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Abstract: Alternative fuel sources, such as hydrogen-enriched natural gas (HENG), are highly sought
after by governments globally for lowering carbon emissions. Consequently, the recognition of
hydrogen as a valuable zero-emission energy carrier has increased, resulting in many countries
attempting to enrich natural gas with hydrogen; however, there are rising concerns over the safe
use, storage, and transport of H2 due to its characteristics such as flammability, combustion, and
explosivity at low concentrations (4 vol%), requiring highly sensitive and selective sensors for
safety monitoring. Microfluidic-based metal–oxide–semiconducting (MOS) gas sensors are strong
tools for detecting lower levels of natural gas elements; however, their working mechanism results
in a lack of real-time analysis techniques to identify the exact concentration of the present gases.
Current advanced machine learning models, such as deep learning, require large datasets for training.
Moreover, such models perform poorly in data distribution shifts such as instrumental variation.
To address this problem, we proposed a Sparse Autoencoder-based Transfer Learning (SAE-TL)
framework for estimating the hydrogen gas concentration in HENG mixtures using limited datasets
from a 3D printed microfluidic detector coupled with two commercial MOS sensors. Our framework
detects concentrations of simulated HENG based on time-series data collected from a cost-effective
microfluidic-based detector. This modular gas detector houses metal–oxide–semiconducting (MOS)
gas sensors in a microchannel with coated walls, which provides selectivity based on the diffusion
pace of different gases. We achieve a dominant performance with the SAE-TL framework compared
to typical ML models (94% R-squared). The framework is implementable in real-world applications
for fast adaptation of the predictive models to new types of MOS sensor responses.

Keywords: hydrogen detection; HENG; transfer learning; sparse autoencoder; microfluidic gas sensor

1. Introduction

Blending hydrogen into the existing natural gas pipeline network has to reduce
greenhouse gas emissions from natural gas production, distribution, and consumption
fields [1]. Reports show that conventional NG pipelines can carry a blend of natural gas
and hydrogen of up to approximately 15% by volume of hydrogen while only requiring
modest modifications to the pipeline [2]. While hydrogen is a valuable and clean alternative
for carbon-based fuels, its unique physicochemical properties make it a highly permeable
and explosive gas that requires precise monitoring. Hydrogen gas is odorless, colorless,
and non-toxic. Therefore, it cannot be sensed by the human olfactory system. Due to this,
enhanced safety measures must be put in place to monitor its presence and concentration
in various environments. These sensors are required to monitor leakage of hydrogen, and
measure hydrogen concentration in all processes involving production, transportation,
and storage. The gold standard methods used to analyze gaseous molecules are gas
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chromatography-based and mass spectrometry-based technologies [3], but these platforms
are relatively large, expensive, and somewhat slow.

On the other hand, hydrogen sensors are cost-effective, small, easy to operate, and
can be highly sensitive and selective. Hydrogen sensors have been produced for several
decades. While several commercialized hydrogen sensors are already available, the efforts
to improve them for continuous and precise real-time monitoring for the future hydrogen-
based economy are ongoing. These efforts focus on improving the signal’s duration, the
sensors’ selectivity and sensitivity, and the miniaturization of the sensors.

Numerous technologies have been developed to detect hydrogen, such as optical
sensors [4,5], electrochemical sensor fields [6,7], catalytic sensors [8,9], work function
sensors [10,11], and resistance-based sensors [12,13]. Among these devices, resistance-based
sensors, specifically metal–oxide–semiconductor (MOS) sensors, have gained significant
attention in gas detection due to their relatively small size, low cost, ease of operation,
and high sensitivity [14]. As the sensing mechanism in a MOS sensor is based on the
adsorption and the consumption of the oxygen molecules (by reducing gas in p-type
semiconductors and vice versa in n-type semiconductors) on the surface of the sensing
layer, these sensors can detect a wide range of gaseous elements such as volatile organic
compounds, hydrocarbons, and combustible gases, including hydrogen. However, this
wide detection range limits specificity and sensitivity for certain analytes. To overcome this
issue, a 3D-printed microfluidic channel can be used to delay the diffusion of the target
gas onto the surface of the sensing layer. Using novel coating compositions and surface
treatments on the channels’ inner walls, MOS–microchannel platforms can noticeably
enhance the selectivity of MOS sensors to various target gases [15].

