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Abstract: Foliage penetration is an unsolved important part of border surveillance of remote areas
between regular border crossing points. Detecting penetrating objects (e.g., persons and cars)
through dense foliage in various climate conditions using visual sensors is prone to high fault rates.
Through-foliage scenarios contain an unprecedented amount of occlusion—in fact, they often con-
tain fragmented occlusion (for example, looking through the branches of a tree). Current state-of-
the-art detectors based on deep learning perform inadequately under moderate-to-heavy frag-
mented occlusion. The FOLDOUT project builds a system that combines various sensors and tech-
nologies to tackle this problem. Consequently, a hyperspectral sensor was investigated due to its
extended spectral bandwidth, beyond the range of typical RGB sensors, where vegetation exhibits
pronounced reflectance. Due to the poor performance of deep learning approaches in through-foli-
age scenarios, a novel background modeling-based detection approach was developed, dedicated
to the characteristics of the hyperspectral sensor, namely strong correlations between adjacent spec-
tral bands and high redundancy. The algorithm is based on local dimensional reduction, where the
principal subspace of each pixel is maintained and adapted individually over time. The successful
application of the proposed algorithm is demonstrated in a through-foliage scenario comprised of
heavy fragmented occlusion and a highly dynamical background, where state-of-the-art deep learn-
ing detectors perform poorly.

Keywords: border surveillance; hyperspectral sensor; background modeling; through-foliage
penetration; fragmented occlusions

1. Introduction

This work presents a novel background modeling (background subtraction) algo-
rithm for a hyperspectral camera intended for ground-based outdoor surveillance. The
algorithm was developed as part of the FOLDOUT (through-foliage detection, including
in the outermost regions of the EU) project [1]. Surveillance of remote areas between reg-
ular border crossing points is one of the main tasks of border guards operating at the
EU/Schengen’s external borders. However, the available technologies have clear limita-
tions when it comes to surveying areas such as forests or areas with dense vegetation,
which provide easy hiding places for potential underlying irregular activities [2]. In par-
ticular, through-foliage detection is an unsolved, but important part of border surveil-
lance. Detection of objects (e.g., persons and cars) through dense foliage in various climate
conditions using visual sensors is prone to high failure rates. Due to the dense foliage,
FOLDOUT scenarios contain an unprecedented amount of occlusion—in fact, they often
present fragmented occlusions (for example, those looking through the branches of a tree)
[3]. Fragmented occlusions are much more challenging than ordinary partial occlusions,
as typically only small fragments of the person are seen through the foliage. Currently,
state-of-the-art person detectors based on deep learning are trained with datasets contain-
ing only partial occlusions and not fragmented occlusion. In cases of heavy fragmented
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occlusion, only small, scattered parts of a person are visible, which makes it impossible
even for a human observer to determine a bounding box which circumscribes the location
of a person appearing in the video frame. Research performed within FOLDOUT further
indicates that even when augmenting the training of deep-learning-based person detectors
with data containing fragmented occlusions, the resulting improvement in detecting per-
sons is achieved only in cases of slight fragmented occlusion, but not for moderate-to-heavy
fragmented occlusions [4]. Consequently, interest within FOLDOUT was also directed to-
wards other types of detectors, e.g., motion-based methods such as background modeling.

The motivation to employ a hyperspectral sensor for outdoor surveillance, and in
particular through-foliage detection in FOLDOUT, is due to its extended bandwidth rele-
vant for vegetation detection. As discussed in [5], vegetation shows a higher reflectance
at around 540 nm compared to the ranges from 400 to 500 nm and from 640 to 660 nm,
where absorption by chlorophyll takes place. It also shows a pronounced increase in re-
flectance around 700 nm, which lies beyond the typical range of an RGB sensor. There is
only a limited amount of previous literature for both the usage of hyperspectral sensors
in ground-based surveillance scenarios as well as for the application of background mod-
eling algorithms to hyperspectral surveillance video streams. In [6], a multi-sensor ap-
proach is adapted for detecting moving targets in indoor and outdoor scenarios. However,
the background modeling algorithm is employed on thermal and short-wave Infrared
(SWIR) imagery, while the hyperspectral sensor is employed afterwards to classify the
detected objects. In [7], the common Mixture-of-Gaussians background modeling ap-
proach is employed separately on each hyperspectral band, and a decision is obtained via
consensus approach. In [8], the background estimation is based on the average of 50
frames and is computed based on a reduced representation, namely the first principal
components of PCA. However, the dimensional reduction is global (i.e., for a whole da-
taset and where the unit data vectors are entire video frames) and the subspace dimen-
sionality is fixed. In contrast, we employ an incremental PCA individually for each pixel.
Thus, each pixel has its own principal subspace, where the subspace dimensionality varies
adaptively over time. Additionally, the proposed algorithm incorporates a means to iden-
tify dynamic background pixels resulting from swaying vegetation and illumination
changes.

As mentioned above, current state-of-the-art deep-learning-based detectors perform
poorly in cases of moderate-to-heavy fragmented occlusions [4]. However, for the case of
hyperspectral imagery, an additional challenge exists, which is related to the accurate
transformation from radiance (combination of material properties and the light source
characteristics) to reflectance (material properties of the object) in uncontrolled environ-
ments. This was confirmed in additional work within FOLDOUT [5], where a trained clas-
sifier was evaluated on hyperspectral frames based on hyperspectral radiance. As calibra-
tion boards cannot be used in outdoor surveillance scenarios to learn the characteristics of
the light source, one would need to either use active illumination or develop advanced
methods to estimate the light source characteristics. The conclusion in [5] was that the
hyperspectral deep-learning-based classifier has currently limited applicability to outdoor
scenarios. This motivated the development of a novel background-based detection algo-
rithm dedicated to hyperspectral sensors even further. Background modeling algorithms
are typically pixel based, and the appearance of each background pixel is adapted over
time. Therefore, changes in illumination and corresponding changes of the spectral signa-
ture do not pose a problem.

