

(t). Then, the problem can be stated as follows: assuming
unknown fσ(xσ(t)) and unknown human interaction generalized force gσ(xσ(t))τhσ

(t),
design a model-free control uσ with feedback gains that adapts online for each patient so as
to his/her performance improves when interacting with the robotic device under haptic
guidance. Figure 1 shows a maze solution application.

Figure 1. Patients under haptic guidance carrying out a maze task. These studies suggest that
adaptability of the control strategy promotes rehabilitation evidence of motor patterns.

3. Adaptive Interaction System

In this section, the adaptive interactive system is presented as shown in Figure 2, as
can be seen each of the haptic device has a programmed wavenet PID controller which has
communication between them through the computer where the algorithms are run. The
wavenet PID controller scheme is based on an identification of inverse dynamics of each
haptic device and a IIR filter to tune PID feedback gains and guarantees global regulation.
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Figure 2. Block diagram of the bimanual cooperative system, showing the multimodal stimuli
to the human, consequently the human decision making process solves cooperativeness to issue
simultaneously motor commands to each device.

For this purpose, the control scheme shown in Figure 3 is used, where four main blocks
can be observed: HRpI, Wavenet identification, Discrete PID controller and Auto-tunning
gains. The following subsections will describe each of them.

yrefσ (k)
−

+
Discrete PID
controller

HRpI
Patient-Geomagic Touch

yσ(k)

Auto-tunning
gains

+

−

vσ(k)

Sensor

εσ(k) uσ(k)

rσ(k)

Kpσ Kiσ Kdσ

Γ̂σ(k)

ŷσ(k)
eσ(k)

Wavenet
identification

Figure 3. PID Wavenet controller scheme where σ can be left, l or right, r, i.e., σ = {l, r}, yre fσ
(k)

is the reference signal, εσ(k) stands for the error signal, the control input is uσ(k), rσ(k) models the
noise signal, yσ(k) is the HRpI (human patient in the haptic loop) output with ŷσ(k) its estimate, and
eσ(k) the error estimated, finally, vσ(k) stands for the persistence signal.

3.1. Input-Output Dynamics of the HRpI

It is well-known that any sufficiently smooth continuous time non-linear system
admits a discrete-time representation [32,33]. Then, (2) or (3), (4) can be represented in
discrete time state space, by assuming access to all state at each time, with small enough
sampling period T > 0, and provided that input remains constant between sampling
instant Ik = [kT(k + 1)T], where k ≥ 0. In this way, (3) is approximated with a first order
Euler forward difference ẋσ ≈ xσ(t+T)−xσ(t)

T as follows

xσ(t + T)− xσ(t)
T

= fσ(xσ(t)) + gσ(xσ(t))uσ(t). (6)

Solving (6) for xσ(t + T) leads to

xσ(t + T) = xσ(t) + fσ(xσ(t))T + gσ(xσ(t))Tuσ(t). (7)

Evaluating (7) and (4) at t = kT yields the following nonlinear discrete time system

xσ[(k + 1)T] = xσ[kT] + fσ(xσ[kT])T + gσ(xσ[kT])Tuσ[kT] (8)

yσ[(k + 1)T] = cσxσ[(k + 1)T]. (9)
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Substituting (8) into (9), the discrete output at instant (k + 1)T is given by

yσ[(k + 1)T] = Cσ(xσ[kT] + fσ(xσ[kT])T) + Cσ(gσ(xσ[kT])T)uσ[kT]

, Φσ[xσ[kT], T] + Γσ[xσ[kT], T]uσ[kT] (10)

where Φσ(∗) stands for the flow of discrete dynamic system with Γσ(∗) the input matrices
of robot, with

Φσ[xσ[kT], T] = cσ(xσ[kT] + fσ(xσ[kT])T) (11)

Γσ[xσ[kT], T] = cσ(gσ(xσ[kT])T). (12)

Notice that (10) describes the input-output dynamics of the haptic device σ = {l, r}, at
instant k + 1. Notice that input uσ(k) and system output yσ(k) are the only data available.
In this paper, we exploit the properties of wavenets to approximate the input-output
dynamics (10) of each haptic device, but additionally we consider IIR filter in the output
layer to prune irrelevant signals to build an efficient identification scheme useful to tune
PID feedback gains [34].

