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Abstract: The perception of hunger and satiety is of great importance to maintaining a healthy body
weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to
malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception.
To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements.
Aiming to develop an objective classification system, this paper presents a multimodal sensory system
using associated signal processing and pattern recognition methods for hunger and satiety detection
based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device,
and JINS MEME smart glasses to capture physiological signals from five healthy normal weight
subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals,
we compared different feature extraction approaches, either based on manual feature engineering or
deep feature learning. Comparative experiments were carried out to determine the most appropriate
sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our
experiments showed that the most discriminative features come from three specific sensor modalities:
Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).

Keywords: hunger; satiety; physiological signals; non-invasive sensing; multimodal sensing; machine
learning; artificial neural network

1. Introduction

Hunger and satiety perception occurs within the hypothalamic areas of the brain,
processing a number of endocrine signals coming from peripheral organs such as the stom-
ach, liver, pancreas, intestine, or fat tissue [1]. Differentiating between hunger and satiety
is crucial to maintaining stable body weight and preventing malnutrition. Specifically,
overweight and obesity are known to be associated with a gradually advanced loss of
this perception, leading to overeating, underlying the disease [2]. According to the World
Health Organization (WHO), 39% of adults aged 18 years and older were overweight, and
13% were obese in 2016 [3]. So far, common methods to determine hunger and satiety
are invasive, i.e., via hormonal analyses from blood samples, or based on self-assessment,
such as Visual Analog Scales (VAS) [4,5]. The latter records subjective sensations such
as the desire to eat, hunger, satiety, and nausea [6,7] and by nature, underlies several
external factors influencing the test results (e.g., stress level, environmental temperature,
etc.). In contrast, invasive methods—mostly used in experimental settings—measuring
blood concentrations of relevant hormones are not practicable in everyday life. In order to
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develop a therapeutic device that may assist people to train hunger and satiety perception,
objective and non-invasive measurements are necessary.

The detection of hunger and satiety with multimodal physiological sensor signals
using supervised machine learning (ML) is a worthy investigation. This is because ML has
already shown promising results on physiological sensor signals in a various applications
in other fields such as biology, medicine, and psychology [8–11]. An important step in a
ML process is feature extraction, which consists of computing some values from the data—
referred to as features—that are meaningful for the problem to solve. Feature extraction
approaches map the data from a high-dimensional space to a low-dimensional one to lower
the complexity of the ML problem. There are two main families of feature extraction, namely
feature engineering and feature learning. Feature engineering refers to the manual crafting
of features, either based on expert knowledge or on simple transformation functions (e.g.,
arithmetic operators and/or aggregation operators) applied to the sensor signals.

Feature learning, on the other hand, designates the automated learning of features
from the data. One of the most popular feature learning approaches nowadays is deep
learning that is based on Artificial Neural Networks (ANNs). They work in an end to end
fashion and have already shown promising results in a large number of health-related
applications [12–16]. ANNs are modeled after their biological counterparts and can be
implemented on computers as software applications. The basic elements of ANNs are
artificial neurons, which are interconnected in form of layers. Sensor signals are provided
to the input layer, and then they move to the output layer via interconnected neurons. An
ANN, which consists of more than three layers, i.e., an input layer, an output layer, and
several hidden layers, is called a Deep Neural Network (DNN). DNNs can be trained with
appropriate data to create a useful model that converts inputs into outputs [17,18].

Developing an objective system to predict hunger and satiety using multimodal sen-
sory signals is a complex task. However, such a problem has not been explored extensively
in the past literature. More specifically, all past studies either used invasive sensor modal-
ities or investigated a related but different problem than the recognition of hunger and
satiety. In this work, we therefore hypothesize that modern non-invasive wearable sensors
can allow us to distinguish hunger and satiety states. We perform an ML study involving
the comparison of several state-of-the-art feature extraction and classification approaches.
We also investigate various sensor modalities recording physiological data to determine
which one(s) contribute the most to this problem.

To summarize, we make the following contributions:

1. We investigate the use of non-invasive multimodal sensors in the context of hunger
and satiety detection and develop a state-of-the-art machine learning model, which
learns hunger and satiety patterns from multimodal sensors data and classifies them
into hunger and satiety classes.

2. We analyze and compare wearable devices and sensor channels to select the most
relevant physiological signals for an accurate classification of hunger and satiety data.

3. We perform a comparative analysis of feature extraction approaches and machine
learning algorithms to identify the best features in achieving optimal classification
results.

4. We also provide a brief review of related approaches.

The rest of the article is structured as follows. Section 2 presents the current state-
of-the-art in hunger and satiety detection. Section 3 describes the materials and methods
used to analyze multimodal signals for assessing hunger and satiety. Section 4 presents
the experimental results. Section 5 provides a discussion, and finally, Section 6 concludes
this work.

2. Related Work

In recent years, some hunger detection methods have been applied for clinical and
behavioral assessments [4,19–25]. Table 1 lists the sensors and systems used in the re-
viewed studies.
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Table 1. Sensors and systems for the assessment of hunger in the literature.

