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Abstract: Freshness is one of the most important parameters for assessing the quality of avian eggs.
Available techniques to estimate the degradation of albumen and enlargement of the air cell are either
destructive or not suitable for high-throughput applications. The aim of this research was to introduce
a new approach to evaluate the air cell of quail eggs for freshness assessment as a fast, noninvasive,
and nondestructive method. A new methodology was proposed by using a thermal microcamera and
deep learning object detection algorithms. To evaluate the new method, we stored 174 quail eggs and
collected thermal images 30, 50, and 60 days after the labeled expiration date. These data, 522 in total,
were expanded to 3610 by image augmentation techniques and then split into training and validation
samples to produce models of the deep learning algorithms, referred to as “You Only Look Once”
version 4 and 5 (YOLOv4 and YOLOv5) and EfficientDet. We tested the models in a new dataset
composed of 60 eggs that were kept for 15 days after the labeled expiration label date. The validation
of our methodology was performed by measuring the air cell area highlighted in the thermal images
at the pixel level; thus, we compared the difference in the weight of eggs between the first day of
storage and after 10 days under accelerated aging conditions. The statistical significance showed that
the two variables (air cell and weight) were negatively correlated (R2 = 0.676). The deep learning
models could predict freshness with F1 scores of 0.69, 0.89, and 0.86 for the YOLOv4, YOLOv5, and
EfficientDet models, respectively. The new methodology for freshness assessment demonstrated that
the best model reclassified 48.33% of our testing dataset. Therefore, those expired eggs could have
their expiration date extended for another 2 weeks from the original label date.

Keywords: quail eggs; thermal camera; poultry production; fresh eggs; quality assessment; YOLOv5;
deep learning

1. Introduction

The agricultural supply chain has been passing through a digital transformation over
the last few years by absorbing elements from industry 4.0 [1]. Innovations linked to
sensor technology, telecommunications, robotics, the Internet of Things (IoT), and artificial
intelligence (AI) are being applied to management automation and real-time data-driven
intervention. In addition, these revolutions toward enhancing the production of food, fibers,
and energy are expected to provide solutions for the contention of wastes and the mitigation
of environmental pollutants [2]. Novel practices for agri-food industries introducing
computational methods combined with smart devices are allowing new alternatives to
assess the quality of farming products and traceability. Hence, with the recent release of
5th generation telecommunications networks (5G), for the very first time, rural areas can
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obtain access to fast internet connections, which may support farmers and decision-makers
in the adoption of best practices and mediation just in time.

In the field of computer sciences, AI is a cutting-edge technology from recent decades
with the potential to disrupt society in the coming years. Deep neural networks (DNNs) are
the workhorse of AI that have been leading solutions to nonlinear and multidimensional
problems, such as image processing, natural language processing, and speech recognition.
In addition, a combination of big data, faster algorithms, and powerful processing units are
considered to be mainly responsible for bringing the deep learning (DL) approach to the
spotlight, and DL is currently considered the state of the art in human-centered AI systems.

In the meantime, the greatest efforts have been focused on computer vision to address
image classification, object detection, segmentation, and localization. Faster algorithms
have been improved continuously to reach high confidence and speed by employing
convolutional neural networks (CNNs) on the backbone of those algorithms. Currently,
the state of the art object detection algorithms are based on the You Only Look Once
(YOLO) [3]. A series of improvements on this deep learning algorithm have achieved
fast inference on edge devices, including smartphones, low-end computers, and cloud
processing platforms [4]. YOLO is classified as a one-stage detector algorithm [5], the
same class as RetinaNet [6] and SSD [7]; however, the architecture is anchor-based and
inherited from two-stage detectors, such as the R-CNN family [8], Fast R-CNN [9], and
Faster R-CNN [10].

YOLO was introduced in 2015 [3]; the breakthrough of this object detection algorithm
was its ability to predict classes and localize coordinates in images (bounding boxes) by
using a single CNN, which makes the inference faster and real-time applications become
possible. The basic idea behind YOLO architecture was to look at the entire image (or
frame) all at once, then divide it into a grid S × S, after which, the localization of an object
is treated as a regression problem instead of a traditional classification problem. When the
center of an object falls into a specific grid, that grid becomes responsible for detecting the
object [11].

Since its release, YOLO has evolved into a series, also known as versions. The first
3 versions of YOLO were released by Redmon et al. [3,12,13], and the 4th version (YOLOv4)
by Bochkovskiy et al. (2020) [5]; this last one was reported to overperform the previous
version (YOLOv3) by 12% in speed and 10% for accuracy, and then became one of the most
used real-time solution object detection algorithms.

Over time, the upgraded versions have stepped-up the tradeoff between speed and
accuracy of detections, and besides that, from the version 5 (referred to as YOLOv5), the
YOLO algorithms have incorporated user-friendly characteristics, including less complex
framework, training efficiency, and portability of models among diverse inference plat-
forms [14]. Computer vision systems based on the YOLO series have been reported for
solutions related to detecting fruits in orchards using YOLOv3 [15], YOLOv4 [16], and
YOLOv5 [17], leaf diseases detections [18], defects assessment on fruits [19], and pest
detection [20].