The resulting response curves generated from MOS-based microfluidic detectors
must be processed using statistical analysis, namely feature extraction, to more accurately
estimate the hydrogen concentration. Many feature extraction methods implemented in the
literature attempt to generate a condensed representation (i.e., dimensionality reduction)
of the signals produced by sensors [16]. Given the limited available gas sensor data, the
high-dimensional input feature space of the response curves must be translated into a
low-dimensional feature representation to prevent the “curse of dimensionality” causing
poor generalization performance (i.e., overfitting) in the Machine Learning (ML) model [17].
In one common approach, the desired features are extracted by the expert user based on
domain knowledge, experience, and the geometric characteristics of the response curve [18].
The most commonly extracted features include the maximum response value, the area under
the curve, and the sensor response’s rising and falling slopes/time [17]. The drawback of
this method is that the feature extraction process needs to be performed manually, as the
meaningful features for each gas/sensor response curve can vary. It is also likely that some
informative features may be overlooked and excluded from data analysis.

Unsupervised learning methods are powerful dimensionality reduction techniques
used to learn and extract meaningful information from sensor responses [18]. Principal
component instance and principal component analysis (PCA) are considered liable un-
supervised techniques, widely used for reducing the dimensionality of the input feature
space before being fed into the ML model. The principal components’ direction in PCA is
calculated to maximize the described variance of the original dataset [19]. As such, PCA is
a popular choice for achieving low-level representations of data. Yin and Tian [20] utilized
PCA to reduce the dimensions of gas sensor data for classifying Chinese drinks. The
advantage of PCA over the above feature extraction methods is that it automatically learns
the most important elements in the dataset while being robust to the presence of correlated
input variables. However, PCA fails to extract useful features in highly non-linear feature
spaces as it is limited to linear projections [17].

Similarly, other traditional dimensionality reduction approaches, such as manifold
learning methods, fall short in learning high-level abstractions [21]. Deep learning models
offer more flexibility than conventional ML models and non-linear data structures. In other
words, due to the non-linearity in their activation functions, they are capable of learning
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complex operations and highly non-linear feature representations. Autoencoders (AEs)
are deep unsupervised learning methods designed for learning dense latent features and
dimensionality reduction [22].

Once the latent features have been determined, the pre-processed data usually is fed
to a classification/regression model. In gas detection, efforts have been made to improve
the performance of electronic nose (e-nose) devices by incorporating deep learning (DL)
models. Zhao et al. [23] utilized a deep learning model to differentiate various Chinese
liqueurs based on the responses from electronic noses. Ma et al. [24] used the images
produced by a sensor array to train a Convolutional Neural Network (CNN) to detect
unknown gases. The result indicates that CNN’s performance is superior to traditional
ML approaches. Despite their outstanding performance, deep learning models require
large datasets to be trained properly. In the absence of a sufficient amount of data, deep
learning models often overfit the training dataset (due to many trainable parameters), thus
generalizing poorly on new unseen instances.

One way to mitigate the performance-declining effect of limited data is to imple-
ment Transfer Learning (TL) [25]. TL leverages knowledge from related domains and
incorporates it into the learning process for tasks of interest with limited data. This signifi-
cantly reduces the dependency complex models, such as DL-based methods, have on large
datasets while improving the model’s generalization performance [25]. Yan and Zhang [26]
developed a sample-based transfer learning using Ridge and Logistic regressions for tack-
ling the domain distribution shifts caused by sensor drifts and instrumental variation.
To address the sensor drift, the proposed framework by Yi et al. [27] initially minimizes
the domains’ distribution inconsistency by minimizing the Maximum Mean Discrepancy
(MMD), followed by an adaptive Extreme Machine Learning (EML) classifier.

Although some research has been performed on mitigating the effect of instrumental
variation and sensor drift on ML performance for various types of gases and e-noses,
investigating and addressing such a phenomenon for hydrogen-enriched natural gas
(HENG) mixtures remains unexplored. In this paper, a Sparse Autoencoder-based Transfer
Learning (SAE-TL) is developed to address the issue of the sensor response shift in an
in-house 3D printed microfluidic channel coupled with two commercial MOS sensors for
estimating the hydrogen gas concentration in HENG mixtures using limited datasets. Using
source data, the framework first learns a low-level representation of the response curves by
SAE through an unsupervised learning procedure. Then, the learned words are used in the
TL portion of the framework to handle the domain shifts and learn a reliable regressor for a
new sensor model with very few available data.