Study Sensors/System Dataset
Information Features Detection

Barajas-
Montiel and
Reyes-Garcia
[25]

Microphone

1627—samples of
hunger and pain

cries (acoustic data
of infants)

Acoustic
features by
means of

frequencies

Hunger cry,
no-hunger cry, pain
cry and no-pain cry

Krishnan
et al. [4]

13—subjects

Feature
learning
(ANN)

VAS responses
from satiety

hormone values
VAS

plasma
concentrations

of satiety
hormones
from blood

samples

Bellmann
et al. [19]

In vitro gas-
trointestinal
model

Gastric viscosity
and Fullness

intestinal digestion - vs.
from tiny-TIMagc Hunger

Rahman et al.
[20]

Microsoft Band, 8—subjects Statistical
features

Time until the
Affectiva Q sensor, (3 female, 5 male) next eating event,

Microphone from 26 to 54 years and about-to-eat

Al-Zubaidi
et al. [21] fMRI

24—male subjects
from 20 to 30 years

(fMRI data)

3—
features

(DC, ReHo
and fALFF)

Neuronal resting
state alterations
changes during

hunger and satiety

Lakshmi et al.
[22]

Hunger, thirst,
EEG EEG signals - and rest-room

sensations

Maria and
Jeyaseelan
[23]

Synthetically
collected SF, CDF

and GCC

Growling

Microphone audio signals
through vs.

mobile phones Burp sound

Gogate and
Bakal [24]

35—patients Hunger

EDA ( 20 of them used
as - vs.

control group ) Stress
VAS: Visual analog scales; ANN: Artificial neural network; fMRI: Functional magnetic resonance imaging; DC:
Degree of centrality; ReHo: Regional homogeneity; fALFF: Fractional amplitude of low-frequency fluctuations;
EEG: Electroencephalography; SF: Spectral features; CDF: Cepstral domain features; GCC: Gammatone cepstral
coefficients; EDA: Electrodermal activity; tiny-TIMagc: In vitro gastrointestinal model.

To the best of our knowledge, physiological signals acquired from multimodal sensors
have not yet been used for the prediction of hunger and satiety responses using machine
learning. For example, Barajas-Montiel and Reyes-Garcia [25] applied traditional signal
processing and pattern classification methods to detect hunger cries, no-hunger cries, pain
cries, and no-pain cries from infant acoustic data. Here, the detection of hunger cries and no
hunger cries is based on acoustic features in the form of frequencies. The model proposed
in this paper [25] is specific to infants and could not be generalized to the young and elderly
population to detect hunger and satiety. They did not describe feature learning or the use
of wearable physiological sensors for hunger and satiety detection.

Interestingly, Maria and Jeyaseelan [23] used audio signals generated by the stomach
to identify growls that can describe hunger well. The synthetic audio signals were recorded
using mobile phones and pre-processed using smoothing methods and median filtering.
Spectral features were calculated to classify the signals into growls and burps.

Krishnan et al. [4] used ANN to model the feelings of hunger and satiety after food
intake. They trained their model with a dataset relating concentration–time courses of
plasma satiety hormones to VAS assessments. The proposed model successfully predicted
VAS responses from the dataset of satiety hormones obtained in experiments with different
food compositions. They also revealed that the predicted VAS responses for the test data
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separated the satiety effects of highly satiating foods from less satiating foods, for both
oral and ileal infusion. However, their approach is time-consuming and invasive because
they used plasma hormone levels, which are not easy to obtain compared to physiological
signals detected by smart sensor devices.

Bellmann et al. [19] claimed that human clinical trials are time-consuming and costly.
Therefore, they developed a gastrointestinal model in conjunction with ANN to predict
feelings of hunger and satiety after the ingestion of different meals. They trained their model
with a series of training datasets to create a prediction set and link the model measurements
to VAS scores for hunger and satiety. Although gastrointestinal-based modeling is still in its
infancy, it is evident that the development of machine learning approaches has the potential
to transform such models into powerful predictive tools, which can predict physiological
responses to food. However, the acquisition of physiological responses by miniaturized
sensors is state-of-the-art.

Rahman et al. [20] proposed that predicting eating events can enable users to adopt
better eating behaviors. As a consequence, they used a set of sensor devices to record
physical activity, location, heart rate, electrodermal activity, skin temperature, and calo-
ries ingested while eight users were eating. They extracted 158 window-level features,
followed by correlation-based feature selection (CFS), and trained a classifier to predict
the about-to-eat event. Time until the next eating event was predicted using regression
analysis. However, the use of motion sensors such as accelerometers and gyroscopes is
questionable for the “time until the next eating” event. Additionally, they did not provide
any comparison between sensor modalities to determine the best optimal device.

Al-Zubaidi et al. [21] investigated the influence of hunger and satiety on resting-state
functional magnetic resonance imaging (rs-fMRI) using connectivity models, i.e., local
connectivity, global connectivity, and the amplitude of rs-fMRI signals. They extracted the
connectivity parameters of ninety brain regions for each model and used the sequential
forward sliding selection strategy in conjunction with a linear support vector machine
classifier to determine which connectivity model best discriminated between metabolic
states (hunger vs. satiety). They claimed that the amplitude of the rs-fMRI signals, with
a classification accuracy of 81%, is slightly more accurate than the local and global con-
nectivity models in detecting changes in the resting state of the brain during hunger and
satiety. However, they did not show results with the state-of-the-art supervised feature
learning approach.

Gogate and Bakal [24] presented a hunger- and stress-monitoring system using gal-
vanic skin response data from 35 patients using proprietary data processing and classifica-
tion techniques. They claimed an overall accuracy of the system of 86.6%. However, they
did neither specify a method for data processing and feature extraction, nor did they use
classical or modern classification methods.

Lakshmi et al. [22], proposed a method to detect hunger specifically in physically
disabled people. The main goal was to communicate using the brain’s thoughts without
muscle control, specifically for severely paralyzed people with a non-invasive approach
to make the task less complex and more convenient. In this approach, a single-channel
electrode was placed on a person’s scalp to detect human sensations of hunger, thirst,
and toilet using images placed in front of it. The final result was obtained by analyzing
the person’s attention level. The attention levels of each image were compared to the
corresponding image in MATLAB, and the resulting attention level value was obtained.