3.2. Wavenet Identification

A scheme is proposed to identify approximately the inverse plant (HRpI system), to
this end, a radial basis neural network is used. The activation functions ψ(τσ) are daughter
wavelet functions ψj(τσ) of RASP1 type. To filter neurons that have little contribution in the
identification process, three IIR filters are incorporated in cascade, using the least number
of neurons possible and reduce the computational load in the learning process [35]. In
Figure 4, the signal propagation and the general interconnection are presented, where

τLσ =
‖uσ(k)− bLσ‖

aLσ

.

Infinite impulse response (IIR) recurrent structure (Figure 5), in cascading structure,
yields double improving speed of learning by pruning those nodes with insignificant
relevant information from the cross contribution summation of daugthers wavelets. Notice
in the scheme, the forward delayed structure modulated by the input and the feedback
loop modulated by the persistent signal to allows swapping a range of frequency [36].

u1σ (k)

u2σ (k)

upσ (k)

ψ1(τ1σ )

ψ2(τ2σ )

ψL(τLσ
)

∑
IIRσ

z1σ (k)
ŷ1σ (k)

v1σ (k)

∑
IIRσ

z2σ (k)
ŷ2σ (k)

v2σ (k)

∑
IIRσ

zpσ
(k)

ŷpσ
(k)

vpσ
(k)

w11

w12

w1p
w21

w22

w2p

wL1
wL2

wLp

... ...

...
...

Figure 4. Diagram of a wavenet neural network with an IIR filter in cascade where σ can be left, l or
right, r, i.e., σ = {l, r}.
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∑

×

∑

×

∑

∑

z−1 z−1 z−1. . .
zpσ(k) ci,M (k)

ci,0(k)

ci,1(k)

ci,M−1(k)

z−1z−1z−1 . . .
di,N (k)

ŷpσ(k)

di,1(k)

di,N−1(k)vσ(k)

u1σ
u2σ

upσ

...

Figure 5. IIR filter structure.

The mother wavelet function ψ(k) generates daughter wavelets ψL(τLσ) by its property
of expansion or contraction and translation, represented as [37]:

ψL(τLσ ) =
1√
a

ψ(τLσ ) (13)

with a 6= 0; a, b ∈ R and

τLσ =
(

∑
p
j=1(uj − bLσ )

2
)1/2

/aLσ (14)

the j scale variable, aLσ allows expansion and contraction, and bLσ stands for the (Lσ)
translation variable at k, in the classical role of RBF, with the advantage of dealing with
more refinement through daughters wavelets ψL(τLσ ). This last feature is essential in the
present algorithm together with the pruning capability of the IIR filter. As suggested in [37],
the mathematical representation of wavelet RASP1 is a singularity-free normalization of
the argument of the wavelet

RASP1σ =
τσ

(τ2
σ + 1)2

(15)

whose partial derivative with respect to bLσ is

∂RASP1σ

∂bLσ

=
1
a

3τ2
σ − 1

(τ2
σ + 1)3

(16)

In this way, for the letf o rigth haptic device, the i wavenet approximation signal with
IIR filter can be calculated as:

ŷiσ (k) =
p

∑
q=1

M

∑
l=0

ci,lziσ (k− l)uqσ (k) +
N

∑
j=1

di,jŷiσ (k− j)vσ(k) (17)

ziσ (k) =
L

∑
l=1

wi,lψlσ (k) (18)

where L stands for the number of daughter wavelets, wi,l the weights of each neuron in the
wavenet, ci,l and di,j are the coefficients of forward and backward IIR filter, respectively,
and M and N the coefficients number of forward and backward IIRσ filter, respectively. As
can be seen, the (17) has the following matrix structure

ŷσ(k + 1) = Φ̂σ[yσ(k), ΘΦσ ] + Γ̂σ[yσ(k), ΘΓσ ] · uσ(k). (19)
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System (19) is estimated by two wavenet functions as follows

Φ̂σ[yσ(k), ΘΦσ ] =
N

∑
j=1

di,jŷiσ (k− j)vσ(k) (20)

Γ̂σ[yσ(k), ΘΓσ ] =
M

∑
l=0

ci,lziσ (k− l) (21)

with adjustable parameters ΘΦσ and ΘΓσ . Therefore, since nonlinear functions wavenet
functions Φ̂σ(k) and Γ̂σ(k) estimate Φσ(k) and Γσ(k), as k → ∞, then error eiσ (k) =
yiσ (k)− ŷiσ (k)→ 0 can be used as a Lebesgue measure useful to tune feedback gains.