2. SAE-TL Framework

The schematic of the proposed framework is illustrated in Figure 1, and the details are
elaborated in the following sub-sections.
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2.1. Sparse Autoencoder (SAE)

An AE is comprised of an encoder and a decoder. The encoder, which consists of the
input and hidden layers, receives high-dimensional raw data and transforms it into a low-
level latent representation, while the decoder (the hidden and output layers) is responsible
for reconstructing the original data from the hidden layer output, i.e., condensed represen-
tation. The hidden layer typically contains fewer neurons than the input and output layers,
so a denser representation of the raw data can be obtained [18]. AEs learn to minimize
the distance between the raw signal x and its reconstructed version x̂ by minimizing the
reconstruction loss,

JAE(θ) =
n

∑
i=1

L(xi, x̂i) (1)

where θ = {W, b, W ′, b′} denotes the weights and biases of the encoder and decoder,
respectively, and n is the dataset size.

Due to the fact that AEs are designed to identify meaningful features from raw data
and reconstruct the original data at the output layer, they are prone to copying the raw
data from the input layer to the output layer without extracting any useful features [22]. To
avoid this, one approach is to monitor the activation of each neuron in the hidden layer
and penalize the units that have an activation higher than the specified threshold using a
sparsity loss term. As a result, the SAE learns useful representations while attempting to
avoid large activations in the hidden layer. Kullback–Leibler (KL) divergence is used as the
sparsity loss and can be represented as (2).

KL(q||pk) = q log
q
pk
− (1− q) log

1− q
1− pk

(2)

It measures the distance between the predefined sparse parameter q (usually set to be
a small value) and the average activation of each hidden unit:

pk =
1
n

n

∑
i=1

[
s f (bk + Wkxi)

]
(3)

where s f denotes the hidden layers activation function. Thus, the cost function of the
SAE can be written by combining the AE cost function and the KL divergence measure
as follows:

JSAE(θ) =
n

∑
i=1

L(xi, x̂i) + KL(q||pk) (4)

2.2. Transfer Learning

Deep learning approaches have been shown to be a powerful tool in deriving important
features from the gas sensor and e-nose response curves [28,29]. Despite the promising
results, deep learning approaches require large amounts of data for training and are usually
ill-equipped to handle slight shifts in data distribution. For example, implementing a new
sensor with similar but different specifications will cause the model to be unable to perform
accurate prediction tasks. One solution to alleviate this dependency on large datasets is
to utilize TL [28]. In a TL framework, the knowledge gained from a model that is trained
on sufficient data (the source) is used for improving the performance of a model that is
trained on the task of interest that has limited data (the target) [30]. When considering
HENG mixtures detection tasks, historical experimental data has been generated from
a specific type of sensor. An ML model trained on such data may be ineffective when
used against a new sensor response (i.e., domain shift), as it will exhibit different behavior.
However, it is also known that the response curves of gas sensors share considerable
similarities, suggesting that a model trained on historical data can still be useful as it
conveys the learned knowledge about the general behavior of the response curve. This
knowledge can significantly decrease the data required for learning low-level available
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feature representations if transferred to the target model via TL. In Neural Networks (NN),
TL can be incorporated by transferring the fine-tuned weights from the source model to the
target model. Using this approach, the target network requires only a few gradient steps
using the limited available data to reach optimal performance [31].

For an input space X and a label space Y, the ML objective predictive function
f : X → Y can be broken down into two corresponding functions: f = h ◦ g. While
limitg : X → Z maps the input space to a latent low-dimensional feature space, Z, the
embedding function limith : Z → Y is a regressor (a predictive function) that predicts the
output y using the feature space. It has been shown that, when training NNs on different
but related datasets, the first layers of the networks learn similar low-level feature represen-
tations. This general behavior is seen in all networks regardless of the model specifications
(e.g., the cost function and the input data structure) [32]. On the contrary, the final layers of
networks developed using related data sets exhibit completely different behavior. Towards
their final layers, each network becomes more specific to the task they are being trained on.
This phenomenon is observed in networks trained on various types of data (e.g., tabular,
image, and text) [33].

For an SAE to learn low-level feature representations of gas sensors’ response curves,
it requires training the SAE using a large dataset. In cases where data is limited, i.e., a
new sensor is implemented (instrumental variation), training the SAE and the classifier is
not immediately possible. One infeasible remedy is to generate a large dataset using the
new sensor, which causes high temporal and financial costs. A more efficient solution is
to implement TL. In the proposed TL framework, low-level feature representations of the
source sensor’s response curves are initially learned using SAE.