In general, there are very few studies [4,19–25] on the subject that we investigate.
However, each of them has some limitations; for example, the data collection method used
by Krishnan et al. [4] was invasive, and the results of Bellmann et al. [19] were based on
gastrointestinal models. Rahman et al. [20], used motion sensors for the “time until the next
eating” event, which is questionable. Maria and Jeyaseelan [23], and Barajas-Montiel and
Reyes-Garcia [25] used microphones to record the data, which can trigger a privacy risk.
The authors in [21,22,24] used hand-crafted features, while feature learning can perform
as well or better than state-of-the-art [26]. To-date, no automated system for detecting
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hunger and satiety using multimodal physiological signals has been evaluated, nor is there
a public dataset.

3. Materials and Methods

In this section, we present the aspects of the sensor modalities accumulated for data
acquisition, the process of data acquisition, and discuss the experimental settings. The
entire process from data acquisition to analysis consists of a series of steps as shown in
Figure 1, which has been extensively described in the past literature [9,27].

       Data         
Acquisition Pre-processing

Features
Extraction and

Selection
Classification Evaluation

Figure 1. Standard approach to developing machine learning and pattern recognition systems. Each
step should be optimized in parallel to achieve the best performance.

3.1. Dataset Acquisition

The hardware configuration of our proposed sense-hunger system is shown in Figure 2.
We used the following wearable devices and sensor modalities to collect physiological
hunger and satiety signals from five healthy individuals:

1. RespiBan (Plux Wireless Biosignals S. A., Lisboa, Portugal) [28]: Subjects wear the
respiration belt on the chest, at the level of the thorax, with the electrode connectors
facing forward. It contains the Respiration (Resp) sensor and also provides the
possibility for connecting to other sensors such as Electrodermal activity (EDA),
Electrocardiography (ECG), and Electromyography (EMG), as shown in Figure 2. The
description of these sensors is as follows:

• Resp: This sensor measures the respiration rate. It detects chest or abdominal
expansion/contraction, and outputs a respiration signal. It is usually worn using
a comfortable and flexible length-adjustable belt. It is sampled at 475 Hz.

• EDA [29]: EDA of RespiBan (Eda_RB) consists of two electrodes placed on the
front, in the middle of the index finger, and in the middle of the middle finger of
subject’s non-dominant hand. This sensor measures the galvanic skin response,
i.e., the change in electrical conductivity of skin in response to sweat secretion. It
is also sampled at 475 Hz.

• ECG [30]: It consists of three electrodes placed on the subject’s right upper
pectoral, left upper pectoral, and at the left bottom thoracic cage. This sensor
records the electrical impulses through the heart muscle, and it can also be used
to provide information on the heart’s response to physical exertion. It is also
sampled at 475 Hz.

• EMG [31]: This sensor is used to assess the electrical activity associated with
muscle contractions and respective nerve cells, which control them. It is placed
on the subject’s abdomen above the belly button and is also sampled at 475 Hz.

2. Empatica E4 wristband (Emaptica Inc., Cambridge MA, USA) [32]: It contains pho-
toplethysmogram (PPG), infrared thermopile (Tmp), and EDA sensors that allow
measurements of sympathetic nervous system activity and heart rate (HR) variability.
The description of these sensors is as follows:

• PPG: This sensor measures blood volume pulse (BVP), which can be used to
derive HR and inter-beat interval (IBI). It is sampled at 1 Hz.

• Tmp: This sensor records skin temperature. It is sampled at 5 Hz.
• EDA: EDA of Empatica E4 (Eda_E4) wristband measures the galvanic skin

response, which is the change in the electrical conductivity of the skin in response
to sweat secretion. It is sampled at 5 Hz.

3. JINS MEME smart glasses (Jins Inc., Tokyo, Japan) [33]: They can track not only where
we look, but how often we blink and even whether we are about to relax or fall asleep.



Sensors 2022, 22, 7711 6 of 21

It uses electrooculography (EOG) electrodes placed in three locations on the frame.
These electrodes can track blink duration and eye movements in different directions.
It is sampled at 20 Hz.

Via Bluetooth

JINS MEME smart glasses

Empatica E4 wristband

- Electrooculography 

- Photoplethysmogram 

- Electrodermal activity 

- Thermopile 

Via Bluetooth

RespiBan

- Electromyography

- Electrocardiogram 

- Electrodermal activity

- Respiration

Figure 2. The SenseHunger system uses three sensory devices, namely, JINS MEME smart glasses,
Empatica E4 wristband, and RespiBan. The Electrodermal activity (EDA), Electrocardiogram (ECG),
and Electromyography (EMG) electrodes are plugged into the RespiBan device. Datasets from all
devices are sent to the laptop for storage using a Bluetooth connection.

The data collection of hunger and satiety activities involved five healthy volunteers
whose demographic information is provided in Appendix C. Subjects were asked not to
eat anything for 16 h before data collection. However, drinking water was allowed. Data
collection for each subject was divided into two phases, namely, the hunger and the satiety
phase. In the hunger phase, data collection lasted for 5 min, using the sensory devices
shown in Figure 2. After eating, the process was resumed for the satiety phase, which
lasted for 30 min.

3.2. Pre-Processing

State-of-the-art machine learning (ML) algorithms can certainly derive knowledge
from raw sensor data. However, their output generally depends on the quality of the
datasets they are working with. If data are insufficient or contain extraneous and irrelevant
information, ML algorithms may produce less accurate and less understandable results
or discover nothing useful at all. Therefore, pre-processing of the data is an important
step in the process of ML. The pre-processing step is necessary for solving various types of
problems influencing data such as noise, redundancy, missing values, etc. [34]. In the first
step, datasets from all sensor channels (as shown in Figure 2) are synchronized, resampled
to a frequency of 100 Hz, and linearly interpolated to ensure that the channels shared a
common repetition.