Weavenet Learning

The parameters of the neural network and the IIR filters in their matrix form are: con-
trol signal uσ = [u1σ , u2σ , . . . , upσ ]

T, the translation parameter bσ = [b1σ , b2σ , . . . , bLσ ]
T, the

dilatation parameter aσ = [a1σ , a2σ , . . . , aLσ ]
T, the daughter wavelets ψσ = [ψ1, ψ2, . . . , ψL]

T,
the neural network output zσ = [z1σ , z2σ , . . . , zpσ ]

T, the estimated position ŷσ = [ŷ1σ , ŷ2σ ,
. . . , ŷpσ ]

T,and the synaptic weight matrices Wσ ∈ Rp×L; and the coefficients Cσ ∈ Rp×M

and Dσ ∈ Rp×N for the filters are:

Wσ =


w11 w12 · · · w1p
w21 w22 · · · w2p

...
...

. . .
...

wp1 wp2 · · · wLp

, Cσ =


c10 c11 · · · c1M
c20 c21 · · · c2M
...

...
. . .

...
cp1 cp2 · · · cpM

,

Dσ =


d11 d12 · · · d1N
d21 d22 · · · d2N

...
...

. . .
...

dp1 dp2 · · · dpN

. (22)

The output zσ(k) of the wavenet is given by

zσ(k) = uT
σ (k)Wσ(k)ψT

σ (k), (23)

which is passed through the IIR filters to obtain the estimated position ŷσ(k),

ŷσ(k) = Γ̂σ(k) + DσŶσ(k)vσ(k) (24)

where

Γ̂σ(k) = Cσzσ(k), (25)

Ŷσ(k) =


ŷ1(k− 1) ŷ1(k− 2) · · · ŷ1(k− N)
ŷ2(k− 1) ŷ2(k− 2) · · · ŷ2(k− N)

...
...

. . .
...

ŷp(k− 1) ŷp(k− 2) · · · ŷp(k− N)

 (26)

and vσ(k) =
[
v1σ(k) vpσ(k) . . . vpσ

]T
is the persistent filter signal.

The wavenet parameters are optimized by a least mean square algorithm (LMS) subject
to minimizing a convex radially unbounded cost functions Eσ, defined by
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Eσ(k) =
1
2

p

∑
i=1

[eiσ (k)]
2. (27)

Let the estimation error between wavenet output signal with IIRσ filter and system
output be

eiσ (k) = yiσ (k)− ŷiσ (k). (28)

To minimize Eσ(k), the steepest gradient-descent method is considered. To this end,
notice that partial derivatives of Eσ(k) with respect to aσ(k), bσ(k), Wσ(k), Cσ(k) and Dσ(k)
are required for each haptic device to update the incremental changes of each parameter
along its negative gradient direction. That is,

∆Wσ(k) = − ∂Eσ(k)
∂Wσ(k)

(29)

∆aσ(k) = −∂Eσ(k)
∂aσ(k)

(30)

∆bσ(k) = −∂Eσ(k)
∂bσ(k)

(31)

∆Cσ(k) = − ∂Eσ(k)
∂Cσ(k)

(32)

∆Dσ(k) = − ∂Eσ(k)
∂Dσ(k)

(33)

then, the tuning update parameter for each haptic device becomes:

Wσ(k + 1) = Wσ(k) + µWσ
∆Wσ(k) (34)

aσ(k + 1) = aσ(k) + µaσ ∆aσ(k) (35)

bσ(k + 1) = bσ(k) + µbσ
∆bσ(k) (36)

Cσ(k + 1) = Cσ(k) + µCσ
∆Cσ(k) (37)

Dσ(k + 1) = Dσ(k) + µDσ ∆Dσ(k) (38)

3.3. Discrete PID Controller for Each Haptic Device

The following discrete PID controller is proposed:

uσ(k + 1) = uσ(k) + kpσ (k)[εσ(k)− εσ(k− 1)] +

kdσ
(k)[εσ(k)− 2εσ(k− 1) + εσ(k− 2)] +

kiσ (k)εσ(k) (39)

where kpσ (k), kiσ (k) and kdσ
(k) stand for strictly positive definite proportional, integral

and derivative feedback gains, respectively; uσ(k) is the controller at instant k, and error is
defined as