Once learned, the SAE’s encoder (gs) is connected to a randomly initialized multilayer
perceptron (MLP) (regressor, hs) to form the source model. In a supervised regime, the
labeled source data is used to train the source model in two steps. The initial weights
of the target regressor produce large error gradients during the back-propagation step,
which can destructively modify the learned weights of the transferred encoder. Initially,
the encoder’s weights are fixed (frozen) to avoid large error gradients. After a few epochs,
as the regressor’s weights are stable and the error gradient shrinks, the whole model
becomes unfrozen and is trained until it reaches its optimal state. Once the source network
is developed ( fs = hs ◦ gs), it is transferred to the target model (Figure 1). Next, the target
model needs to be fine-tuned using the limited available target data. This step is necessary
for the model to learn more specific features/trends of the target task, boosting its overall
performance. However, training the whole network requires a large dataset. Therefore, the
target encoder (hT), transferred from the source model, is frozen during the fine-tuning
process. This ensures that the knowledge learned from the general layers of the source
model is transferred and remains intact (i.e., avoiding forgetting the learned knowledge).
The target regressor (hT), which contains more task-specific layers, will be fine-tuned with
the target data. This allows the SAE to bypass the data-intensive procedure of learning low-
level features, resulting in a network that requires only a small dataset to be re-calibrated
to the desired task [34].

3. Experimental Verification
3.1. Case Study: Hydrogen Gas Detection Using a Microfluidic Detector

Hydrogen is a light and odorless gas; it is challenging to determine the concentration in
the mixture of HENG in real time using commercial sensors [35]. The use of a microfluidic
channel for the detection of gases based on adsorption/desorption phenomena provides
the apparatus with enough delay in the diffusion time and, consequently, in the response
time to differentiate between various gases [15,28,36]. The schematic diagram of the
experimental sensing apparatus is illustrated in Figure 2. The sensor platform consists
of a MOS sensor (Figaro TGS2610 or Figaro TGS2611), explosion-proof valves, a mixing
chamber, mass flow controllers (MFCs), an automated sensor housing carrier, electronic
components, and tubing. By calculating the chamber size and the passing flow rate, this
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automatic setup supplies the mixing chamber with the desired concentration of a single
gas or mixture of target analytes. Exhaust valves have been used to regulate residual gas
pressure, which will be trapped between the MFCs and the chamber inlet valves. Before
being exposed to the sensor, the gas mixture rests in the mixing chamber to ensure a
homogenous state. During this period, the data collection process begins to generate a
baseline signal for the sensor. After a homogenous state is attained, the microchannel inlet
is exposed to the gas chamber by opening a magnetic valve (demonstrated in Figure 3). The
gas mixture is then diffused through the microfluidic channel and reaches the sensing layer.
Unique raw data for each experiment will be automatically collected in a RaspberryPi 4 and
progressed in our TL framework. Due to the specific diffusion times of different gases
and the adsorption/desorption phenomena that occur on the channel walls, individual
responses are obtained for every gas mixture [15], providing the sensing platform with
improved selectivity. Because of a large number of tests and to avoid a different MOS
sensor drift impact [37], Figaro TGS2610 and TGS2611 sensors were switched after every
five experiments. In order to not only make changing sensors feasible but also to ensure
that the microchannel effect on gas responses was kept constant, a modular 3D-printed
housing system was designed (Figure 4), allowing for different sensors to be mounted at
the end of the microfluidic channel.
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Based on a previous study to maximize the selectivity between VOCs, the channel
length was set to 30 mm, with a width of 3 mm and a height of 1 mm. As reported
in previous and parallel works done by our research group, these microchannel-MOS
gas detectors can provide specific patterns for various gases and are used in several gas
detection applications, such as wine identification, natural gas detection, hydrogen sulfide
monitoring in sewer systems, and differentiating between VOCs [15,28,36,38].