Evaluation of a challenging outdoor surveillance scenario with severe fragmented
occlusion where persons are walking behind trees indicates that the novel background-
based hyperspectral algorithm can detect frames depicting persons with an accuracy of
93% at a false alarm rate of 7%. Since there was no trained deep neural network (DNN)-
based detector available for the hyperspectral camera, an indirect comparison was per-
formed with DNN-based detectors applied to RGB and thermal cameras observing the same
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scenario at the same time. The RGB and thermal detectors were able to detect frames with
persons with an accuracy of 12% and 3%, respectively (with a false alarms rate of 0%).

There have been advances in the field of hyperspectral sensor technology since the
purchase of the XISPEC-KIT-SM5X5-NIR hyperspectral sensor within FOLDOUT in 2019.
It is likely that hyperspectral sensors with reduced noise and channels intercorrelation,
increased resolution and reduced costs will be used more commonly in the future in
ground-based surveillance.

Our contribution is twofold: (i) we introduce a novel dedicated background model-
ing algorithm for a hyperspectral camera, and (ii), we apply the hyperspectral sensor and
the novel algorithm to ground-based surveillance scenarios of FOLDOUT, namely,
through-foliage detection on border crossings, which contain a large amount of frag-
mented occlusion. There have hardly been any previous attempts to develop a back-
ground modeling algorithm suited for a hyperspectral camera, nor to use this sensor in
ground-based surveillance, not to mention the challenging though-foliage scenarios char-
acterized by heavy fragmented occlusions.

The rest of this paper is organized as follows. In Section 2, related work concerning
background modeling is outlined. In Section 3, first the passive hyperspectral sensor is
described (Section 3.1), followed by details of its noise measurements (Section 3.2). Section
3.3 outlines methods of dimensional reduction investigated for the hyperspectral sensor,
including batch-wise (Section 3.3.1) and incremental (Section 3.3.2) methods. Section 3.4
evaluates the subspace dimensionality of our hyperspectral sensor, while Section 3.5 de-
scribes the novel background modeling algorithm. In particular, Section 3.5.1 outlines the
motivation and the state-of-the-art regarding background modeling for visual sensors,
while Section 3.5.2 provides a detailed description of the algorithm and its parametriza-
tion. Section 4 describes the experiment performed. Finally, Section 5 presents the experi-
mental evaluation, while Section 6 contains conclusions and future work.

2. Related Works

Background modeling (or background subtraction) and the related foreground detection
(or change detection) are important steps in video surveillance and well-established
themes in computer vision (for an exhaustive survey, see the book [9]). Conventional back-
ground modeling methods exploit the temporal variation of each pixel to model the back-
ground. Due to the dynamic nature of real-world scenes, noise and illumination varia-
tions, Gaussian Mixture Models became a popular solution [10]. However, as the distri-
bution of pixel values over time cannot be modeled accurately by a mixture of Gaussians,
non-parametric models that estimate background probability density functions at individ-
ual pixel locations were introduced [11]. To reduce memory requirements of the kernel den-
sity estimation involved, the observations were clustered into codewords [12]. Alterna-
tively, the sample consensus method was used to store a short sample history for each pixel
[13]. The use of a local binary descriptor and its variants to improve the spatial awareness
has also been studied [14]. Regarding the use of feedback mechanisms to adjust parameters
on the fly, many parametric methods use local variance analysis to guide segmentation be-
havior and to trigger model update mechanisms. An exception, for example, is the work of
[15], which restrains parameter adjustments to regions with unstable segmentation behav-
ior. However, they use ad hoc formulas and parametrization for the update models.

For a recent survey regarding deep neural networks in the context of background
modeling, see [16]. Deep neural networks have been demonstrated to be a powerful
framework for background subtraction in video acquired by static cameras. However,
deep neural networks require high computational overhead, special hardware such as ex-
pensive GPUs and extensive datasets for training. Moreover, deep neural networks out-
perform previous background modeling methods when they are trained with a scene-
specific dataset [17]. These limitations render deep neural networks-based background
modeling methods impractical for border surveillance applications such as the target of
the FOLDOUT project.
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There is little previous literature concerning background modeling for multispectral
sensors, and even less so for hyperspectral sensors. In [18], a Gaussian background mod-
eling based on the Mahalanobis distance and spectral distance metric, as well as combin-
ing the results from several spectral bands (6-7 bands) via pooling. [19] tackle background
modeling of multispectral sensors by applying mixture of Gaussians per channel. In [20],
the traditional codebook approach of [12] to background modeling is extended to for back-
ground subtraction, multispectral case (up to seven bands). These approaches indicate
that the hyperspectral background modeling performs favorably compared to RGB. In a
multi-sensor setup [6], the background estimation is performed on thermal and SWIR sen-
sors, and the hyperspectral sensor is employed afterwards to classify the detected regions
of interest. The approach in [7] presents a hyperspectral background modeling by using a
Mixture of Gaussians for each spectral band separately and obtaining a decision based on
the consensus approach. In [8], the background subtraction is performed based on a re-
duced representation, namely over the first principal components of PCA; however, the
dimensional reduction is offline and global (for a whole dataset), and the dimensionality
is fixed. In contrast, we use an incremental PCA where the data elements are pixels, not
whole frames, and where each pixel has its own principal subspace, and the dimension-
ality varies adaptively over time in accordance with the varying background of the pixel.