εσ(k) = yre fσ
(k)− yσ(k) (40)

for σ = {l, r}. Each feedback gain is tuned according to the corresponding error they affect
in (39) and modulated by Γ̂σ, the input matrix of (19).
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3.4. Auto-Tuning PID Gains

Due to the gains kpσ , kiσ and kdσ
are considered within the cost function (27), those can

be updated similar to (34)–(38). Let

kpσ (k) = kpσ (k− 1) + µpeσ(k)Γ̂i,q(k)[εσ(k)− εσ(k− 1)] (41)

kiσ (k) = kiσ (k− 1) + µieσ(k)Γ̂i,q(k)εσ(k) (42)

kdσ
(k) = kdσ

(k− 1) + µdeσ(k)Γ̂i,q(k)

[εσ(k)− 2εσ(k− 1) + εσ(k− 2)] (43)

where Γ̂σ is defined by (21), for 0 < µ < 1 the learning rate of the PID controller gains.
Notice that learning rates µ are designer parameters and are used for both controllers.

3.5. PID Wavenet Controller Algorithm

The proposed PID wavenet Algorithm 1 is summarized as follows:

Algorithm 1: PID Wavenet Controller
1: Read the wavenet parameters: number of neurons Lσ, learning rates (µWσ

, µaσ , µbσ
),

synaptic weight values Wσ and the wavelet ψσ.
2: Read the IIR filter parameters: number of feed-backs and feed-forward coefficients,

Mσ and Nσ, respectively; learning rates (µCσ
, µDσ ), the IIR coefficient values (Cσ Dσ)

and the persistent signal vσ(k).
3: Read the PID controller parameters: gain values (Kpσ , Kiσ , Kdσ

) and its update rates
(µpσ , µiσ , µdσ

).
4: Read the operation parameters: number of epochs epks.
5: Initialize the internal parameters and k = 0.
6: while it is working do
7: for epk = 0; epk ≤ epks; i ++ do
8: Get the control signal uσ(k) and the output from plant yσ(k), Equations (39) and (9).
9: Compute the vector τLσ(k) using (14).

10: Evaluate the mother’s wavelet ψL(τLσ (k)) with (13).
11: Compute the wavelet output zσ(k) with (23).
12: Compute estimated ŷσ(k) using (24).
13: Compute the estimated error using (28).
14: Compute the energy function Eσ(k) with (27).
15: Compute the parameter gradients: ∆Wσ(k), ∆aσ(k), ∆bσ(k), ∆Cσ(k), ∆Dσ(k),

Equations (29)–(33).
16: Update the parameter values using its learning ratios: ∆Wσ(k + 1), ∆aσ(k + 1),

∆bσ(k + 1), ∆Cσ(k + 1), ∆Dσ(k + 1); Equations (34)–(38).
17: end for
18: Get the parameter Γ̂σ(k) and the tracking error εσ(k), Equations (25) and (40).
19: Tune controller gains: Kpσ (k), Kiσ (k), Kdσ

(k): Equations (41)–(43).
20: Calculate the new control signal u(k + 1) using (39).
21: Reassign the new values.
22: Increase the value of while loop operator, k = k + 1.
23: end while

The flowchart for the PID wavenet algorithm is illustrated in Figure 6.
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Start

Read the initial parameters

Initialize the internal parameters and k = 0

Is it working?

epk = 0

epk ≤ epks

Get control signals uσ(k)
and the output yσ(k)

Calculate the vector τ(k) and eva-
luate the mother’s wavelet ψσ(τσ)

Obtained the wavelet output
zσ(k) and the estimated ŷσ(k)

Get the error e(k), also
the energy function E(k)

Calculate the gradients
and update the parameters

epk = epk + 1

Get the parameter Γ̂(k)
and the tracking error εσ(k)

Tune controller gains

Calculate the new control signal

Reassing the new values

k = k + 1

Graphics are generated

Yes

Yes

No

No

Figure 6. Flowchart of the PID wavenet algorithm proposed.

4. The Experimental System

The goal of this section is to present the experimental platform as well as the design
of experiments.