Furthermore, for other agricultural purposes, computer vision systems based on deep
learning object detection algorithms show enormous potential, which includes self-driving
vehicles [21,22], robotics [23], and object tracking [24,25]. However, most of the utilization
of vision systems has been concerned with in-farm operations aiming to supply labor
shortages and quality of operations; few implementations are given to reduce waste at the
shelf level as a priority target.

Egg quality is a complex task to be assessed because it involves diverse parameters,
such as size, weight, color, eggshell defects, spoilage, bacterial infection, and freshness
(which can be considered the major criteria for quality [26]).

The freshness domain is explained as an objective attribute that represents biochemical
and physical variables that are sensory [27]. The lack of fresh characteristics occurs princi-
pally due to aging effects that start to compromise egg quality immediately after oviposition.
The loss of water and CO2 through shell pores reduces the weight of eggs [28] and in-
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creases the pH [29], respectively, liquefying the albumen and yolk, and therefore facilitating
osmotic exchange between them [30]. These factors can be intensified by environmental
conditions, especially temperature and humidity [31], during the storage period.

Several methods to evaluate the freshness of eggs have been reported, including
destructive analysis, such as the Haugh unit (HU) [32], the pH of the albumen [33], the
yolk index (YI) [34], and the air cell size [35]. Nondestructive techniques mainly involve
NIR/Raman spectroscopy [30,36,37], odor sensors [38–40], electrical conductivity [41],
ultrasound [42], and candling [43]. However, most of these techniques are not robust for
real-time applications, and the nondestructive analysis techniques are not even suitable
due to issues regarding equipment cost, intraclass variations related to shell color (specific
calibration is required) and thickness, and environmental parameters, such as illumination,
temperature, and humidity [44]. A recent study used a pulse phase thermography approach
with neural networks and was able to estimate the aging of hen eggs according to the
approximation of the air cell size and obtained a high degree correlation (R2 > 0.95) [45],
which demonstrates the potential of high-throughput application of thermal imaging and
heuristic algorithms.

All over the world, different countries have adopted different metrics for freshness
standards. The European Union (EU), for instance, adopted air cell size as a parameter to
evaluate the freshness of avian eggs [46], while in Brazil, the standard is HU [47]. Therefore,
the aim of this work was to develop a fast and accurate method using a computer vision
model based on deep learning algorithms for air cell detection as a fast and nondestructive
method to classify nonfresh quail eggs using a thermal microcamera. Our hypothesis was
that the loss in egg weight, as determined by the air cell increase, can be detected by thermal
cameras due to gas transmission through the eggshell; thus, a machine vision system could
be carried out by detecting this feature in a quick and nondestructive way. In this study,
we dealt with deep learning object detection algorithms to assess the shelf-life quality of
quail eggs toward freshness by classification of radiometric images from a thermal camera
according to the new proposed methodology.

2. Materials and Methods
2.1. Experimental Environment

For this study, we used Japanese quail eggs (Coturnix japonica) collected from local
grocery stores. The label expiration date was considered the reference for the end point
of freshness. The experiments were conducted in the Bioproduction and Machinery labo-
ratory, University of Tsukuba, Japan, during the middle of the summer season, in which
the average range daily temperature was 24–32 ◦C. The methodology was developed in
two phases: first, air cell assessment by pixel measurement; second, deep learning object
detection for automatic classification of nonfresh eggs using thermal images.

2.2. Thermal Imaging

A FLIR® (Teledyne FLIR LLC, Wilsonville, OR, USA) Model VUE™ 336, 6.8 mm,
thermal camera with a sensor resolution of 336 × 256 pixels and a spectral band range of
7.5–13.5 µm, size 2.26” (5.74 cm) × 1.75” (4.44 cm), was used to collect radiometric images
from the quail eggs. Thermal cameras can produce images by interpreting the intensity
of infrared (IR) radiance emitted from the target when interacting with the environment.
Therefore, the images result from atmospheric transmission, IR reflection, and the emission
wavelength from the target [48]. In this regard, three variables are determinant to acquire
information of objects: the size, distance of targets and the angle from the camera.

The main point when using thermal cameras relies on the fact of no-light dependency
compared to optical cameras. Thermal cameras are specifically used for night vision
problems and body temperature measurements. However, limitations are found due to
low resolution and high cost compared to conventional cameras. In addition, thermal
cameras provide relative temperatures, and absolute measurements can be reached after
data processing or calibration procedures for specific purposes.
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In this study, we used a thermal microcamera to collect the egg images. By random
exploration of the thermal camera, we found that radiometric images collected from cold
eggs could highlight a “chamber” on the large base of the eggs, as we knew that the air cell
is located in the same position. We investigated the possibility of assessing the freshness
according to the size of this feature, which could be a reference to the air cell in proportion
to the aging effects on eggs (Figure 1). When the eggs are colder than room temperature,
the chamber is highlighted (Figure 1c).
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Figure 1. (a) Thermal image of an egg at room temperature. (b) Warmed egg at 37 ◦C. (c) Thermal
picture from a cold egg at 17 ◦C while room temperature was 28 ◦C.