Since hyperspectral data have strong correlations between adjacent spectral bands
and high redundancy, dimensionality reduction techniques are required. Some previous
computer vision approaches have employed subspace learning techniques for back-
ground modeling, but in an entirely different way than in this work [9]. Subspace learning
typically uses a dimensional reduction technique which is applied on a collection of im-
ages to construct a background model, which is represented by the mean image. In this
way, foreground segmentation is accomplished by computing the difference between the
input image and its reconstruction on a subspace. In this approach, a whole frame is con-
sidered as a single data unit (typically as a 1D vector). There are many variants to this
basic idea; however, each version suffers from some limitations, including: (1) It is applied
to the whole frame without considering the contribution of different image parts in build-
ing the background model; (2) the application of this model is mostly limited to grayscale
images, and the integration of multi-channel data is not straightforward; (3) the represen-
tation is not multi-modal, so dynamical background and illumination changes cannot be
handled correctly. In contrast, over time, our approach builds and updates a background
subspace for each pixel individually, thus overcoming the limitations mentioned above.

3. Materials and Methods
3.1. The Hyperspectral Sensor

The hyperspectral camera chosen for FOLDOUT was the XIMEA model XISPEC-KIT-
SM5X5-NIR, a compact lightweight passive hyperspectral sensor, based on standard
CMOS area sensors, whose interference filters are organized in a 5 x 5 pattern (25 spectral
bands). The full width at half maximum of spectral bands ranges between about 5 and 20
nm. The XIMEA MQ022HG-IM-SM5X5-NIR (Generation 1; XIMEA GmbH, Miinster, Ger-
many) hyperspectral camera with a short-pass filter was selected as it featured the best
tradeoff in coverage of the visible and NIR bands.

The motivation to make use of a hyperspectral camera stems from FOLDOUT’s pre-
occupation with through-foliage detection. Vegetation shows a higher reflectance at
around 540 nm compared to the ranges from 400 to 500 nm and from 640 to 660 nm, where
absorption by the chlorophyll takes place. It also shows a pronounced increase in reflec-
tance around 700 nm. Throughout this paper, the term vegetation or foliage refers to all
plants or plant material captured by the camera. This includes leaves, branches, stems,
etc., ranging from grass to bushes and trees [5]. To avoid double peaks, i.e., crosstalk be-
tween wavelength bands, an additionally provided filter limits the spectral range to the
range 600-875 nm. However, as the peaks produced by the interference filters have
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considerable overlaps, a calibration procedure was provided by the manufacturer: a cor-
rection matrix of size 24 x 25, yielding 24 virtual bands. However, as the noise level rises
and varies more considerably between the virtual spectral images than in the original
ones, the original bands were used in the following.

Figure 1 (taken from [5]) shows the compact casing of the MQO022HG-IM (Generation
1; XIMEA GmbH, Miinster,Germany)series compared to a EUR 0.10 coin (Figure 1a). The
hyperspectral camera was mounted in a custom-made multi-purpose multi-camera hous-
ing (Figure 1b). The housing also contained a Forward Looking Infrared (FLIR) Boson
thermal camera and a FLIR Blackfly 4K RGB camera. The frames were recorded from all
cameras semi-synchronously. The response curves for each band of the XIMEA
MQO022HG-IM-SM5X5-NIR, as well as the filter transfer function indicating the selected
wavelength range, are shown in Figure 1c. The concept of the IMEC technology is that on
top of a CMOS image sensor, filters are deposited and patterned directly, organized in a
5 x 5 mosaic pattern. Each array captures the spectral information of the incident light.
After a raw frame has been captured, it needs to be demosaiced to receive a hyperspectral
cube; see Figure 2 (taken from [5]). The 1085 x 2045 mosaic image is decomposed into 25
spectral images (bands), each of size 217 x 409 pixels.

Quantum efficiency (%)

Wavelength (nm)
()

Figure 1. The camera system. (a) XIMEA MQO022HG-IM-SM5X5-NIR camera compared to a EUR
0.10 coin. (b) Camera system on a tripod and on a mast (top left). (c) Response curves of the camera
(The red dotted line is the combined transfer function of the optical filters). Taken from [5].

Figure 2. (a) Hyperspectral input frame and (b) planar hyperspectral cube after demosaicing. Taken
from [5].
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3.2. Noise Measurements

We have used the state-of-the-art paper concerning modeling noise of a CMOS cam-
era [21]. Data processing was carried out in MATLAB. The total variance of the noise
(measured in gray levels) of the sensor at each pixel (i,j) is given by the sum of the vari-
ance of the noise component o7 (i,j) that depends on the signal level I(i,j) and the var-
iance of the constant component in case of a closed iris (dark current noise) ¢Z(i,j),
namely

oy (i.)) = of (L)) + o, (1)

The variance of the constant component depends on the variance of the zero mean
amplifier noise and on the quantization step of the analog-to-digital converter. The noise
component that does depend on the signal level I(i,j) depends on the combined gain of
the camera amplifier and circuitry, the scaling (response) factor, and the number of col-
lected electrons due to the dark current. In practice, the dark current noise is measured
from images captured with a closed iris for a specific camera gain value. Given two dark
current frames (captured with a closed shutter and with the same gain), the statistics of
the dark current noise can be obtained from the difference image.

The dark current as well as the dark current noise o, were computed for both the
original 25 bands and for the corrected 24 virtual bands. The mean dark current and its
noise are expected to be independent of the camera gain, and this indeed was observed
for our sensor. Therefore, we show the mean dark current and its noise only for the gain
=0 case. To reduce overlap and crosstalk between the spectral bands, the original 25 bands
can be corrected by the correction matrix provided with the camera. The correction matrix
converts the 25 original bands into 24 virtual bands. However, this transformation alters
the original bands in such a way, that the corrected virtual bands are no longer restricted to
therange [0,255] and contain large positive as well as large negative values. Moreover, the
noise level of the virtual bands is amplified non-uniformly across the virtual bands.

The mean dark current for the original bands as well as for the virtual bands is fairly
constant across bands and is about 1.9 gray levels. However, while the noise variance for
the original bands is roughly constant across bands and is about 0.3 gray levels, the noise
variance for the corrected bands varies between 0.5 and 3.5 gray levels, and is largest at
the spectrum’s endpoints, as shown in Figure 3.