4.1. Experimental Platform

Consider a Geomagic Touch [38], as the haptic interface for each hand, modeled as a
three degrees of freedom nonlinear robot given in (3) and (4) , see Figure 7. A PC equipped
with an Intel(R) Core(TM) i7-4720HQ CPU runs at 2.60 GHz, 16 GB RAM and graphic
card NVIDIA GeForce GTX 980M, under OS Windows 10, and Unity3D, release 22 March
2020. System deploys a soft real-time thread that updates the whole haptic control loop at
[h = 1 ms], corresponding a fast enough sampling frequency of 1KHz for the kinesthetic
stimulus, while visual renderization is update at 66 Hz.
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Figure 7. Experimental platform shows the user solving a virtual maze with a his right hand, which
commands a (right) haptic interface.

4.2. Design of Experiments

The experiments aim at evaluating competency of solving a maze with motor com-
mands within a given order and precision, involving executive decision making and motor
patters, using PMT protocol. It is surmised that such motion patters leads to coordinate
bimanual cooperation of both hands that improves under haptic guidance. Then, it is
considered two experiments, one providing only haptic stimuli when user touches la
boundaries of the maze and other one with continuous haptic guidance, not only when it
deviates as much as touching the limits of the maze.

To this end, the user solves the maze by commanding the 3D haptic interface, which
is represented in the virtual world as the pointer within the virtualized maze as shown
in Figure 8. The middle road of the maze is considered as the position reference, then the
task of the haptic control is to converge to such position reference path, whatever how
the user navigates to solve the maze. In this way, the novel paradigm of invariant motor
learning is implemented in our scheme: User tracks at his/her own pace and motor capacity
the defined invariant position points Pi shown in Figure 8, i.e., the algorithm does not
impose a desired time base since desired velocity is neither enforced visually nor imposed
throughout the control scheme. In this way, user intentional movement is deployed to
solve the maze at will, which es essential for motor rehabilitation.

Two exercises are designed, depending of two level of difficulty are instrumented by
considering: (a) Low difficulty represented by a Simple Connection Maze (SCM), where
a unique non-branching path solves the maze, and (b) Medium difficulty represented by
Multiple Connection Maze (MCM), where there exists multiple branches and dead-ends
requiring executive decision making to transverse until reaching the exit.
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(a)Left device (b) Right device

Figure 8. Multiple branch maze, showing the left-hand (a) and right-hand (b) solution for SCM excercise.

4.3. How the Haptic Control Occurs and How Human is Guided Spatially

Let Figures 9 and 10 show the nominal trajectory for the left and right hand SCM and
MCM, where Ti represents the nominal transect segments. The ends of each Ti are constant
spatial points. Assuming that haptic device pointer is at any given instant in a given spatial
Cartesian location ξr, the closest Ti is chosen, and it is determined the closest point ξ ∈ Ti
as the reference point at that instant, i.e., yσ−re f = ξr. Then, the controller injects a torque
uσ Nm to the haptic device to attract ξr → yσ−re f . In this way, wherever the pointer is, it is
attracted to the closest point of transect Ti, independently of time, and independently of
how fast or slow the velocity of user pointer is. Since human fingertip is inserted at thimble
of the haptic device, then human perceive such torque as a vector of haptic force fh, given
by fh = J(q)−1uσ N.

For the MCM exercises, a maze of medium difficulty is shown in Figure 11, whose
virtualization was programmed in Unity3D, with a unique solution for both right and left
haptic devices.

Figure 9. Transects Ti trajectories for right haptic device for MCM test.
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Figure 10. Composite task from Ti trajectories for left haptic device for MCM test.

Now, 20 via points are considered, for i = 19 transects Ti, starting at P1, see Figures 12
and 13 for right and left haptic devices, respectively.

Figure 11. Solution to the maze MCM of first exercise.

Figure 12. Composite task from Ti transects for right haptic device of exercise 2 (MCM).



Sensors 2022, 22, 7729 14 of 27

Figure 13. Composite task from Ti transects for left haptic device of exercise 2 (MCM).

5. Experimental Results

A pre-training phase is performance to obtain the initial values of the neural network
parameters, see Tables 1 and 2. THis phase is conducted in a human-in-the-loop configuration.

Table 1. Proposed values for wavenet-IIR PID controller.