We collected images inside an automatic incubator machine (no brand) to avoid direct
atmospheric interference on the eggs. The incubator was warmed to 38 ◦C to enhance
the temperature contrast between the environment and the cold eggs and was rewarmed
after every 20 egg images. The room temperature was constant at 27 ◦C during the data
collection period. We kept the eggs inside the incubator by picking them up by their equator
region. The thermal camera was placed above the target in an up view position ± 10 cm
from the eggs (Figure 2). The thermal camera was controlled with a SHARP® smartphone
(Sharp Corporation, Sakai, Osaka, Japan), AQUOS™ sense4 basic Model A003SH with an
ANDROID™ version 11 operating system connected to the camera by Bluetooth technology.
The software used was FLIR® UAS™ 2 version 2.2.4.
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2.3. Dataset Collection

We collected 390 quail eggs from local grocery stores at random. However, 8 eggs
were found to be cracked; therefore, the remaining 382 eggs were used for the experiments.
The eggs were divided into three groups:

The 1st group was composed of 174 eggs stored for 60 days continuously inside
a conventional refrigerator under a minimum cold temperature of 17 ◦C and a relative
humidity of 45%. On the 30th, 50th, and 60th days, the eggs were removed from the
refrigerator for image sampling (thermal pictures acquired). After the 30th day of storage,
we assumed that no eggs would be fresh at all; to make sure, data were collected on the
50th day and on the 60th day. In addition, by collecting samples at 3 time points, we could
obtain more representative data over long storage periods. This dataset was used to train
the vision-based object detection algorithms.

The 2nd group was formed of 148 eggs, and this group was used to assess the air cell
size. Air cells increase due to aging effects, and there is a loss in egg weight due to that;
therefore, these measures could be correlated.

The 3rd group had 60 eggs that were used for testing the prediction model. This group
was stored under same conditions of group 1 and evaluated 15 days after the expiration
date. To assess the air cells in this group, we boiled the eggs and visually confirmed the air
cell size by cutting the eggs longitudinally.

2.4. Air Cell Assessment Methodology

To correlate the air cell enlargement with the loss in egg weight, an experiment
was performed with eggs from group 2. Basically, we scaled fresh eggs immediately after
purchase (1st day) and after a 10-day storage period under accelerated aging conditions (the
eggs were kept at room temperature in summer conditions, where the average temperature
of the room was 27 ◦C and humidity of 60%, such conditions can speed up the dehydration
of eggs).

The 148 eggs from group 2 were all numbered and scaled with a digital semiprecise
scale (0.001 g precision, no brand). In addition, the long axis (Y) size was measured with a
digital caliper (0.01 mm precision). Figure 3 shows the procedures.
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The measurements of the representative air cell on the pictures were performed
manually by contouring the feature highlighted on the large base of the eggs. We used
the open-source software ImageJ (64 bits, version 1.8.0) developed by Wayne Rasband and
contributors from the National Institutes of Health in the United States [49]. The software
could provide a conversion between real measurements and the length of pixels, according
to a known real distance. Figure 4 shows the workflow procedure. First, the real distance
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was converted into a pixel length. Next, according to the scale (pixel/mm), the contoured
area was calculated by the software.
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Figure 4. (a) The calibration process was performed by scaling the known distance from point “A”
to point “B”. (b) The area was determined by calculating the number of pixels under the delimited
contour in relation to the known distance defined in (a).

We determined the pixel distance between two points by means of 3 line distances
(three points A-B) to reduce the error and the subjectivity of pixel length conversion.

The Pearson correlation (Equation (1)) was adopted to calculate the relationship
between weight and air cell size variation during the accelerated aging period.

r =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(1)

where r is the coefficient of correlation, xi and yi are the x and y variable samples (area and
weight), respectively, and x and y are the mean values of the x-y sample variables.

2.5. Deep Learning-Based Object Detection Algorithms

In the field of machine learning (ML) techniques, deep learning (DL) uses deep neural
networks to deal with nonlinear problems involving big data to create predictive mod-
els. In recent years, compared to traditional ML, such as logistic regression, support
vector machine, and other methods, DL has been faster and more accurate when perform-
ing under multidimensional data [50], for instance, image classification, segmentation,
and localization.

The complexity of DL algorithms makes us think of it as a combination of “black boxes”
where the entire process is difficult to visualize in a simple way. However, YOLO is a DL
object detection algorithm that uses a single convolutional neural network (CNN) to localize
the object of interest inside the image and classifies the object as a regression problem.