Based on our preliminary experiments, we segmented the data of each sensor channel
using a Sliding Window Segmentation (SWS) in the following three settings with an
overlapping window, to select the optimal setting: In the first setting, the length T and
sliding stride (step size) ∆S of a time window are set to 10 and 5 s, respectively. The second
setting is defined by length T = 30 s and sliding step ∆S = 15 s, while in the third setting,
the length T and the sliding step ∆S of a time window are set to 60 and 30 s, respectively.
The experimental results with the mentioned window sizes and step sizes are presented in
Section 4.

3.3. Feature Extraction and Selection

In a linear or nonlinear fashion, feature extraction approaches model the data from
a high-dimensional space into a reduced dimensional space. In this study, we used two
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approaches to extract features, namely the hand-crafted features and automated feature
learning.

Hand-crafted Features: We used 18 hand-crafted features [9,35] consisting of the
statistical and frequency-related values of the input signals. These features are listed in
Table 2. All features were computed independently for each axis of each sensor channel,
following the suggestions of Cook and Krishnan [36]. They were subsequently concatenated
to obtain a feature vector of size 18 × sensor (S). To remove the effects of discrepancies
between the values of each feature, min-max normalization was performed for each feature
to project its values into the interval [0, 1]. The normalization constants calculated on the
training set were again used to calculate the features in the test set.

Table 2. Hand-crafted features calculated independently for each sensor channel.

Hand-Crafted Features

Maximum Minimum
Average Standard deviation

Zero-crossing Percentile 20
Percentile 50 Percentile 80
Interquartile Skewness

Kurtosis Auto-correlation
First-order mean Second-order mean

Norm of the first-order mean Norm of the second-order mean
Spectral energy Spectral entropy

We applied feature selection on the features we manually computed to remove useless
or redundant ones, and to decrease the complexity of our classification model. This can
improve the performance of a model and determine the interdependence between features
and class labels [36]. A common approach for feature selection is feature ranking, which
quantifies the ability of the feature to predict the desired class. A Random Forest (RF) was
used to select the most important hand-crafted features [37]. It is a tree-based learner that
generally grows by applying the classification and regression tree method (CART) [38],
where binary splits recursively partition the tree into homogeneous or nearly homogeneous
terminal nodes. After a fair split, the data is moved from the root tree node to the child
nodes, improving the homogeneity of the child nodes relative to the parent node [39].
Typically RF consists of a set of hundreds of trees, where each tree is grown using a sample
of the dataset.

In RF, trees are generally grown non-deterministically using a two-step randomization
procedure. Apart from the randomization applied by growing the tree using a sample of
the primary data, a subsequent level of randomization is set at the node level as the tree
grows. The objective of this two-step randomization is to decorrelate the trees, so that RF
ensemble has low variance. Features ranked by RF are based on the quality of the purity
improvement (which is the fraction of data items that belong to the class) of the node.
Given a node n and the estimated class probabilities p(k|n) k = 1, . . . Q. The Gini index can
be defined by using the following equation [40].

G(n) = 1−
Q

∑
k=1

p(k|n)2 (1)

In Equation (1), Q is the total number of classes. In order to obtain the Gini index-
based measure at each node, the Gini index decline is calculated for the variable used for
partitioning. The Gini index-based measure of variable importance is then obtained by the
average drop in the Gini index. For the comparison of manual feature selection approaches,
see Appendix A.

Feature Learning: Feature learning involves learning features from labeled input data
in an automated way without any human input. Feature learning has become increas-
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ingly popular over the past years with the popularization of ANNs and DNNs. During
training, they are fed with raw input data to learn a mapping against each class in an
end to end fashion. ANN and DNN models have been shown to perform well on various
tasks (e.g., image classification [41], activity recognition [9,42], and sleep stage classifica-
tion [8]). However, training such models can be challenging as it is computationally more
expensive than training traditional models. Moreover, finding optimal architectures is a
non-trivial process.

In the past, Multi-Layer Perceptrons (MLPs) [43] and Convolutional Neural Networks
(CNNs) [44] have been used for various tasks. MLPs represent the most primitive type of
ANN. In order to process 2D sensor data with its sensor axis (S) and time (T), the input
data are first normalized using the batch-normalization layer [45], and then passed to fully
connected layers that expect 1D input. A syntactic example of the MLP architecture can be
seen in Figure 3.

Input signal

T

S 

Batch
normalization

....

Input layer

(T x S)

Hidden layers

Softmax layer

....

n1 nh

nc

....

....

Figure 3. Illustration of a MLP where different sensor channels are converted into a (T×S) dimensional
vector, which is passed to the different hidden layers (h) and output classes (c) as defined by the
softmax layer.

In CNN architectures, the convolutional layers are the main building blocks normally
used to perform convolutional operations between one or several convolutional filters (or
kernels) learned during the training phase and the layer input. The convolution operation
can be applied by sliding the convolution kernels over the input data. In this study, raw
sensor data are given as 3D input (S× T× 1) to the CNN model for processing. After a
series of convolutional and pooling layers, the output of the last convolutional layer is
usually smoothed into a 1D vector and fed into the softmax layer. The Rectified Linear Unit
(ReLU) is the most commonly used activation function for convolutional layers. It is also
common to add multiple dense layers of a multilayer perceptron to the CNN architecture
for classification problems. In that case, a softmax activation function is usually used to
connect the aftermost dense layer to the output layer. An example of a CNN model can be
seen in Figure 4.

In initial experiments (whose results are reported in Appendix B), various config-
urations for the window size (T), step size (∆S), and learning rate (lr) parameters were
examined. It was found that T = 60 s, ∆S= 5 s, and lr =10−4 yielded the best performances.
Therefore, each sensor channel information was segmented into parts, resulting in data
frames of the form (N × S × 1), where N is the number of segments, or more precisely,
(6000 × 7 × 1) for each class.