To measure the noise which depends on the gray level, a polytetrafluoroethylene
(PTFE) calibration target provided with the camera was employed. To achieve an even
illumination across the target, the measurements were taken outdoors. Even so, the strong
vignetting observed in this sensor had to be compensated for by proper normalization per
pixel. The noise which depends on the gray level was computed from the difference of
two images taken at the same gray level value. The dependence of the total noise on the
average gray level (or exposure) turned out to be quite linear, in accordance with [21].
Hence, we next present a comparison of the noise of the original bands and the virtual
bands for a specific gray level. Figure 4 shows the average noise (variance) which depends
on the gray level per image band, for an exposure of 345 microseconds, where after vi-
gnetting correction, all image bands have a constant average gray value of 124 (left: orig-
inal 25 bands; right: 24 virtual bands). The noise significantly increases when attempting
to correct the bands using the correction matrix provided with the camera, resulting in 24
virtual bands, and reaches unacceptable levels at the lower and upper ends of the spec-
trum. Consequently, it was decided to use the 25 original bands rather than the 24 virtual
bands, where the overlap of the original response peaks of the original bands is to be taken
care of by the dimensional reduction algorithm, described in Section 3.3.
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Figure 3. Dark current: Mean dark current for the original 25 bands (top left) and 24 virtual bands
(top right). Dark noise variance for the original 25 bands (bottom left) and 24 virtual bands (bottom
right).
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Figure 4. Variance of sensor noise which depends on the gray level, after vignetting correction, av-
erage gray level = 124. Left: for the 25 original bands. Right: the 24 virtual bands.

3.3. Dimensional Reduction of the Hyperspectral Data

Since hyperspectral data have strong correlations between adjacent spectral bands
and high redundancy information contained in hyperspectral data, even with a few tens
of narrow bands, either data transformations or feature extraction including band selec-
tion or other data dimensionality reduction techniques are suggested before the hyper-
spectral data are used. The commonly applied transforms within the context of remote
sensing are the principal components analysis (PCA) [22] and signal-to-noise ratio-based
maximum noise fraction (MNF) transform [23]. Similarly, automated learning of low-di-
mensional linear or multi-linear models from training data has become a standard para-
digm in computer vision. A variety of linear learning models and techniques such as the
above-mentioned PCA, Iterative Robust Least Squares estimation (IRLS) [24], Autoregres-
sive analysis (AR), and Singular Value Decomposition (SVD), have been widely used for
the representation of high dimensional data such as appearance, shape, motion, temporal
dynamics, etc. [22]. These approaches differ in their noise assumptions, the use of prior in-
formation, and the underlying statistical models, but all of them are directly or indirectly
related to linear or bilinear regression. One drawback of such learning methods is that they
are based on least squares estimation techniques, and hence fail to account for outliers,
which are common in realistic training sets. Therefore, it is common to use an intra-sample
outlier process to account for pixel outliers, namely employing robust statistics.

There are two dimensional-reduction paradigms. Batch learning refers to algorithms
that use a batch of training data at once, learning the subspace offline. Incremental learn-
ing refers to algorithms that apply to streaming data collected over time, updating the
learned subspace parameters for each new incoming datum. As, for our background
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modeling algorithm, both types (batch and incremental) of dimensional reduction are
needed, we outline and compare each of them.

3.3.1. Batch-Wise Dimensional Reduction Algorithms

We have tested the following batch-wise dimensional reduction methods on the hy-
perspectral data (as well as on synthetic data): Principal Component Analysis (PCA) [22]
(original formulation as well as the robust PCA variant, using a robust estimator to re-
move data outliers), Maximum Noise Fraction (MNF) [23], and the robust Iterative Least
Squares estimation (IRLS) [24]. These three algorithms differ in their assumptions regard-
ing the noise distribution. The PCA assumes the same noise magnitude for all vectors and
components. The MNF method assumes that the magnitude of noise differs between the
components of the data and the noise magnitude of a specific component is the same for
all vectors. In contrast, the IRLS aims so solve the more general case, where the noise mag-
nitude also varies between the vectors. Our experiments indicate that the MNF shows no
apparent benefit over PCA, while the IRLS turned out to be sensitive to the parametriza-
tion and initial conditions, suffers from instabilities, runs much longer, and is not signifi-
cantly better than the PCA. Moreover, given that PCA produces an orthogonal basis for
the principal subspace, and given that the required fast eigenvalue decomposition func-
tion (commonly using SVD) is widely available in many programming languages/frame-
works), we have chosen to use PCA as our dimensional reduction method.

3.3.2. Incremental Dimensional Reduction Algorithms

An incremental dimensional reduction is also required for the proposed hyperspec-
tral background modeling algorithm (Section 3.5.2). Incremental PCA was developed
within the computer vision literature. There are several versions, which differ in some
mathematical details regarding how the subspace is obtained. Here, we follow the ap-
proach of [25]. Let the dimension of each data vector be denoted by d, and the current
dimension of the principal subspace be k, where k < d. The key idea here is that at each
incremental step, the entire d x d covariance matrix, and the eigen-decomposition re-
quired, is approximated by a (k + 1) - (k + 1) covariance matrix composed of the current
principal subspace and the new coming data vector, properly normalized, so as to control
the relative influence of the new coming data vector and the existing principal vectors.
The result of the incremental step is a new, k + 1 dimensional subspace. However, the
eigenvector(s) corresponding to the least significant eigenvalue(s) can be omitted, de-
pending on the reconstruction accuracy required.