In our problems, the training dataset was fed into YOLO (v4 and v5). The algorithm
then took a look at every image at once and then divided each image into a 13 × 13 grid.
As our input size was 416 × 416, each cell of the grid had 32 × 32 pixels. Thus, when a
high probability of the center point of the eggs with a large air cell was located, that grid
was addressed to the prediction of the “not-fresh” class. The YOLO algorithm simplified
architecture workflow can be seen in Figure 2.

Since its release, YOLO has achieved many series, including YOLOv5 [51] and YOLOv6 [52],
which were released by companies. Nevertheless, peer-reviewed research articles have not yet
been published. However, regardless of that, the community of developers and industry are
providing solutions adopting these tools. YOLOv5 was used in this study due to its stability and
portability (deployment capability), considering the immediate potential of our methodology
that can be extended to mobile applications addressing the most common deployment formats,
such as TensorFlow™ Lite and Edge TPU. The first 4 versions of YOLO [5] were based on the
Darknet framework, and the 5th version uses the PyTorch framework, which is based on a
Python ecosystem, one of the most used programing languages worldwide [53], especially in
the data science field.
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A few elements were modified from YOLOv4 to YOLOv5, including the modified
bottom-up and top-down layers in the new feature pyramid network (FPN) [54] inside the
path aggregation network (PANet) [55] on the neck of the algorithm. Another modification
was the loss function; the 5th version uses the binary cross entropy with the logit loss
function [56].

In this work, we trained YOLOv4, YOLOv5, and EfficientDet object detection architec-
tures to predict nonfresh eggs after the expiration date and to revalidate the label date of
the remaining eggs. The overall architecture of the deep learning algorithms is shown in
Figure 5, where we compared the different structures of the object detection algorithms
used in this work.
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imagery-based datasets.

The backbone of the algorithm represents the CNN type, which was responsible for
feature extraction (edges, shapes, color differences) and the creation of the feature map by
using convolutional operations. The neck was a feature aggregator network; it collected
those features from the backbone and put them together as bottom-up and top-down
features to the head, which was the final step to predict the nonfresh egg position on the
image or frame. This last part was responsible for plotting the bounding boxes around the
class and labeling the image with its name. Table 1 shows a comparison between the object
detection models and its basic architecture employed in this study.

Table 1. YOLOv4, YOLOv5, and EfficientDet deep learning object detection algorithms basic architec-
ture comparison.

Model Backbone Neck Head Loss Function Training
Framework

YOLOv4 CSPDarknet53 PANet SPP block YOLO layer Binary cross entropy Darknet
YOLOv5 CSPDarknet53 PANet Modified FPN YOLO layer Binary cross entropy and logits function PyTorch

EfficientDet EfficientNet BiFPN Box Prediction net Focal loss TensorFlow

EfficientDet was released by Google Research, LLC [57]. The main point of this
algorithm is the light model, high accuracy, and multiscalability, which focus on efficiency
when detecting small objects and the speed of detections aiming at low-end devices.
EfficientDet uses the EfficientNet convolutional neural network on the backbone to extract
the features related to the egg shape, color, and borders of air cells with maximum efficiency
in terms of computation costs. The bidirectional feature pyramid network (BiFPN) on the
neck part is an aggregator similar to PANnet for feature fusion except for some skipped
connections between the pyramid network from the backbone, which also contributes to
increasing the detection efficiency of our thermal features related to eggs. Finally, the box
prediction network on the head is responsible for labeling the predicted class.
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2.5.1. Data Labeling

The first group (174 eggs) was used to train the YOLO and EfficientDet algorithms,
and the total data were 522 (from the 30th, 50th, and 60th days). We considered that after
30 days of storage, all eggs would not be fresh at all. Therefore, the model of nonfresh
eggs could be well-represented according to this dataset. The 522 images were enlarged by
augmentation techniques to extend the generalization and to better extract features during
training. We adopted spatial, pixel, and cutmix augmentation techniques.

Spatial augmentation was performed by applying free rotation to the eggs. Pixel
augmentation was performed due to monochrome transformation (black and white), and
the cutmix was made manually by mounting 100 images in the composition of images
(Figure 6) from the other two thermal conditions described in Figure 1a,b. Note that
YOLOv4 has the mosaic, and the cutmix augmentation techniques already included in
the backbone and detector parts of the algorithm as a “bag of freebies”. Nevertheless,
considering that we had only one object per image, when mounting similar objects that did
not belong to our class of interest, we could have an honest model to detect difficult objects
with more confidence.
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2.5.2. Training Parameters

The total training dataset composed of 3610 images was split into two groups in
a proportion of 70:30; thus, 2527 images were used for training, and 1083 were used
for validation.