The purpose of this study was to test the use of feature learning methods with a dual
objective. The primary goal was to analyze the quality of MLP and CNN in automatically
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extracting features with different hyperparameters. The secondary objective was to examine
and compare the results of human-generated features and automatic feature extraction.
The results of classifying hunger and satiety using the above mentioned approaches are
presented in the experimental results section.

Input signal

T

S 

....

Softmax layer

....

nc

nhConvolution Pooling
Convolution

Pooling

Flattening

....

Figure 4. Illustration of a Convolutional Neural Network (CNN) model with convolutional layers,
pooling layers, h dense layers, and c output classes represented by a softmax layer. Input data are
processed by convolutional layers and pooling layers, and are passed to dense layers after extraction
of profound features.

3.4. Classification

To provide a comparison between hand-crafted features and automatically learned
features, we used two types of classification approaches. Traditional classifiers such as
support vector machine (SVM), decision tree (DT), and RF were trained and tested on
hand-crafted features, and ANN-based models such as MLP and CNN with softmax layers
were applied to classify the automatically learned features into hunger vs. satiety classes.
The description of these methods are as follows:

1. SVM: In pattern recognition, SVM is a supervised learning algorithm, which can be
used for classification and regression tasks. Its robust performance on noisy and
sparse data makes it a good choice for a variety of applications [42]. In a classification
task, the SVM separates the labeled training data with a maximum margin hyperplane.
Test data are then mapped to the same space to predict a class label. SVM can also
efficiently map high-dimensional data to a high-dimensional dimension feature space
to perform nonlinear classification [46].

2. DT: This is an approach to classification or regression analysis, in which a decision
tree is constructed by recursively partitioning the feature space of the training set into
smaller and smaller subsets. The final consequence is a tree with decision and leaf
nodes. DT aims to find a set of decision rules that instinctively divide the feature space
to build a instructive and robust classification model. A decision node has binary or
multiple branches. A leaf node indicates a class or outcome. The top decision node in
a tree points to the best predictor, which is called the root node [47].

3. RF: This is a popular ensemble learning method used for various types of classification
problems such as activity recognition [35], where multiple DTs are created at training
time [48–52]. In RF, each tree casts a unit vote by assigning each input to the most
likely class label. RF is fast, robust to noise, and an effective ensemble, which can
be used to identify nonlinear patterns in datasets. It can handle both numeric and
categorical data. The biggest advantage of RF compared to DT is that it is significantly
more resilient to overfitting [53].
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3.5. Evaluation

The selection of the evaluation metric is very important and application-dependent,
because an inadequately defined metric may lead to incorrect conclusions [54]. For this
reason, the evaluation metrics were designed to be consistent with the state-of-the-art work
in this field, and to facilitate comparison. It is worth mentioning that in all experiments
of this work, cross-validation was used according to the Leave-One-Subject-Out (LOSO)
protocol, in which each subject’s data are used once as the test set, whereas the remaining
data constitute the training set. In general, the overall performance is the average of the
results gained for each tested subject. The LOSO cross-validation procedure guarantees
that all models are tested on unknown subjects, which allows a realistic evaluation of the
classification algorithms used in de-factor applications.

For the classification performance of the different models tested, we used accuracy
assessed by the ratio of true predictions (i.e., true positive (tp), true negative (tn)) to all
entries (i.e., true positive (tp), true negative (tn), false positive (fp), false negative (fn)) [55],
as shown in Equation (2):

Accuracy =
tp + tn

tp + tn + fp + fn
(2)

In addition to the accuracy, we used the averaged F1 (AF1) score (short for macro-
averaged F1 score), which treats all classes equally and can be used to evaluate the class
imbalance problem (as shown in Equation (6)). It can be defined by using Precision
(Equation (3)), Recall (Equation (4)), and F1 score (Equation (5)) [55,56].

Precision =
tp

tp + fp
(3)

Recall =
tp

tp + fn
(4)

The F1 score combines the precision and recall into a single metric by taking its
harmonic mean, as shown in Equation (5):

F1 score =
2× Precision× Recall

Precision + Recall
(5)

In our experiments, the AF1 score is given, which is the average of the F1 scores of all
classes:

AF1 score =
1
c

c

∑
i=1

F1 scorei (6)

In Equation (6), c represents the no. of classes and F1 scorei represents the F1 score for
the ith class.

4. Experimental Results

In our study, all algorithms and models were implemented using Python 3.9. For the
algorithms SVM, DT, and RF, and the deep learning models MLP and CNN, the libraries
sklearn and Keras with Tensorflow 2.2.0 backend were used. Adaptive Moment Estimation
(ADAM) [57] was chosen as the optimizer for our deep learning model with an initial
learning rate of 10−4, and trained with 50 epochs at a batch size of 32. The categorical cross
entropy was used as the loss function for the deep learning models. Since no automated
method for the optimization of DNN hyper-parameters has been found so far, trial-and-
error was used to obtain the best hyper-parameters for the DNNs we tested in our study.
The configurations we tested are provided in Appendix B. The hyper-parameter values
that were used in our experiments are provided in Tables 3 and 4 for MLP and CNN,
respectively. It is worth mentioning that we decided not to report the result of a single
LOSO cross-validation, but the average results obtained after performing it five times.
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Table 3. MLP architecture with learning rate set to 10−4.

Layer Name Neurons/Dropout Rate Activation

Dense 64 ReLU

Batch Norm - -

Dense 16 ReLU

Dropout 0.5 -

Flatten - -

Dense 8 ReLU

Dropout 0.5 -

Dense 2 Softmax

Table 4. CNN architecture with a fixed dropout rate of 0.5 and learning rate of 10−4.