3.4. What Is the Subspace Dimensionality of the Hyperspectral Pixels

How much can the dimensionality of the hyperspectral pixels be reduced, while
keeping most of the information they contain within a desired accuracy (e.g., 98%)? We
distinguish between global and local dimensional reduction, namely, finding one sub-
space dimension that is appropriate for the temporal history of all the pixels of the frame,
vs. finding the subspace dimension for each pixel’s history individually. For the global
approach, we took 10 successive frames. The resulting PCA-based reconstruction achieves
98% accuracy with subspace dimensionality of five. Next, we tested local dimensional re-
duction. For each pixel, we performed a PCA decomposition within a moving window of
width of 10 frames, along 100 consecutive frames. Figure 5 (left) shows the distribution of
subspace dimensionality obtained from all the individual pixels along the 100 frames,
needed to achieve 98% reconstruction accuracy for each pixel. As can be seen, a maximal
subspace dimensionality of nine is sufficient. The same local dimensional reduction was
repeated, for the case of 2 x 2 patches, and the distribution of required subspace dimen-
sionality to achieve 98% reconstruction accuracy is shown in Figure 5 (right). As can be
seen, for 2 x 2 patches, up to 18-dimensional subspace is required. Thus, it is concluded
that local dimensional reduction should be performed on the level of individual pixels, as
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to maintain the fine details of each pixel’s history while keeping the subspace dimension-
ality low as possible. We note that the addition of an adaptation rate parameter (the rela-
tive importance of the new coming data vector at each incremental step) might slightly
alter the distribution shown in Figure 5 (left).

o [ [ | I I o |

1 2 3 4 5 6 T B B} 10 0 2

4 68 8

10 12 14 1% 18

Figure 5. Distribution of subspace dimensionality required to achieve 98% reconstruction accuracy.
Left: for individual pixels. Right: for 2 x 2 patches.

3.5. Hyperspectral Background Modeling Based on Local Dimensional Reduction
3.5.1. Motivation

Background modeling (or background subtraction) and the related foreground detection
(or change detection) are important steps in video surveillance and well-established
themes in computer vision (for an exhaustive survey, see the book [9]). Conventional back-
ground modeling methods exploit the temporal variation of each pixel to model the back-
ground. There is little previous literature concerning background modeling for multispec-
tral sensors, and even less so for hyperspectral sensors. Since hyperspectral data have
strong correlations between adjacent spectral bands and high redundancy, dimensionality
reduction techniques are required. Some previous computer vision approaches have em-
ployed subspace learning techniques for background modeling, but in an entirely differ-
ent way than in this work [9], notably using whole frames as data input. In contrast, over
time, our approach builds and updates a background subspace for each pixel individually.

An additional contribution of our work relates to the application of the background
modeling algorithm to the case of fragmented occlusion. Fragmented occlusion is charac-
teristic of the scenarios of FOLDOUT, namely through-foliage detection in the context of
border crossings. Fragmented occlusions are much more challenging than ordinary partial
occlusions as typically only small fragments of the persons are seen through the foliage.
Currently, state-of-the-art person detectors based on deep learning fail to detect persons
under considerable fragmented occlusion [4]. The motivation of the present work was to
develop a background modeling algorithm specifically to detect moving objects (in par-
ticular, moving persons) under fragmented occlusion, using a hyperspectral sensor, due
to its extended bandwidth relevant for vegetation detection.

3.5.2. The Background Modeling Algorithm

Initialization:

The algorithm does not assume a training period, where all variations of the dynam-
ical background can be learned offline. The algorithm is planned to work as soon as the
sensor is installed within a surveillance system and requires only a few frames for initial-
ization. The algorithm uses the first Ny, recorded frames (typically, Npgecn, = 10) to
perform an initial batch-PCA for each pixel individually. Namely, given a 217 x 409 x 25
demosiaced hyperspectral frame recorded at time ¢, each pixel I(i, ) is a 25-dimensional
vector. For each pixel (i, ), a batch-PCA is performed on the data {115(i'j)}t=0.---.Nsatch—1'
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The resulting principal subspace serves as the initialization of the background model for
the pixel (i, j). Namely:

(@ i A Dimdm=1,..dim @,))- 2)

Uy, Ay and dim(i,j) are the eigenvectors, eigenvalues and the dimension of the
principal subspace of the pixel (i,j), and dim (i, j), respectively (we omit the time index t
when not necessary). The dimension of the principal subspace is set according to a prede-
fined reconstruction accuracy, acc, (proportion of variance explained), which for PCA is
given by [22]

E?y:;nl(i'j) Am
Tih=1Am

We have used acc = 98%. In fact, since Npqcn < d = 25, the PCA can be performed
more efficiently on a Npgecp X Npgren cOvariance matrix rather than on the original d X d
covariance [22].

The segmentation of a new coming pixel If(i,j) into background/foreground is
based on the projection of the new coming pixel onto its background subspace and com-
puting the magnitude of the part which is orthogonal to the subspace:

I )* = 18 ) — X OD (u ul LG, ). (4)
Zdim(i,j)

e (wuly) is the projection matrix into the subspace spanned by the principal
vectors. The projection error is computed via the L; norm, namely:

rest(i,j) = (D" Il ®)

Additionally, for each pixel, the sliding window median and standard deviation are
computed over a short history of each pixel (N,;, frames). Once the moving median
mov_med*'(i,j) is estimated, the moving standard deviation mov_std‘(i,j) is computed

in a robust manner [26]. First the mov_med*(i,j) is re-estimated within the latest N,,;,
frames window, including the newest frame:

= acc. 3)

mov_med* (i, j) = median(res*(i,))). (6)
Next, the Median Absolute Deviation (MAD) is re-estimated via:
MAD(i,j) = median(|rest(i, j) — mov_med®(i,)|) (7)
The robust re-estimated standard deviation is given by [26]:
mov_std'(i,j) = 1.4821 - MAD'(i, j). 8)

The moving-window-based median and standard deviation of the residuals
rest(i,j) provide statistical measures of the dynamical behavior of the background pixel
@0
Segmentation (labeling):

The classification of a pixel (i,j) into background/foreground is carried out accord-
ing to the following criterion:

rest(i,j) = Thresh - (25 — dim®(i,)) A
|rest(i,j) — mov_med'(i,j)| =3 - mov_std*(i,j)- (9)
Background, Otherwise

Typically, Thresh = 10, and the factor (25 — dim‘(i,j)) is the dimension of the re-
sidual vector perpendicular to the principal subspace I¢(i, j)*. The first condition in Equa-
tion (9) for the pixel (i,j) to be classified as a foreground pixel is a common one in the
literature, which is based on a fixed global threshold for all pixels [10]. However, as pre-
viously discussed [15,27], such a global approach is not sufficient, as it assumes that all
pixels within the frame will always present identical behavior throughout time. Moreover,
different areas within the frame show different dynamical behavior; some background
pixels might be more unstable than others and show more continuous change over time.