To train YOLO object detection, the data were labeled according to YOLO format
using a self-designed program that could give the bounding box and label coordinates x,
y, height, and width (Figure 7). On the other hand, to train EfficientDet, the images were
labeled using the open-source software LabelIMG, which gives bounding box coordinates
in PASCAL VOC XML format.
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Figure 7. Image labeling for YOLO format. The coordinates x and y represent the position of the
center point of the object in relation to the figure in pixels. H and W are the sizes of the bounding
boxes in pixels.

To train the models, we used different frameworks. As mentioned earlier, YOLOv4 is
embedded in the Darknet framework, while YOLOv5 is based on PyTorch, and EfficientDet
is onboard TensorFlow.

YOLOv4 and EfficientDet were trained on a personal computer running Windows®

10™ 64 bits, with an Intel® Xeon™ E5-1607 processor, 32 GB of RAM, a NVIDIA® GTX
1650™ 4 GB GPU, Python version 3.8.5, CUDA 10.1, cuDNN 7.6.5, OpenCV 4.4.0., Tensor-
Flow 2.3.1, and TensorFlow-GPU 2.3.1. We trained YOLOv5 in the Google, LLC, Collab
cloud environment with PyTorch 1.11.0 + cu102 and a 16 GB GPU Tesla T4.

Some hyperparameter values were different, such as the batch size and number of
iterations (Table 2), as consequence of different frameworks. However, as our intention
was to evaluate only the detection accuracy, training performance was not considered in
this study.

Table 2. Training parameters for each object detection algorithm used in this work.

Algorithm Batch Size Input Size Momentum Number of Iterations

YOLOv4 64 416 × 416 0.949 4000 batches
YOLOv5 16 416 × 416 0.937 60 epochs

EfficientDet 4 512 × 512 0.899 30,000 steps

2.5.3. Evaluation Metrics

To validate the models and compare the results, we adopted the common metrics
accepted and recognized by deep learning developers and the academy: the precision (P) is
defined as the proportion of true positive (TP) detections in relation to false positive (FP)
detections (Equation (2)), the recall (R) is TP in relation to false negative (FN) detections
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(Equation (3)), and the F1 score (Equation (4)) indicates the balance between precision and
recall and is a good metric to compare the efficacy between models. The average precision
(AP, Equation (5)) and mAP@0.5 (Equation (6)) are metrics adopted to evaluate the trained
parameters of the models adopted by the PASCAL VOC challenge [58].

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 score =
2PR

P + R
(4)

AP =
1

11 ∑
Ri

PRi (5)

mAP =
1
N

N

∑
i=1

APi (6)

It is important to note that concepts of true and false detections are determined
according to the prediction bounding boxes (bbox) in relation to the reference label bbox,
called the ground truth. The trueness is determined by setting the intersection over union
(IoU), which calls for the proportion of a prediction in relation to the reference. Usually, the
IoU is defined to be greater than 50% on the training setup (Figure 8).
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Figure 8. (a) IoU demonstrates the relation between the area of intersection and the area of union.
(b) TP represents correct object detection, TN represents the correct object nondetection, FP is a false
detection, and FN is a false negative, representing the case when the object should have been detected
but was not.

3. Results
3.1. Correlation Test

The thermal camera interprets the intensity of the infrared wavelength transmitted
through the atmosphere. Cold eggs show different features according to the eggshell
thickness and the conditions of the egg content, which may vary according to the storage
conditions and their chemical properties. We observed that the air cell of eggs was visible
when the egg temperature contrasted room temperature; some examples of thermal images
from eggs are shown in Figure 9.
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Figure 9. The aging effects on eggs after 10 days of storage under accelerated aging conditions of
28 ◦C and 60% humidity.

The size of the air cell was measured according to the methodology described in
Section 2.4. The results were tabulated in Microsoft® Excel™ version 2209, and the statistics
were calculated for the correlation test (Table 3). The variation in the air cell size occurred
from the 1st day to the 10th day (Figure 10); all eggs were affected by aging with no
exceptions, as we could observe the weight loss. However, some eggs were affected more
than others, which is probably related to the composition of the eggshell that could provide
resistance to the loss of water and gases.
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Figure 10. The variation in the air cell size for each egg between the first day of storage and the 10th
day under accelerated degradation conditions.

Table 3. Data exploration analysis for weight and air cell size of stored eggs.

Metric Height (mm) 1st Day Pixel
Length

10th Day
Pixel Length

Chamber
Area 1st Day

Chamber Area
10th Day

Weight (g)
1st Day

Weight (g)
10th Day

Average 30.993 147.678 141.122 40.464 93.763 9.902 9.282
SD 1.306 16.963 18.897 32.071 59.454 0.930 0.968
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The height was the real distance measured with a digital caliper, and the pixel length
was the corresponding height distance in pixels provided by ImageJ software. We col-
lected the pixel length for the 1st day and for the 10th day to ensure that any minimum
modification on the position of eggs in relation to the camera did not interfere with the
representative height in the images. The air cell area was determined by the program
according to the reference length (pixel/mm) obtained from previous measurements.