3.2. Sensor Characteristics

The utilized sensors, TGS-2610 and TGS-2611, are semiconductor-based, and their
output is raw voltages from the sensing layer before, during, and after exposure to a target
gas, as illustrated in Figure 3. Conventional HENG monitoring methods have proven
to have a 90–270 s response time (including the recovery time) [39–43]. In this work,
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taking advantage of a microfluidic channel working as a delaying agent, exponential shape
responses are generated from the interaction between the hydrogen-enriched natural gas
and semiconductor-based and commercially available gas sensors. As demonstrated in
Table 1, the response time for this platform is as low as 150 s. This relatively short and
real-time response ensures a fast data collection procedure as part of the training of the
proposed learning framework. Table 1 summarizes and compares key characteristics of
available industrial and pilot HENG monitoring methods.
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Table 1. Comparison of select hydrogen and natural gas mixture monitoring platforms by key
characteristics.

Ref Sensor Type Limit of Detection Power Consumption Time from Collection
to Results

[39] Carbon nanotube/SiO2 Not reported Not reported 1132 s
[40] Calorimetric Pd/θ-Al2O3 200 ppm 0.12 W Not reported
[41] Au/SnO2, Pt/Cu/SnO2 500 ppm 200 mW 180 s
[42] Pd/Au optical sensor 987 ppm Not reported 90 s
[43] Semiconductor, Catalytic, electrochemical 200 ppm Not reported 190–270 s

This Work Semiconductor 89 ppm 200 mW 150 s
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3.3. Gas Mixture

Binary mixtures of methane and hydrogen were used for this study, as they are the two
main components of HENG. The desired concentration of the HENG mixture was mixed
from compressed gas tanks of 99.9% methane and hydrogen, respectively (Praxair Canada,
Mississauga, ON, Canada). Due to safety considerations and reported optimal percentages
of hydrogen in HENG, HENG mixtures of up to 10% (v/v) hydrogen were prepared. As
illustrated in Figure 4, hydrogen and methane pressures were regulated to MFC’s operating
pressure to obtain a homogenous mixture. A specific amount of each gas was added to
the gas chamber. Various methane and hydrogen mixture concentrations (20–1000 ppm)
were obtained using the automated experimental setup to generate data for validating
the proposed framework. In particular, 120 data points were generated from the source
sensor (TGS2611), while 102 samples were collected from the target sensor (TGS2610). Each
experiment was repeated three times to ensure the repeatability of the obtained responses.

3.4. SAE-TL Experimental Design

In SAE, symmetrical architecture concerning the latent representation layer (central
hidden layer) is used, where the decoder mirrors the number of layers and neurons of the
encoder. The main hidden layer contains 20 neurons, yielding a 20-dimensional represen-
tation of the raw data. The top-performing SAE encoder (and decoder) consists of two
hidden layers with [500, 200] neurons. All coatings (except the decoder’s output layer) are
equipped with the RELU activation function. Mean Squared Error (MSE) is chosen as the
loss function (SAE reconstruction loss), and an Adam optimizer with a learning rate of
0.001 is implemented. Early stopping with the patience of 50 is used as the regularization
term. The sparsity threshold of 10e-5 is selected for the latent representation layer. The
TL portion of the framework contains two identical NNs, namely, the source and the tar-
get. Each network has an encoder with the same architecture as the SAE’s encoder. The
network’s regressor is a four-layer NN with [10, 8, 6, 1] neurons. The RELU activation
function and Adam optimizer with a learning rate of 0.001 were used for both networks.
The whole framework is developed and trained using the Keras library in Python. For
preparing the source network, the source data set is divided into training, validation, and
testing (70%, 10%, 20%). For the target network, however, to mimic the available limited
data in real-world scenarios, only 20% of data is allocated for training. The rest is kept to
evaluate the generalization performance.

4. Results and Discussion
4.1. SAE Performance Evaluation

The performance of the SAE on the reconstruction of the sensor responses is compared
with regular (vanilla) AE and PCA, and the results are summarized in Figure 3. For PCA,
the first five principal components are used to reconstruct the original response. For SAE
and AE, the decoder was used to map the low-level feature space to the actual distance
(see Figure 1). The reconstructed responses of the SAE closely follow the ground truth
curves. At the same time, both AE and PCA fall short in capturing the general behavior
of the sensor response. The dominant performance of the SAE can be explained by its
capability to capture non-linear representations (unlike PCA) and the effect of sparsity
(regularization), which makes the model more robust against overfitting than AE.