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride Activation

Convolutional 64 (1,1) (1,1) ReLU

Batch Norm - - - -

Convolutional 32 (1,1) (1,1) ReLU

Convolutional 16 (1,1) (1,1) ReLU

Flatten - - - -

Dense 2 - - Softmax

Preliminary experiments with all hand-crafted features (i.e., without feature selection),
and SVM, DT, and RF classifiers were carried out to determine the best segmentation
parameters. The results of these experiments are shown in Table 5. It can be seen that the
best performing configuration is obtain when using RF with T = 60 s and ∆S = 30 s, and
largely outperforms the others that were tested. We therefore selected these segmentation
parameters and classifier for the rest of our studies. However, the overall classification
results remain mediocre, with a AF1 score of around 60%.

Table 5. Results of binary classification of hunger and satiety.

Classifier Win Size
(T)

Step
Size (∆S)

Acc.
Hungry Acc. Satiety Acc AF1 Score

SVM 10 05 20.90 70.37 56.89 45.63
DT 10 05 27.94 70.40 58.04 49.17
RF 10 05 30.97 71.75 59.90 51.36

SVM 30 15 21.61 68.86 55.43 45.24
DT 30 15 21.93 71.54 58.29 46.73
RF 30 15 38.59 73.23 62.71 55.91

SVM 60 30 13.19 69.50 55.00 41.34
DT 60 30 18.44 79.43 67.14 48.93
RF 60 30 36.36 82.05 72.00 59.21

DT: Decision tree classifier; RF: Random forest classifier; SVM: Support vector machine classifier; Acc: Accuracy;
AF1 Score: Averaged macro F1 score.
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To improve the initial classification results and verify the potential of each sensor
channel, experiments were also conducted with each sensor channel separately. We moni-
tored the classification accuracies of each sensor channel after the LOSO cross-validation to
determine its relevance in detecting hunger and satiety. Figure 5 shows the boxplot, mean,
and standard deviation (in dotted lines) of the obtained accuracies.
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Figure 5. Importance of each sensor channel in recognizing hunger and satiety.

The standard deviations of Resp, ECG, and EOG are higher compared to the other
sensors. The results in Table 6 show that these sensors are the least significant because
their accuracy is less than 70%, and there is a very large variance among the different
subjects. Therefore, we decided to exclude the Resp, ECG, and EOG sensors data for further
experiments. Moreover, the literature also confirms the importance of Tmp, BVP, and
EDA (Eda_E4 and Eda_RB) signals in the detection of hunger. For example, the research
of Mandryk and Klarkowski [58] reveals that BVP increases in response to hunger and
decreases in response to relaxation, He et al. [59] identifies changes in Tmp, EDA, and
HR values following the ingestion of food. The authors in [24] had already used EDA
for hunger detection. Furthermore, IBI and HR are directly related to BVP, since they are
derived from it.
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Table 6. Hunger and satiety classification results on each sensor channel using RF classifier.

Sensor Acc. Hungry Acc. Satiety Acc AF1 Score

Tmp 73.08 95.30 92.00 84.19
Eda_E4 70.59 94.98 91.43 82.79

BVP 67.35 94.68 90.86 81.02
Eda_RB 62.18 92.25 87.14 77.22

IBI 43.48 91.95 85.14 67.46
HR 40.45 91.33 84.86 65.89

EMG 30.95 90.58 83.43 60.77
Resp 29.30 79.56 68.29 54.43
EOG 39.25 73.25 62.86 56.25
ECG 21.59 73.66 60.57 47.63

RF: Random forest classifier; Acc: Accuracy; BVP: Blood volume pulse; Eda_E4: Electrodermal activity sensor of
empatica E4 wristband; Tmp: Thermopile; IBI: Inter-beat interval; HR: Heart rate; Resp: Respiratory; Eda_RB:
Electrodermal activity sensor of RespiBan; ECG: Electrocardiogram; EMG: Electromyography; EOG: Electroocu-
lography. Note: For these experiments, we used a window size of 60 s and a step size of 30 s to compute the 18
hand-crafted features for each axis of the sensor channel.

Further experiments were performed with the best 18, 54, 72, 90, and 108 features
of the selected sensor channels (i.e., excluding Resp, ECG, and EOG), ranked by their
increasing Gini impurity scores. With the best 18 features, an Acc of 93.43% and an AF1
score of 87.86% were obtained, as shown in Table 7.

Table 7. Results of the classification of hunger and satiety using RF classifier based on the best
features selected with feature importance ranking.

No. of Best Features Acc. Hungry Acc. Satiety Acc AF1 Score

18 79.65 96.08 93.43 87.86
54 66.02 94.14 90.00 80.08
72 68.18 95.42 92.00 81.80
90 68.00 94.67 90.86 81.33

108 67.33 94.49 90.57 80.91
Acc: Accuracy; AF1 Score: Averaged macro F1 score.

The results of our experiments shows that the best results could be obtained with
just 18 hand-crafted features based on the FIR (as shown in Table 7). Moreover, there is
not much difference in the classification results of the best 54, 72, 90, and 108 features.
Furthermore, the results with 18 hand-crafted features are notably better than the results
that were obtained using all sensors (see Table 5). It could be concluded that Resp, ECG, and
EOG are the least informative sensors in this case, while BVP, Eda_E4, Tmp, HR, Eda_RB,
and EMG are the most informative sensors and could be used to detect hunger and satiety.

To determine the relative relevance of each wearable device (i.e., Empatica E4 wrist-
band, JINS MEME smart glasses, and RespiBan professional, with ECG, EMG, and EDA
sensors) in detecting hunger and satiety, further experiments were also conducted with
the RF classifier. Figure 6 shows the results of each device using the best 18 features in
each case. Our experimental results show that Empatica appears to be the best wearable
device, outperforms the other devices, and might be used as the only wearable device for
monitoring hunger and satiety.
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Figure 6. Comparison of sensor devices on the basis of accuracy (Acc) and averaged macro F1 score
(AF1) for hungry and satiety classes. Empatica: Empatica E4 wristband; JIMS MEME: JINS MEME
smart glasses; RespiBan: RespiBan professional device, including ECG, EMG, and EDA sensors.