The statistics represent that the difference in the weight [(weight 10th day) − (weight
1st day)] and the pixel area [(pixel area at 10th day) − (pixel area at 1st day)] was correlated
by a Pearson’s test (Table 4).

Table 4. Statistical analysis for the Pearson correlation between the weight and air cell size.

Weight Difference
(Mean)

Pixel Area
Difference (Mean) n Observations Degrees of

Freedom (n-2) T-Statistic Coefficient (r) p Value

−0.620 53.300 148 146 17.47713 −0.82256 1.3 × 10−37

The p value was very close to 0, which means we could reject the null hypothesis
regarding the loss of weight which was not related to the enlargement of air cell size
(Table 4). The alternative hypothesis was accepted in this case; in other words, a change in
the weight could explain the variation in the air cell size, and the chance of that occurring
by chance was close to zero.

The difference in weight and size was plotted in the graph (Figure 11). The average
weight difference was 0.620 g over 10 days, which represents 6.26% of the average weight
of fresh eggs. Quail eggs have different colors and pigmentation, making the detection of
cracks and small fissures difficult to identify by human eyes. Some eggs that lost more
weight than others may have been damaged at a location that was not identified before
the experiment.
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Figure 11. Correlation test for weight difference and air cell area.

The graph shows that there was a negative correlation between the weight and size
of air cells, with R2 = 0.6766. Hence, a negative correlation was observed, and an inverse
relation between the two variables was found, which means that when the variable weight
decreased, the air cell size increased.

In addition to the statistical analysis, a visual assessment of the air cell features
was provided from boiled eggs and corresponding thermal images. We noticed that the
highlighted area on the thermal images corresponds to the cavity in the photo (Figure 12).
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The thermal images that did not show air cell features from the radiometric picture also
did not show orifices in the boiled egg.
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Figure 12. Egg assessment by boiling eggs and the corresponding thermal picture. (a) Nonfresh
eggs present a large air cell. (b) Still fresh eggs show no chamber or reduced size compared to
nonfresh eggs.

3.2. Computer Vision Model Prediction
3.2.1. Training Results

YOLOv4 object detection was trained for 4000 steps (Figure 13) in the Darknet frame-
work based on the C programming language and CUDA. The training took 26 h to complete.

According to the graph, the average loss (which was the most important parameter to
indicate the learning progress in deep learning) of the model reached the minimum average
loss after 1600 steps (iteration batches), and the training could be interrupted. The mean
average precision reached 99% but did not reach 100%, an indication of no overfitting of
the model to the training dataset.

As mentioned in Section 2.5.2, YOLOv5 was trained in the PyTorch framework in the
Google LLC Colab environment for approximately 1 h. The evaluation of PyTorch models
is given in the Tensorboard™ application (Figure 14); such a tool was also used for the
evaluation of EfficientDet. Different from the Darknet framework, the Tensorboard data
report was more detailed and easier to understand.

YOLOv5 was trained for 60 epochs. However, when looking at the evaluation graphs,
it was observed that after 25 epochs of training, the object loss reached a satisfactory
value as a learning parameter, which was close to the minimum accuracy cost of the
model as a supervised learning algorithm (Figure 14). In addition, when compared to
the metric precision, the mAP could be considered stable after 25 epochs, with minimum
improvements from visual analysis. Therefore, the model was trained more than enough
epochs to reach the best results for the model. Similarly, the same case was observed for
the YOLOv4 model.
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Figure 14. Training results from YOLOv5.
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Our third model, despite being part of the one-stage detector class, had a different
architecture compared to the YOLO models. A notable difference was observed in the
standard network size, which was higher (512 × 512), and was accomplished for the
efficient detection of small objects for the purpose of scalable models.

The training total loss (Figure 15) did not reduce considerably after 6000 steps, which
means the training could be shorter than 30,000 steps, repeating the same results from the
previous models (YOLOv4 and YOLOv5).
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Figure 15. Training progress of EfficientDet during 30,000 steps and the mAP@0.50.

The precision and accuracy of each model (YOLOv4, YOLOv5, and EfficientDet) were
not compromised by the training steps, and all models were trained for more time than was
necessary to achieve mAP stability, which was the main parameter to evaluate the accuracy
of the models (Table 5).

Table 5. Evaluation of object detection models for IoU 0.5.

Model Precision (P) Recall (R) F1 Score mAP@0.50

YOLOv4 0.99 0.99 0.99 99.24%
YOLOv5 0.99 0.99 0.99 99.5%

EfficientDet 0.95 0.73 0.82 95.0%

To test the models, the testing samples were grouped with all 60 quail eggs. The
assessment of the results was performed by calculating the metrics of Equations (2)–(4)
as given in Section 2.5.3. The accuracy assessment of the thermal images was made by
boiling the eggs and cutting the longitudinal axis manually (Figure 12). The eggs with no
or minimum air cells were considered fresh, the original image (Figure 16a) was used to
test the YOLOv4, YOLOv5, and EfficientDet object detection models (Figure 16b–d).