The effect of the number of hidden layers (i.e., encoder layers + latent representation
layer + decoder layers) of the AE and SAE on their reconstruction performance is also stud-
ied. Adding more hidden layers can give the model more flexibility to learn nonlinearity in
the feature space better. On the other hand, it increases the number of hyperparameters,
which may lead to overfitting during the training. Table 2 summarizes the model MSE
loss when trained with 1–9 hidden layers. Though having a minor effect, increasing the
number of hidden layers seems to reduce the reconstruction MSE reaching its minimum at
five hidden layers. Adding more layers does not further reduce the models’ loss, which
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can indicate overfitting due to the large number of parameters added by each layer. For the
rest of the paper, results of SAE and AE with five hidden layers are reported.

Table 2. Effect of number of hidden layers on the performance (MSE) of SAE and AE.

Number of Hidden Layers
1 3 5 7 9

SAE 0.00035 ± 0.00001 0.00031 ± 0.00002 0.00024 ± 0.00001 0.00034 ± 0.00002 0.00039 ± 0.0001
AE 0.0017 ± 0.00002 0.001 ± 0.00001 0.0007 ± 0.00001 0.008 ± 0.0001 0.0008 ± 0.0001

4.2. TL Performance Evaluation

To evaluate the performance of the proposed TL method, it is compared with con-
ventional state-of-the-art ML approaches. For the dimensionality reduction, PCA was
performed on two datasets: (1) the limited target data and (2) the source and target data
combined. The reduced representations, i.e., top five principal components, were then
passed to a regression model, namely, a Support Vector Machine (SVM) [44], a Random
Forest (RF) [45], and an XGBoost [46]. Mean Absolute Error (MAE) and R-squared of each
model against the target test data are measured and summarized in Table 3.

Table 3. Generalization performance of the proposed TL method on test sensor data.

Encoder Regressor MAE (ppm) R-Squared

SAE-TL MLP 89.24 0.94
AE-TL MLP 99.74 0.89

PCA (Source)
XGBoost 172.77 0.82

RF 206.53 0.67
SVM 202.47 0.63

PCA
(Source + Target)

XGBoost 172.77 0.82
RF 176.82 0.73

SVM 109.88 0.87
NN 121.25 0.84

SAE-TL demonstrates a clear dominant performance in estimating the hydrogen
concentration with an MAE of 89.24. Combining the source and target datasets for the PCA
input slightly improved the conventional models’ performance. This is expected, as PCA, an
unsupervised learning model, can benefit from a larger sample size to output a more robust
representation. The AE-TL outperforms the PCA-based models, though it falls behind the
SAE-TL due to its higher reconstruction loss (i.e., generating less-accurate representations).
Finally, the NN directly trained on raw data (i.e., no dimensionality reduction) exhibits
similar performance to that of the PCA-based models. The network is prone to overfitting
due to the limited dataset, which reduces the model’s generalization performance.

5. Conclusions

This paper presents a novel TL framework for predicting the HENG mixture concen-
tration with limited data extracted from a microfluidic-based gas detector. Our in-house
3D-printed microfluidic channel works as a delay agent and provides a unique finger-
print response [15]. The proposed framework consists of an SAE for extracting useful
low-dimensional representations from the high-dimensional raw detector response data,
and a TL method for transferring the learned knowledge from historical data towards a
model based on data from a new detector. The response curve data from two sensors have
been collected to evaluate the proposed SAE-TL method’s performance. The results clearly
outline the proposed method’s dominant performance compared with conventional ML
models. Namely, the SAE outperformed AE and PCA in learning more useful features for
dimensionality reduction. The implementation of TL drastically reduced the need for large
amounts of data for training deep neural networks. The proposed learning framework can
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effectively work with very limited data to learn the mapping between the sensor response
and the gas concentration via the TL module in the framework. Conventional learning
models require large datasets (especially since the input space, namely, sensor voltage
response, is high-dimensional) to be fully trained and yield high accuracy. In contrast, our
framework can enable a fast yet much less data-intensive training procedure to produce
high predictive performance. In addition, many of the previous works have implemented
conventional (and linear) dimensionality reduction methods such as PCA as part of the
learning process; though effective, we have shown that by using a nonlinear counterpart
(i.e. sparse autoencoder), a more informative low-dimensional representation of the input
space can be achieved, directly leading to better predictive accuracy. Future studies are
required to further validate the proposed framework’s generalizability, and response data
from other types of sensors can be collected and examined. Moreover, probabilistic models
such as Gaussian processes [47] or Bayesian deep learning [48] can be utilized to quantify
the model uncertainty.
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