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Abstract: The target recognition algorithm is one of the core technologies of Zanthoxylum pepper-
picking robots. However, most existing detection algorithms cannot effectively detect Zanthoxylum
fruit covered by branches, leaves and other fruits in natural scenes. To improve the work efficiency
and adaptability of the Zanthoxylum-picking robot in natural environments, and to recognize and
detect fruits in complex environments under different lighting conditions, this paper presents a
Zanthoxylum-picking-robot target detection method based on improved YOLOv5s. Firstly, an
improved CBF module based on the CBH module in the backbone is raised to improve the detection
accuracy. Secondly, the Specter module based on CBF is presented to replace the bottleneck CSP
module, which improves the speed of detection with a lightweight structure. Finally, the Zanthoxylum
fruit algorithm is checked by the improved YOLOv5 framework, and the differences in detection
between YOLOv3, YOLOv4 and YOLOv5 are analyzed and evaluated. Through these improvements,
the recall rate, recognition accuracy and mAP of the YOLOv5s are 4.19%, 28.7% and 14.8% higher
than those of the original YOLOv5s, YOLOv3 and YOLOv4 models, respectively. Furthermore, the
model is transferred to the computing platform of the robot with the cutting-edge NVIDIA Jetson
TX2 device. Several experiments are implemented on the TX2, yielding an average time of inference
of 0.072, with an average GPU load in 30 s of 20.11%. This method can provide technical support for
pepper-picking robots to detect multiple pepper fruits in real time.

Keywords: Zanthoxylum; artificial intelligence; YOLOv5; target detection; picking robot

1. Introduction

The Zanthoxylum pepper is one of the most widely planted cash crops in China.
Traditionally, it is mainly picked by hand with high cost, high labor intensity, low efficiency,
low security and strong seasonal timing. In addition, Zanthoxylum is mostly planted
on ridges and convex ridges with low fertility, making picking more difficult and time-
consuming. Thus, low picking efficiency has seriously restricted the economic benefit
and development of the Zanthoxylum industry. To realize efficient automatic picking of
Zanthoxylum fruit, reducing the burden of forest garden pickers and ensuring the timely
picking of fruit, it is significant to carry out in-depth research on the key technologies of
Zanthoxylum-picking robots. Therefore, rapid real-time detection under natural conditions
without the influence of a complex environment has very important application value and
practical significance to improve the operation efficiency of picking robots.

With the continuous development of artificial intelligence, artificial neural networks
have been widely used in many fields, and deep learning target detection methods based
on target detection have been gradually applied, surpassing traditional image-processing
methods [1–3]. Artificial intelligence continues to progress and be widely used in different
fields. For example, in the economic field, a deep neural network model can be combined
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with sample data and feature engineering to estimate stock price changes [4]. By combining
artificial neural networks and grey correlation analysis, the purchasing intention of con-
sumers in the exchange can be analyzed and predicted [5]. In the industrial field, Danyang
Zhang et al. [6] proposed a multiobject detection method based on deep convolution com-
bined with relevant ideas of neural networks, which can realize nondestructive detection
of rail surfaces and fastener defects. Haifeng Wang et al. [7] proposed a traffic sign YOLO
(TS-YOLO) model based on a convolutional neural network to improve the detection and
recognition accuracy of traffic signs under conditions of extremely limited vision. Gang
Tang et al. [8] proposed an excellent ship detection method named “N-YOLO”, which
was based on YOLO, including a noise level classifier (NLC), SAR target potential area
extraction module (STPAE) and detection module based on YOLOv5. Benwu Wang et al. [9]
proposed a deep network detection method based on X-ray images to detect abnormalities
in the molding process of industrial inserts. Liu et al. [10] used frequency-domain-focusing
technology of synthetic aperture radar (SAR) to aggregate scattered GPR signals and obtain
test images. The noise in the original signal is removed by a designed low-pass filter, and
the target contour is extracted by edge detection using background information. In the field
of agriculture, a new deep learning structure, VddNet (Vine Disease Detection Network),
was proposed to detect grape diseases [11]. Real-time identification of early fusarium wilt
in potato production systems was achieved using machine vision combined with deep
learning technology [12]. Ji et al. [13] used an SVM classifier to classify and recognize
apple fruits, and the recognition rates of bagged fruits reached 89%. X. Wei et al. [14]
extracted a new color feature from the OHTA color space and used the improved Otsu
algorithm to automatically calculate the segmentation threshold of fruit images, with a
recognition accuracy of more than 95%. Yao Jia et al. [15] proposed a defect detection model
based on YOLOv5, which could quickly and accurately detect defects in kiwifruit with
mAP@0.5 reaching 94.7%. Bin Yan et al. [16] proposed a lightweight apple target detection
method for picking robots based on improved YOLOv5s, with a recognition recall rate of
91.48%, recognition accuracy of 83.83%, mAP of 86.75% and F1 of 87.49%. Yangyu et al. [17]
proposed a new strawberry-picking robot and fruit pose estimator named Rotating YOLO
(R-YOLO), which significantly improved the positioning accuracy of picking points, with
an average recognition rate of 94.43% and recall rate of 93.46%. All these studies provided
strong evidence and broad prospects for the application of artificial intelligence in modern
agriculture; however, the universality and robustness, which were provided by samples
and human subjectivity, have not been processed.