The accuracy assessment of the eggs (longitudinal cutting of boiled eggs represented
in the Figure 12) corresponded to the “correct answers” of a supervised learning algorithm
and served as the main reference parameter for the calculation of the metrics’ precision,
recall, and F1 score. In our dataset, 22 eggs were found as still fresh, which corresponded
to the true negative (TN) detections (eggs that must not be detected as “nonfresh eggs”).

In Figure 16a, we referred to the original testing image where the eggs were kept in
numerical order from 1 to 60 (from top left to bottom right) to test the object detection
models’ accuracy on it. In Figure 16b–d, each bounding box (bbox) showed its detection
score on the top right of the bbox under no threshold score for YOLOv4 and a 25% threshold
for the YOLOv5 and EfficientDet models.
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In the Figure 16b, we had the YOLOv4 detections (purple bbox) where we could
observe one detection with 0.26 (26%) score, as an example of no threshold score. In the
case of YOLOv4, it was important evidence to support the robustness and stability of
the model when detecting only nonfresh eggs. The class name was omitted to make the
visibility more effective, besides that, as we had only one class, the name was not relevant
according to our purpose.

In Figure 16c, the results of testing YOLOv5 are presented; the class name “nf” stands
for nonfresh class, as, for YOLOv5, it was a requirement input for training the model.
Again, the score is shown on the top right position of each red bbox (minimum score was
0.5 or 50%).

EfficientDet testing results are shown in Figure 16d. The minimum confidence score
was 0.73 (73%), that was the best result compared to other two models regarding the
confidence score of the bbox. However, it was expected for the scalable model (designed to
detect objects from low to high resolution images) and did not affect the final purpose of
our investigation, which was based on the accuracy of nonfresh egg detection only.

The output predictions of the testing dataset (Table 6) were organized, and the metric
calculations were computed.
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Table 6. Testing dataset metrics for accuracy performance evaluation.

Model Total bbox True Positive (TP) True Negative (TN) False-Positive (FP) False Negative (FN)

YOLOv4 20 20 22 0 18
YOLOv5 31 31 22 0 7

EfficientDet 29 29 22 0 9

The total bbox in Table 6 is the total number of detections for each model employed in
this study; the true positive stands for the amount of bboxes that corresponds to nonfresh
egg detections, in this case all bboxes for all models were correctly assigned to the class
nonfresh; the true negatives were those eggs that must not be detected as they correspond
to still fresh eggs. The false positive column calls for still fresh eggs wrongly classified
as nonfresh eggs (no eggs were falsely classified for all three models); and, finally, the
false negative column stands for the number of eggs that were supposed to be detected as
nonfresh but were not. According to Table 5, we could calculate the precision, recall, and
F1 score (Table 7).

Table 7. Testing dataset accuracy evaluation with no threshold for YOLOv4 and threshold 0.5 for
YOLOv5 and EfficientDet.

Model Precision (P) Recall (R) F1 Score

YOLOv4 1 0.53 0.69
YOLOv5 1 0.81 0.89

EfficientDet 1 0.76 0.86

From the testing dataset, the precision metric (Equation (2)) for all three models was
1 or 100%, which means that all detections were correctly assigned for the class not fresh.
The metric recall (Equation (3)) described the relation between the correct detections and
undetected eggs that should be detected. The recall was higher for YOLOv5; in this case,
we said that this model was responsible for detecting a greater quantity of nonfresh eggs
properly (fewer false negative detections). For the F1 score (Equation (4)), this metric stood
as the balance for precision and recall and could be understood as an equivalent metric
for the mAP. As we did not label the testing dataset, the mAP could not be estimated
in the frameworks; in this case, the F1 score was responsible for informing on which
model performed better. YOLOv5 outperformed the other two (Figure 17), as well as the
validation dataset.
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3.2.2. Revalidation of the Expiration Date

From the results of the DL prediction, we could calculate the revalidation proportion
of the eggs 15 days after the labelled expiration date (Table 8). The revalidation was
done considering the difference of total detections (total bbox) as “not fresh” (YOLOv4,
YOLOv5, and EfficientDet) from the total amount of eggs (60). Therefore, the deep learning
(DL) revalidation was given by {[(TN+FN)/Total eggs] × 100}, and the true revalidation
was defined as [(TN/Total eggs) × 100]. The revalidation error was determined by [(DL
revalidation − True Revalidation)].

Table 8. Revalidation amount according to DL object detection algorithms.