Parameter Value Parameter Value Parameter Value

Neurons, L 3 µWσ
0.5 µp [0.002, 0.002, 0.002]

Feed-back, M 3 µaσ 0.5 µi [0.002, 0.002, 0.002]
Feed-forward, N 2 µbσ

0.5 µd [0.004, 0.004, 0.004]
Epocs, epk 50 µCσ

0.5 Kpσ (k) [200, 200, 200]
µDσ

0.5 kiσ
(k) [0.018, 0.015, 0.008]

vσ(k) 0.5 kdσ
(k) [0.3, 0.03, 0.03]

Table 2. Initial values of the parameters of wavenet and PID controller.

Parameter Value

Wσ

 0.05 0.05 0.05
−0.05 −0.05 −0.05
0.08 0.08 0.08


aσ

[ −302 −55 −14.2
]

bσ

 8 9 10
8 9 10
8 9 10


Cσ

 0.18 0.576 1.25
1 1 5

0.5 0.5 2.5


µC 0.5

Dσ

 0.43 1.75
0.43 1.75
0.43 1.75


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5.1. Experiment 1: Active Haptic Guidance with SCM and MCM

Figure 14 shows the initial position that the user must have when starting each of the
experiments. Figure 15 shows the virtual navigation behavior of the user in the workspace
to solve the SCM bimanually, with smooth position behaviour, as shown in Figure 16.

Figure 14. Initial operating position by the user.

Figure 15. Workspace trajectory of two haptic devices in an active haptic guidance task for SCM.
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Figure 16. Operational position of two haptic devices in active haptic guidance task for SCM.

In this passive navigation configuration, user exhibits low performance since haptic
guidance not only is scarce but intermitent (user perceives a force at fingertip only when it
touches the walls of the maze).

5.2. Experiment 2: Passive Haptic Guidance with SCM and MCM

The following exercise consists of the implementation and application of a control
law for trajectory tracking, from the construction of a desired trajectory through motion
planning (Figure 17), a different one for each of the haptic devices integrated in the platform
(Figure 18). The experiment consists of each device performing tracking-based regulation
with the user in the loop, giving the user visual and force feedback on the planned trajectory,
where the applied controller guarantees position convergence, the goal is that all this can
be used for rehabilitation purposes. After the development of exercise 1, Figures 19 and 20
show the position errors of each of the haptic devices. Figures 21 and 22 show the control
signal that is sent to each device to generate trajectory tracking.

Figure 17. Workspace trajectory of two haptic devices in passive haptic guidance task: exercise 1.
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Figure 18. Operational position of two haptic devices in passive haptic guidance task: exercise 1.

Figure 19. Right haptic device position error: exercise 1.

Figure 20. Left haptic device position error: exercise 1.
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Figure 21. Right haptic device control signal: exercise 1.

Figure 22. Left haptic device control signal: exercise 1.

5.3. Exercise 1: Passive Haptic Guidance without User in the Loop

For the next test, passive haptic guidance is applied on the device without user in the
loop, Figure 23 shows the results in position convergence and energy exchange.

5.4. Exercise 1: Passive Haptic Guidance with User in the Loop and Disturbances

The following test was performed to check the effectiveness of the controller im-
plemented to compensate uncertainty and disturbance generated by the user when it is
coupled with the device. Figure 24 shows the moments where there are disturbances,
the same instant where there is an increase of energy, the same that the controller uses to
compensate and redirect the device to the desired trajectory.
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(a) (b)

(c) (d)

Figure 23. Experimental results with user in the loop: (a) Workspace path, (b) Operational position,
(c) Position error, (d) Total energy in the task.

(a) (b)

(c) (d)

Figure 24. Experimental results with user in the loop: (a) Workspace path, (b) Operational position,
(c) Position error, (d) Total energy in the task.
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5.5. Exercise 2: Active Haptic Guidance

The present subsection shows the experimental results for the case of Active Haptic
Guidance. The Figure 25 shows the behavior of the two haptic devices in the workspace
and Figure 26 shows the operational position of two haptic devices in active haptic
guidance task.

Figure 25. Workspace trajectory of two haptic devices in active haptic guidance task: exercise 2.

Figure 26. Operational position of two haptic devices in active haptic guidance task: exercise 2.