Zanthoxylum fruit target detection is similar to the majority of target detection pro-
grams in many aspects, such as UAVS automatic navigation, fire detection and face recog-
nition. Therefore, traditional detection models, such as R-CNN [18–20], Faster R-CNN [21],
YOLO [22–25] and SSD [26], have been applied to the detection of Zanthoxylum. Among
these models, R-CNN, SSP-NET and Faster R-CNN have two detection stages, with high
accuracy but much slower computing speed than YOLO and SSD models with primary
structures. YOLO (You Look Only Once) includes YOLO, YOLOv3 [27–31], YOLOv4 [32]
and YOLOv5 [33]. Other methods are favored by researchers because they could directly
train the target position in single-stage operation. Detection based on artificial neural net-
works and computer vision technology can provide faster, more real-time and more efficient
detection for agricultural robots in target growth monitoring, moisture monitoring and tar-
get location extraction. However, the above models cannot quickly and efficiently provide
accurate positioning for picking robots in complex orchard environments. Thus, a highly
robust target detection system based on computer vision and a fully autonomous automatic
detection model of UAV [34–36] systems is of urgent need. On the other hand, though the
identification efficiency of most Zanthoxylum target recognition research models based on
deep learning is high, the timeliness and accuracy of the models is insufficient in complex
orchard environments with different fruit sizes and serious branch clustering. Therefore,
it is of great importance to develop a method that can simultaneously recognize multiple
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clusters of fruits, meet the application requirements in a complex forest environment, and
detect Zanthoxylum fruits in real time.

Therefore, this work put forward a lightweight Zanthoxylum-pepper-targeted real-
time recognition algorithm, which is based on the improved YOLOv5, and thus provide
reliable technical support for the picking robot to realize the real-time and efficient detection
of Zanthoxylum peppers in a complex forest environment. The main contributions of this
work are summarized as follows:

(1) As Zanthoxylum is a multicluster fruit with strong randomness of growth direction,
we adopted the deep learning method in computer vision, which is not often tried
in multicluster fruit. A set of complete detection algorithms was established, which
provided a method for picking robots to identify and detect fruit in forest gardens.

(2) Considering the multicluster nature of Zanthoxylum fruit, a detection module with
the addition of the FReLU activation function was adopted to effectively improve
the efficiency and accuracy of fruit recognition. By changing the CSP module in the
backbone, a lightweight Specter module was proposed to accelerate the convergence
speed of the training network and reduce the impact on the scale loss.

(3) In consistent environmental tests, the real-time detection of several classical target
detection networks of Zanthoxylum fruit on the running platform of the robot, an
NVIDIA Jetson TX2, was compared and analyzed. Based on YOLOv5, the feature
extraction and multiscale detection of the network were enhanced and the training pa-
rameters were reduced. Good results were achieved in the Zanthoxylum fruit dataset.