Model Total
Eggs

Not Fresh
(bbox)

DL Fresh
(TN + FN)

True Negative
(TN)

DL
Revalidation

True
Revalidation

Revalidation
Error

YOLOv4 60 20 40 22 66.67% 36.67% 30.00%
YOLOv5 60 31 29 22 48.33% 36.67% 11.67%

EfficientDet 60 29 31 22 51.67% 36.67% 15.00%

4. Discussion

In this work, we used a thermal camera and proposed a new methodology to detect
the freshness of eggs according to the air cell size. Thermal cameras have the ability
to interpret the intensity of infrared wavelengths transmitted through the atmosphere.
Hence, considering that CO2 is heavier than atmospheric air (at the same temperature and
pressure), when contrasting distinct temperatures of cold eggs and warm room temperature,
the CO2 and the composition of other gases in the air cell produce a spectral signature
transmitted from the eggs that can be detected by the radiometric sensors of the thermal
cameras. We called this method the “thermal imaging contrast technique”. When using this
method, the identification of the air cell was easy, fast, and approachable to identify stale
and not fresh eggs. Therefore, this method can be used in real time for high-throughput
applications at the industrial level, especially when combined with deep learning object
detection algorithms in automated systems, as demonstrated in this work.

During this study, the pH of the albumen or the yolk were not measured during the
storage period. However, the literature shows that for hen eggs, the pH of the albumen may
increase slightly more than the yolk pH [59], and this modification can be reduced under
controlled atmospheric systems by injecting CO2 into the storage room [60]. Additional
factors can also contribute to potentializing the chemical transformations of the albumen
and yolk, such as genotype, quail feed composition, diseases, age of parental flock, and
environmental conditions.

Methods able to perform real time and nondestructive analysis can contribute to
the development of quail industry farming and the post harvesting process to keep the
quality and safety for the consumers. In this study, it was noticed that some eggs from
the same groups were less fresh than others. From this observation, we can presume that
eggs collected from the same quail may vary in eggshell composition, such as thickness
and hardness.

In the correlation test, we observed that the standard deviation of real measurements
and the pixel measurements were very different in magnitude because the pixel measure-
ments were relative to the manual line tracing on marked points, which means that the line
traced between two points may change the length of pixels when connecting the line to the
top and bottom points of the eggs. Nevertheless, we traced a line three times and used the
mean to define our pixel length; consequently, the error was reduced for our measurements.

For the second part of our study, by using deep learning object detection, the prediction
of not fresh quail eggs with high accuracy was possible. When comparing the three models,
the best results were obtained from YOLOv5, followed by EfficientDet and YOLOv4.
Deep learning-based models for image recognition and localization are being upgraded
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continuously as the demand for applications for this tool increases in many sectors of our
daily lives.

The comparison between deep learning algorithms has demonstrated that improve-
ments on object detection algorithms can reduce the error of reclassification of nonfresh
eggs. However, as thermal cameras have low resolution, further improvements on thermal
sensing can also enhance the efficiency and accuracy of deep learning-based computer
vision systems; therefore, the tradeoff between equipment and algorithms should be con-
sidered as a drawback.

While training the deep learning models, some parameters can influence the speed
and accuracy of the model, and the most important parameter is the network size. The
network size of YOLOv4 and YOLOv5 was set to 416 × 416 pixels because these models
use the same architecture; however, the batch size was different due to the dependence on
hardware resources, especially processing power (GPU). For EfficientDet, the minimum
network size was 512 × 512 due to the scalable feature architecture, and the batch size was
reliable for TensorFlow™ processing. As our hardware did not allow training YOLOv4 with
a network size larger than 416 × 416, only the accuracy between models was compared,
thus, the speed deployment was not taken into consideration in this study.

5. Conclusions

The air cell is one of the most important parameters to qualify the freshness of eggs.
The thermal camera was able to interpret the infrared wavelength intensities transmitted
through the atmosphere from the eggshell pores and then, by the contrast technique,
highlight the portion where the gases were accumulated on the large base of the eggs as
a consequence of the storage period. As the aging process affects the size of the air cell,
the lack of freshness was correlated with the air cell size (R2 = 0.676). The combination
of thermal camera imagery and deep learning object detection algorithms could identify
nonfresh quail eggs with high accuracy; besides that, our investigation has demonstrated
their potential to compose automatic systems for freshness assessment at industry and civil
levels. We tested our model on the eggs after the expiration date, the YOLOv4, YOLOv5,
and EfficientDet models could detect nonfresh eggs with an F1 score of 0.69, 0.89, and
0.86, respectively. The best model (YOLOv5) demonstrated that 48.33% of eggs could have
their labelled date extended at least 15 days, with an error rate of 11.67%. EfficientDet and
YOLOv4 showed reclassification proportions of 51.67% and 66.67% and an error rate of
15% and 30%, respectively.

The developed methodology was reported as a fast and nondestructive way to assess
the freshness of quail eggs according to the detection of air cell size; the methodology itself
can be extended for industrial applications, supermarkets, and restaurants to relabel eggs
for extended consumption periods and minimize the postharvest poultry production losses.

The main limitation of the methodology developed is regarding how long the expiry
date could be extended for. In this regard, further studies should be addressed including
the assessment of eggshell thickness for prediction of ideal shelf-life of quail eggs and other
avian eggs as well.
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