Label of I'(i,j) = Foreground,
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The second condition in Equation (9) for the pixel (i,j) to be classified as a foreground
pixel, accordingly, serves as a feedback mechanism, to adjust the labeling threshold based
on the history of the pixel (i, ). In contrast with previous efforts [15,27] which employ ad
hoc formulas and additional parameters to achieve a feedback mechanism, our approach
uses a moving average-based robust statistics of the residual vectors rest(i,j) for each
pixel (i,)), to adapt to pixels’ instability over time. For pixels with larger dynamical in-
stability (e.g., due to swaying vegetation and lighting flickering), a larger value of
res'(i,j) is required to be labeled as a foreground pixel, compared to a pixel which is
more stable over time. We have found that a moving window of width of 5 frames to
works better than longer windows (e.g., 20 frames). This is in accordance with the fact that
we do not aim to employ a long training period to learn all possible background modali-
ties of all pixels, which we find to be unrealistic. The result of the segmentation process is
a foreground mask.

Post-processing the foreground mask:

Preventing the mislabeling of most (if not all) of the dynamical background pixels as
foreground requires additional post-processing steps on the foreground mask. These mis-
labeled pixels correspond to swaying vegetation and illumination changes, as motion of
one layer of vegetation exposes hitherto occluded deeper layers of vegetation. Traditional
methods such as morphological operations on foreground blobs, foreground mask filling
via dilation-erosion, noise removal via filtering, and final contour detection are appropri-
ate when the detected objects are large enough compared to the noise. In our case, the
detected persons could be both small and occluded, such that only small fragments of the
persons are visible. Filtering might remove those fragments as well. Therefore, we have
only used gentle filtering where isolated foreground pixels were removed, provided that
their 5 x 5 neighborhood is empty.

To deal with dynamical background, spatial awareness is required as well. We have
employed optical flow estimation. Denoting the spatial and temporal derivatives by
I(i, )y, 1(L,))y and I(,j),, respectively, the optical flow (velocity) vector at pixel (i,j) is
computed using a small neighborhood N (we have used 3 x 3 or 5 x 5), as follows [28]:

[ napt Y RELGD] = Y LGDLGD)

[uk(i, ) :{ TN en | | G [ (0)
O papnan Y Lapt L= Y Laprn]
(x,¥)EN (x,y)EN |~ (x,y)EN J

We note that computing the optical flow in the reduced subspace rather than in the
full 25-dimensional space would require projecting the entire neighborhood of each pixel
to the pixel’s subspace. As this could be computationally demanding, it is left to future
work. Instead, the velocity vectors (uy (i, ), vi(i,j)) were computed without dimensional
reduction, keeping in mind that the purpose of Equation (10) is not to accurately estimate
the optical flow, but rather to prune out false positive foreground pixels, based on incon-
sistency of their motion (and violation of the brightness constancy assumption). Experi-
mentation with Equation (10) in a forest scenario revealed that false positive foreground
pixels are distinguished by their very small velocity values. Often the motion of swaying
vegetation is rather small. Flickering pixels, which result from the multi-layer structure of
the vegetation, where swaying of on layer of vegetation exposes a deeper layer to a sud-
den illumination change, is characterized by brightness inconsistency and turns out to
yield a low velocity value. Accepted foreground pixels are those for which there exists at
least one spectral band k, for which:

lug (i, I = 0.25 A v, (i, j)| = 0.25. (11)
The foreground mask FG'(i,j) is temporally smoothed via

FG'(i,j) » (1 —apg) - FG* (i, ) + apg - FGE(i, ). (12)
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We have used ap; = 0.25. Finally, a detection alarm is raised only in the case that
sufficient evidence is found in the temporally smoothed foreground mask —namely, that
at least 25% of region of size 10 x 5 consists of foreground pixels. The small region size of
10 x 5 is taken so as not to assume any specific person size.

Updating the background:

Given a new coming frame, an incremental PCA for each pixel is performed, and its
principal subspace is updated according to Section 3.3.2. The incremental PCA increases
the dimension of the subspace by one; however, Equation (3) is used to find the minimal
subspace dimension required to maintain the reconstruction accuracy of 98%. In contrast
with previous literature, such as [27], the background is updated regardless of the classi-
fication of a pixel as background or foreground, as the background model needs to be
adapted for all variations of background appearances, including dynamical behavior of
pixel’s static. However, in the case that a pixel is labeled as foreground, an update of the
background is performed sub-temporally, with a probability of 0.75. The outline of the
background modeling algorithm is summarized in Algorithm 1.