5.6. Exercise 3: Passive Haptic Guidance

The platform with two haptic devices (right hand and left hand), was evaluated in 2
different experiments (mazes with different level of difficulty), each maze with 2 conditions
(without control and with control), as defined below: (i) The user uses two haptic devices
to solve a maze in free motion (active haptic guidance), i.e., the user controls their own
movements. In this condition (without interactive forces), the execution time is allusive to
the performance of each user (different in each hand); visual feedback plays an important
role. The compensation of the vector of gravitational forces is established. The optical
encoders of the haptic device allow performance measurement by mapping the vector of
joint variables to the operational space; and (ii) The user interacts with the platform actively,
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that is, a tracking control law is implemented, which has the objective of teaching the user
how to solve the maze. The control law has the goal of compensating for the uncertainties
generated by the user when performing the task (disturbances and position errors). In these
conditions (adaptive force that conditions the guide in the operational space), it describes a
kinesthetic learning task. The performance of each user in the task represents involuntary
movements of the trajectory and establishes the energy requirement, defined in an adaptive
way by the control.

As a result of the application of the exercise on the labyrinth of medium difficulty,
Figure 27 is presented, which corresponds to the trajectory on the workspace of the two
haptic devices, in Figure 28 the position operation on each axis of both devices (x, y, z),
Figures 29 and 30 show the position errors generated from tracking the desired trajectory
of the two haptic devices. These graphs show the performance of the controller in passive
haptic guidance tasks in position tracking and convergence.

Figure 27. Workspace trajectory of two haptic devices in passive haptic guidance task: exercise 3.

Figure 28. Operational position of two haptic devices in passive haptic guidance task: exercise 3.
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Figure 29. Position error of right haptic device: exercise 3.

Figure 30. Position error of left haptic device: exercise 3.

5.7. PID Wavenet-IIR Parematers

The performance of the PID wavenet control was evaluated based on the convergence
time to the desired trajectory. The following figures describe the behavior of the adaptive
control implemented on the maze of exercise 1 and 2. Figure 31 and 32 show the trajectory
tracking in the workspace, the response estimation of the plant (haptic device), as well as
the maze estimation error of exercise 1 and exercise 2 respectively.

Figure 31. Performance PID wavenet-IIR controller for exercise 1. In this case, the robot was used for
σ = r (right robot).



Sensors 2022, 22, 7729 23 of 27

Figure 32. Performance PID wavenet-IIR controller for exercise 2, σ = r.

Figures 33 and 34 show: (a) the neural network weights W, (b) parameters a and b,
where a is the scaling variable, which allows for dilations and contractions; and b is the
translation variable, which allows for displacement at instant k, as well as (c) parameters C
and D which are the forward and backward coefficients of the IIR filter respectively.

It is observed that all of them change their value in each instant of time of the exercise,
as they evolve to the dynamics generated by the user and the region in which the haptic
device is located within the workspace.

Figure 33. Behavior of neural network parameters used in the labyrinth of exercise 1.
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Figure 34. Behavior of neural network parameters used in the labyrinth of exercise 2.

Figures 35 and 36 corresponds to the behavior of the PID gains, auto-tuned online for
each degree of freedom of the device.

Figure 35. Self-tuning of gains kp, kd and ki in exercise 1.

Figure 36. Self-tuning of gains kp, kd and ki in exercise 2.
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6. Conclusions and Future Work
6.1. Conclusions

A novel identification and control scheme for the 3D nonlinear haptic robotic devices
is implemented efficiently based in wavenet with IIR filter; it identifies inverse dynamics
aimed at tuning PID feedback gains, not to approximate dynamics as usual neural networks-
based control. Purposely, this scheme yields self-tuning of feedback gains to react to human
interaction and commanding forces, notably, without any a priori knowledge of the haptic
device to guarantee global asymptotic convergence. Real-time human-in-the-loop bimanual
experiments show human cooperative decision making since both hands maneuver in the
same workspace. The proposed scheme is viable for for practical implementation, where
typically not only the exact nonlinear dynamics is now known but it accounts to varying
and persistent exciting human interacting force. There was implemented the patterns
of a clinical test with a healthy volunteer to assess the usefulness of the platform in real
conditions, showing potential for patients.

6.2. Future Work

Platform was tested with healthy subject exhibiting velocities and range of motion
within the expected regimes of patients. Next step is to run a controlled and clinically
supervised protocol with upper limb motor disability patients who require motor rehabili-
tation. Particular interest is on cerebrovascular accident patients that requires also motor
and cognitive coordination, for which virtual mazes tests are an option.
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