To provide a comparison between feature engineering and feature learning approaches
on our dataset, the experiments were also performed using CNN and MLP. With the CNN,
an Acc of 82.90% and an AF1 score of 82.54% were obtained, as shown in Table 8. The
segmentation technique mentioned above was not adequate for training a deep learning
model. Therefore, we devised another segmentation technique using a window size of
60 seconds and a step size of 5 s for deep learning-based models.

Table 8. Results of the classification of hunger and satiety using feature learning approaches.

Classifier Acc. Hungry Acc. Satiety Acc AF1 Score

MLP 77.79 81.35 80.14 79.57
CNN 81.37 83.70 82.90 82.54

Acc: Accuracy; CNN: Convolutional Neural Network; MLP: Multi-Layer Perceptron.

5. Discussion

The following points provide a detailed discussion of the aforementioned results:

• One of the main objective of this paper was to develop a machine learning approach
to classify hunger and satiety using wearable sensors. Therefore, we used wearable
devices like the Empatica E4 wristband, JINS MEME smart glasses, and RespiBan
professional with miniaturized sensors that provided sufficient quality data and
that could capture physiological signals related to the perception of hunger and
satiety in patients or people with occupational constraints, as opposed to invasive [4],
gastrointestinal model [19], fMRI-based data [21], and gastric tone signals [23]. Our
proposed non-invasive multimodal system with carefully selected sensor channels
outperformed previous approaches with an accuracy of 93.43% and an average F1
score of 87.86%.

• Each classification algorithm is based on different mathematical models [60], and
may produce different results for the same dataset. In order to obtain highly accurate
results and to select the best classifier for further experiments, we not only conducted
experiments with different classifiers, but also with different window sizes and step
sizes. It was found that the RF classifier was best suited for hunger and satiety
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detection using hand-crafted features, and it outperformed the DT and SVM classifiers
in each scenario. It was also observed that the window size of 60 s and the step size of
30 were significant for each classifier.

• In the past, deep learning-based approaches have shown promising results in a variety
of application domains such as biology, medicine, and psychology [8,12–15,42,61].
However, they are computationally expensive and also require a large number of
training samples [62] to build successful models compared to traditional approaches
using hand-crafted features. To compare the results of feature learning and feature
engineering, we also computed 18 features independently for each axis of each sensor
channel. They were subsequently concatenated to obtain a feature vector of the size
of 18 × sensor (S) axis. It was found that well-engineered features can perform better
than deep learning approaches in the case of a limited number of training samples.

• In this study, we used feature importance ranking (FIR), which measures the contribu-
tion of each input feature to the performance of the model. It turned out that the most
accurate results can be obtained only with the best 18 hand-crafted features (as shown
in Table 7) and the addition of other irrelevant and redundant features can introduce
noise into the data, which can reduce the performance of a classifier. It can be pointed
out that the top five features come exclusively from three different sensor channels
(Eda_E4, BVP, and Tmp) and are either computing the mean or the 80th percentile
of the data values. Percentile 80 provides an approximation of the maximum value
in a data segment that is less sensitive to noise or outliers than the actual maximum
computation. This would indicate that the average and upper data values in Eda_E4,
BVP, and Tmp are of high importance to distinguish between hunger and satiety. This
feature selection also validates our previous results to identify the importance of each
sensor channel (Table 6), and seem to confirm findings from the literature that showed
these sensor channels to be relevant in detecting hunger and satiety [24,58,59] (c.f.
Figure 5). The overall selected best features can be seen in Figure 7.

Figure 7. The overall 18 best features. Note: pt80: 80th percentile; avg: average; zc: zero crossings;
mx: maximum; acr: auto-correlation; pt50: 50th percentile; mn: minimum; pt20: 20th percentile; BVP:
Blood Volume Pulse; HR: Heart Rate; Tmp: Temperature; Eda: Electrodermal activity; RB: Respiration
belt; E4: Empatica E4.
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• Long-term monitoring with a large number of wearable sensors may be uncomfortable
for users [63]. Therefore, eliminating irrelevant sensors can decrease the degree of
discomfort and improve the robustness of the classification system by reducing the
dimensionality and also save a lot of money [64]. In this work, we compared not only
all sensors, but also wearable devices, to determine the most suitable sensors and
wearable device for hunger and satiety detection. It was found that PPG (BVP, IBI,
and HR), EDA (Empatica E4 and RespiBan), Tmp, and EMG were the appropriate
sensor modalities for this study, and Resp, ECG, and EOG were the least appropriate.
We also found that the Empatica E4 wristband was the most suitable device compared
to the other devices.

6. Conclusions

In this paper, we introduced an objective and non-invasive machine learning model
to detect hunger and satiety using physiological sensor data. Our proposed multimodal
system enables the detection of hunger and satiety with an accuracy of 93.43%, and an
average F1 score of 87.86% in LOSO configuration. The results of this study lead to
the following conclusions: firstly, state-of-the-art wearable sensors provide good quality
physiological data on hunger and satiety, and could be used to build a non-invasive and
objective system. Furthermore, deep learning architectures do not necessarily perform
well, especially when we have a limited number of training samples. In addition, feature
selection could help to remove unnecessary and redundant features that lead to noise,
which in turn leads to better results. Finally, the experiments of this study showed that the
most discriminative features come from three specific sensor modalities: Electrodermal
Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP). These sensors
are part of the Empatica E4 wristband, which is the most influential device in this study
and can be used as a standalone device. In order to learn more about the perception of
hunger and satiety, further experiments with long-term hunger and satiety data are needed,
which will not only help to train deep learning models well, but also further divide hunger
and satiety into sub-classes to gain further insight, which is part of our future work.
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VAS Visual Analog Scales
ANN Artificial Neural Networks
DNN Deep Neural Networks
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EDA Electrodermal Activity
EEG Electroencephalography