Algorithm 1: Hyperspectral Background Modeling

Initialization:
e Perform pixel-based batch-PCA on first Ny, frames to obtain the principal sub-
space for each pixel, {u(i,j)m, A, NDin}m=1,...dim i./)
¢ Compute moving window median and standard deviation mov_median®(i, ),
mov_std®(i,j) based on N,,;, frames.
for each 25-dimensional pixel in the new coming frame I£ (i, )
e Project the pixel to its current principal subspace {u(i, /)5, A3, )i tm=1,..dim(,j)
e Label the pixel as background/foreground according to the residual vector per-
pendicular to the subspace rest(i,j) = |[I*(i, ) |l
o Update mov_median'(i,j) and mov_std‘(i, )
e Post-process the resulting foreground mask:
o Remove pixels with inconsistent (slow) motion
o Filter isolated pixels
o Smooth the foreground mask temporally
o Accumulate evidence on the foreground mask
o Raise detection alarm if moving objects detected
e Update principal subspace and its dimensionality {u(i, )5, A(i, )i }m=1,...dim (i,j)
End

4. Results

The purpose of the present work is not to provide a detailed evaluation and compar-
ison of the proposed background modeling algorithm. There is little previous literature
concerning background modeling with hyperspectral sensors, not to mention novel back-
ground modeling approaches that were developed specifically for a hyperspectral sensor.
To the best of our knowledge, there are no hyperspectral datasets, certainly not for the
case of fragmented occlusion. Moreover, there are only few previous efforts dedicated to
the application of hyperspectral sensors in the area of ground-based surveillance. Our
goal is twofold: on one hand, we aim to introduce a novel dedicated hyperspectral back-
ground modeling algorithm, and on the other hand, we aim to apply it to ground-based
surveillance scenarios of FOLDOUT, namely, through-foliage detection on border cross-
ings, which contain a large amount of fragmented occlusion. We follow this approach as
first the hyperspectral sensor has an extended bandwidth, where vegetation shows a
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higher reflectance, and second as conventional DNN-based detectors perform inade-
quately in the case of large amount of fragmented occlusion.

An additional difficulty in any evaluation of detection algorithms in the case of heavy
fragmented occlusion is the issue of annotations. As discussed in [4], under considerable
fragmented occlusion, the detected object appears in the video frame as a collection of a
few small patches of pixels. Even for a human annotator, it is not possible to place a rea-
sonable bounding box that circumscribes the targets to be detected. Consequently, the
evaluation we have performed is based on labeling of whole frames rather than labeling
pixels individually. The frames of the video clip were annotated as occupied by persons
or empty. Thus, a positive sample in our evaluation is a frame where some evidence of at
least one person appears, even if it is just a small patch comprised of a few pixels. A true
positive is a positive sample frame for which at least one region of the foreground mask
obtained consists of sufficient foreground pixels.

For the evaluation, a video clip acquired within FOLDOUT was used. The video was
recorded at Imatra, Finland, in May 2019, depicting a forest scenario where persons are
walking behind trees. The clip was recorded with 15 fps and is about 2 min long. In total,
1675 frames were annotated as described above. The amount of fragmented occlusion var-
ies mostly from moderate to heavy. The scenario is comprised of dynamical background
including swaying vegetation —grass, bushes, leaves, and branches —and the correspond-
ing light variations and flickering, as a swaying layer of vegetation exposes a deeper layer
further from the camera to a sudden illumination change. A direct comparison of our
background-based detector against the state-of-the-art DNN-based detector is not possi-
ble, as we do not have a dedicated DNN-based detector for the hyperspectral sensor. (For
the difficulties involved, see [5]).

However, the recording of the video clip in Finland was accompanied by simultane-
ous recordings of the same scenario with RGB and thermal cameras, although with non-
identical field of views. Figure 6 shows one frame for each of the three sensors (for the
hyperspectral sensor, only one spectral band is shown, for clarity). In FOLDOUT, state-
of-the-art DNN-based YOLOV5 detector was implemented for both the RGB and the ther-
mal sensors. An evaluation was performed with the YOLOV5 on the corresponding ther-
mal and RGB recordings, and, likewise, considering a true positive a positive sample
frame, where the detector succeeded to detect at least one person in the frame. The
YOLOV5 detector managed to detect only 3% of the positive samples of the thermal sen-
sor, and 12% for the RGB sensor, notably, with 0% false positives. The result for the RGB
sensor is slightly better compared to the thermal sensor, presumably due to the fact that
the field of view is narrower, hence small patches of the occluded persons contain more
pixels, as well as due to the fact that some heavy occlusion regions are excluded from the
RGB frames. Compared with the low detection rate of DNN-based detectors, the novel
hyperspectral background modeling-based detector achieves much higher detection rate;
however, it comes at the cost of an increased false alarm rate. With the parametrization of
the algorithm, as described in Section 3.5.2, the detection rate is 93%, with a false positives
rate of 7%.
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Figure 6. Comparison of the field of view of hyperspectral (one spectral band) vs. the thermal (bot-
tom left), and RGB (bottom right) sensors.

Next, Figure 7 illustrates the background modeling algorithm. The frame 1325 is
show (top left), which contains five persons (only spectral band 11 is shown, for clarity).
It was chosen for display as it shows persons with various degrees of occlusions, and not
only heavily occluded persons, as it is often the case. The top right image is the residual
(Ly-norm) of projecting each new coming pixel to its principal subspace. The middle left
and right shows the moving median and moving standard deviation images. The post-
processed foreground mask (dynamical background eliminated) is shown at the bottom.

Figure 7. Illustration of the algorithm. Top left: original frame (one spectral band). Top right: resid-
ual (L;-norm) image. Middle left: moving median. Middle right: moving standard deviation. Bot-
tom: post-processed foreground mask.
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5. Discussion

This work presents a novel background modeling (background subtraction) algo-
rithm for a hyperspectral sensor, in the context of ground-based outdoor surveillance.

The algorithm copes with the strong correlations between adjacent spectral bands
and high redundancy by performing an incremental PCA for each pixel individually,
maintaining and adapting the principal subspace for each pixel over time. The algorithm
was developed within the project FOLDOUT, which focuses on through-foliage detection
in border scenarios. Through-foliage scenarios are characterized by heavy fragmented oc-
clusion. On these scenarios, state-of-the-art DNN-based detectors, such as YOLOv5 and
Mask-RCNN, perform inadequately [4]. The hyperspectral sensor was investigated in
FOLDOUT due to its extended spectral bandwidth, beyond the range of a typical RGB
sensors, where vegetation has pronounced reflectance. In outdoor scenarios, the spectral
signature obtained from hyperspectral imaging depends significantly on the varying and
uncontrolled illumination, which poses a problem for classification methods, where the
knowledge of the reflectance of the objects (materials) themselves is required. In contrast,
the background modeling approach does not rely on a spectral signature, as it adapts to
illumination changes over time.

Hence, a dedicated background modeling for the hyperspectral sensor was devel-
oped and tested on through-foliage penetration scenarios. To the best of our knowledge,
there are very few previous studies which focus on ground-based surveillance using a
hyperspectral camera, and on developing novel background modeling algorithms for the
hyperspectral sensor. Moreover, we demonstrate the algorithm on a challenging through-
foliage penetration scenario. Such a scenario is characterized by heavy fragmented occlu-
sion, where only small fragments of the persons walking behind vegetation can be seen,
and where the background is highly dynamical, including frequent swaying vegetation
and illumination changes. Furthermore, the observed fragments of the moving persons
are often comprised of only a few pixels.

The present work was intended as a demonstration of ground-based outdoor surveil-
lance using a hyperspectral camera, for the purpose of through-foliage detection, employ-
ing a dedicated novel background modeling algorithm, rather than a detailed evaluation
of the proposed algorithm. Moreover, to the best of our knowledge, there are no hyper-
spectral datasets or approaches to compare, certainly for through-foliage detection. Our
method is demonstrated by evaluation on a video clip acquired within FOLDOUT, with
settings reminiscent of border crossing region. The clip contains about 2 min (about 2000
frames) of persons under considerable fragmented occlusion walking behind trees. The
video was manually annotated, where whole frames were classified as occupied with per-
sons (positive samples) or devoid of persons (negative sample). A frame was classified as
occupied when at least one small fragment of one person was visible. Due to the heavy
fragmented occlusion, it was not feasible to annotate persons via their bounding boxes.
As no DNN-based classifier was developed for the hyperspectral sensor (for the difficul-
ties involved, see [5]), we compare the performance of our background modeling algo-
rithm to state-of-the-art DNN-based YOLOvV5 detector indirectly. As thermal and RGB
videos were recorded simultaneously with the hyperspectral video on the same scenario,
we ran the YOLOVS5 detector on the corresponding thermal and RGB videos. The compar-
ison is shown in the following Table 1.
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Table 1. Comparison of the background modeling algorithm with dep learning approaches. (TP =
true positives; FN = false negatives; FP = false positives; TN = true negatives).

Background Model- y ) (3 o (rpermal)  YOLOVS (RGB)
ing (Hyperspectral)
True Positive Rate = o o
o o 12%
TP/(TP + FN) 9% 3 "
False Positive rates = o o o
FP/(TN + EP) 7% 0% o

A true positive frame designates the case where at least one object was detected. As
can clearly be seen, the DNN-based detector performs poorly in the case of considerable
fragmented occlusion. This was further discussed in [4], which shows that even when the
training of a DNN-detector is augmented with fragmented occlusion, the performance in
the case of moderate-to-heavy fragmented occlusion does not improve. In contrast, the
background modeling-based detectors cope successfully with the moving persons, even
when only small fragments of the persons are visible. The success of the background mod-
eling algorithm comes with a trade-off, nevertheless: namely 7% false positive rates, due
to the dynamical nature of the background on one hand, and the small visual extent of the
moving targets on the other hand. Reducing the false positive rate might be achieved via
improvement in the hyperspectral technology, by the planned future work on the back-
ground modeling algorithm, as well as from fusion with other algorithms and other sen-
sors. However, the proposed approach demonstrates the feasibility of incorporating a hy-
perspectral sensor in computer-vision-based surveillance, and the through-foliage pene-
tration scenario is one in which the hyperspectral sensor might excel.

Since the purchase of the XISPEC-KIT-SM5X5-NIR (Generation 1; XIMEA GmbH,
Miinster, Germany)hyperspectral sensor within FOLDOUT during 2019, there has been
improvement in hyperspectral sensor technology. Additionally, with additional future
advancement, it is foreseen that hyperspectral sensors with reduced correlations between
adjacent spectral bands, redundancy, and noise, and with a reduced price point, will be
used more commonly in ground-based surveillance. In particular, with increased resolu-
tion, larger fragments of moving targets should be easier to detect and classify as such,
and texture features such as histograms of local binary pattern [14] might be employed.

Our approach maintains and updates a principal subspace for each pixel, thus reduc-
ing the number of hyperspectral bands for each pixel by more than 50%. Currently, the
algorithm is implemented in MATLAB. However, preliminary tests indicate that real-time
performance should be feasible. This could be achieved by using, e.g., Python in combi-
nation with TensorFlow to eliminate the computational bottleneck of updating the prin-
cipal subspace for each pixel separately using parallelization.

6. Conclusions

The main limitation of our approach is the tradeoff between detection rate and false
alarms rate. This could be improved by elaborating the structure of our background
model. In [12], an efficient representation of a non-parametric description of the back-
ground model is outlined using a codebook model. In [29], a simplified version of code-
books was demonstrated to work in ultra-real time in practical outdoor surveillance sce-
narios, without the need for an offline training period. In [20], an extension of the method
for multispectral frames is presented (6-7 spectral bands). In future work, our plan is to
augment our hyperspectral background model with additional structure, along these
lines, to reduce the number of false positives. For each pixel, we plan to maintain and
update a list of codebooks within its principal subspace. Although the FOLDOUT project
demonstrated that fusion of various sensors of different modalities improves the detection
and tracking of targets [2], the hyperspectral sensor was not yet part of that fusion. This is
left for future work.
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