Sensors 2022, 22, 7711 17 of 21

fMRI Functional Magnetic Resonance Imaging
DC Degree of Centrality
ReHo Regional Homogeneity
fALFF Fractional Amplitude of Low Frequency Fluctuations
SF Spectral Features
CDF Cepstral Domain Features
GCC Gammatone Cepstral Coefficients
CFS Correlation-based Feature Selection
ECG Electrocardiogram
EMG Electromyography
PPG Photoplethysmogram
TMP Thermopile
EOG Electrooculography
ML Machine Learning
BVP Blood Volume Pulse
MLP Multi-layer Perceptrons
LSTM Long Short-term Memory
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
SVM Support Vector Machine
DT Decision Tree
RF Random Forest
LOSO Leave-one-subject-out
ADAM Adaptive Moment Estimation
SWS Sliding Window Segmentation
Acc Accuracy
AF1 Averaged macro F1 score

Appendix A. Comparison of Manual Feature Selection Approaches

Feature selection (FS) is a process usually applied in machine learning studies that
involve the computation of a large number of features. In particular, it is required to
eliminate features that would not be the most discriminative for the classification problem
to solve, and on the other hand, identify the most useful ones. We used in our study three
commonly used FS methods: Boruta, eXtreme Gradient Boosting (XGB), and RF [65–67].

RF is an ensemble learner that works well with nonlinear data, handles large datasets
efficiently, and is useful for feature selection. Most of the time, it provides better accuracy
compared to other algorithms. However, RF can be slow in training when used with a large
number of trees, and is sometimes not suitable for many sparse features [48–50,53,65].

Similar to RF, XGB is an ensemble machine learning algorithm that incorporates loss
minimization using gradient descent to the RF framework. It is less prone to overfitting,
can handle missing values, has minimal effects of outliers, and can also be used as a feature
selector. However, it is more difficult to tune because there are many hyperparameters and
overfitting is possible if the parameters are not set correctly [66,68].

Boruta is a wrapper feature selection approach based on RF that selects or eliminates
features after computing an feature importance scores, so that the quality of its feature
selection depends on the quality of the RF model. The sensitivity of Boruta can be improved
by using a RF with a larger number of decision trees. However, increasing the number of
trees in RF may increase the computation time of the Boruta algorithm, which limits the
use of the algorithm for analyzing very large datasets [67].

In order to make a fair comparison between the manual FS approaches in this study,
we selected the best 18, 54, 72, 90, and 108 features with Boruta, XGB, and RF, and classified
them with XGB and RF classifiers. The best results of each classifier in each setting are
shown in Table A1. The best configuration was obtained by using RF both for feature
selection and classification.
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Table A1. Results of the classification of hunger and satiety using RF and XGB classifier based on the
best features selected with Boruta, XGB, and RF.

Classifier FS Algorithm No. of Best Features Acc. Hungry Acc. Satiety Acc AF1 Score

RF RF 18 79.65 96.08 93.43 87.86
RF Boruta 108 72.53 95.89 92.86 84.21
RF XGB 54 73.12 95.88 92.86 84.50

XGB RF 18 69.23 94.63 90.86 81.93
XGB Boruta 54 53.33 93.11 88.00 73.22
XGB XGB 18 63.92 94.20 90.00 79.06

RF: Random Forest; XGB: eXtreme Gradient Boosting; Acc: Accuracy; AF1 Score: Averaged macro F1 score.

Appendix B. Hyper-Parameter Selection for Feature Learning Approaches

Machine learning algorithms work with two types of parameters, namely learnable
parameters and hyper-parameters. The learnable parameters are those that the algorithms
learn themselves during training on a given dataset, while hyper-parameters are specified
by engineers or scientists prior to the training in order to regulate how algorithms learn, and
to change the performance of the model. In our study, the most impactful hyper-parameters
on the final classification performances were the learning rate (lr), window size (T), and
step size (∆S).

The lr determines the rate at which the ANN training algorithm (backpropagation
algorithm) updates the weights of the network during each training iteration. More
specifically, each neural weight wn at iteration n ∈ N∗ is updated following the formula:

wn = wn−1 − lr× ∂L
∂w

(wn−1)

where L designates the loss function comparing the network outputs to the expected
outputs.

The window size T and step size ∆S are both segmentation parameters that respec-
tively determine how long in time the input of the network is, and how much time needs to
pass between two consecutive windows of data. Both parameters control the rate at which
the learning algorithm picks up new information.

Figure A1 shows the ANN performances obtained for the various combinations of
hyper-parameters that were tested for the feature learning approaches (MLP and CNN)
in this study. Since no automated method for optimizing the hyper-parameters of deep
neural networks has proven its effectiveness in practice so far, the best values for these
parameters in this study were determined through trial-and-error. The hyper-parameter
T = 60 s, ∆S= 5 s, and lr =10−4 worked best for the MLP and CNN models of this study.

Figure A1. Selection of hyper-parameters for the feature learning approaches. lr: learning rate; T:
window size; ∆S: step size.
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Appendix C. Demographic Information about the Subjects

The following Table A2 shows the demographic data (such as sex, age, and weight) of
the subjects used for data acquisition in this study.

Table A2. Demographic data of subjects used for data acquisition in this study.

Subject Name Sex/Gender Age (in years) Weight (in kg)

S1 Female 23 65
S2 Male 29 71
S3 Male 37 72
S4 Male 26 81
S5 Male 27 75

kg: Kilograms; S1: Subject 1; S2: Subject 2; S3: Subject 3; S4: Subject 4; S5: Subject 5.
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