2. Materials and Methods
2.1. Zanthoxylum Fruit Image Collection
2.1.1. Material and Image Data Collection

This study takes the fruit of the Zanthoxylum tree in a modern Zanthoxylum garden
as the research object. As shown in Figure 1, the original images were collected from the
Industrial Park of Maiji District, Tianshui City, Gansu Province; and the Zanthoxylum Park
of Jishi Mountain, Dongxiang County, Gansu Province, respectively. Pepper trees in the
garden row were spaced approximately 3 meters apart, plant spacing was approximately
1.8 meters, and the tree height was approximately 2 meters, which was suitable for the
pepper-picking robot to work in the garden. The Zanthoxylum varieties were Dahong-
pao and Mianjiao. All the JPEG images are collected by Nikon 40D camera, and all the
image resolutions are 6000 × 4000 pixels. A total of 4000 prickly pepper fruit images
were collected.

2.1.2. Image Preprocessing

Object detection based on deep learning was trained on a large amount of image data.
The dataset was enhanced in order to obtain enriched image training set, better extract
image features and avoid overfitting. Firstly, 2800 images were randomly selected from
4000 images as the training set, 800 images were set as the test set and 400 images were
chosen to be the verification set. The detailed distribution of the testing set is shown in
Table 1. Secondly, the image resolution was reduced to 3024 × 3024 pixels to reduce the
running time of subsequent tests, and LabeLImg was used to label the images manually.
The smallest enclosing rectangle of each Zanthoxylum fruit string was labeled to ensure
that there was only one Zanthoxylum fruit in each labeling frame. Thus, the background
was kept as minimal as possible. Furthermore, all the generated XML files were saved and
converted to TXT files.
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Figure 1. Images of Zanthoxylum under different conditions. (a) Single cluster of Zanthoxylum
with smooth light and no shade; (b) Single cluster of Zanthoxylum with backlight; (c) Zanthoxylum
with shade of leaves; (d) Clusters of Zanthoxylum with overlapping smooth fruits; (e) Clusters of
Zanthoxylum with backlight.

Table 1. Sample analysis details of text set images.

Conditions
Morning Afternoon

Frontlighting Backlighting Frontlighting Backlighting

Number of images 195 186 225 194
Graspable Zanthoxylum 588 564 563 285

Ungraspable Zanthoxylum 547 634 535 329

Due to the complex lighting conditions during image acquisition, the original image
was processed based on the image processing operations of OpencV and related libraries,
in order to improve the generalization ability of the training model (Figure 2). The process
was carried out in five ways, including image brightness enhancement, image rotation,
image mirror flip, image random clipping and image noise increase. Rotated images,
random clipping, increased noise and flipped images can improve the detection perfor-
mance and robustness of the network. Meanwhile, increased brightness can eliminate the
impacts of the brightness deviation on network performance caused by the environmental
lighting changes and sensor differences. After data augmentation, the image among the
20,000 images was randomly selected according to 7:2:1 for deep network training and
parameter verification, without overlap, to avoid overfitting of the training model.
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Figure 2. Image enhancement results. (a) Ripe Zanthoxylum string; (b) Increased noise result;
(c) Rotation result; (d) Random clipping result; (e) Increased brightness result; (f) Mirror flip result.

2.2. Improvement of YOLOv5s Network Architecture
2.2.1. YOLOv5

At present, the main target recognition algorithms are R-CNN and YOLO. R-CNN
is widely used with high accuracy but cannot meet the requirements of real-time rapid
detection for picking robots. Thus, YOLO is the better choice, as it can quickly regress
the image information in a simple channel and at the same time, classify and observe the
target detection information. In this work, YOLOv5, as the latest algorithm in the YOLO
series with fast training speed, high detection accuracy and small model weight file, was
employed. It contains four architectures, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x,
and the architecture size differs with the difference in the convolution kernel size and the
feature extraction times.

The accuracy and real-time performance of the Zanthoxylum fruit detection model are
crucial to the real-time operational efficiency of the Zanthoxylum picking robot were ensured.

The YOLOv5s framework consists of a backbone, neck and head. The backbone
aggregates the input image information by different types of image granularity to form the
convolutional neural network of image features. The neck transmits the output image of the
backbone layer to the prediction layer in a pyramid mixed structure. The head generates
prediction boxes and categories based on image features transmitted by the neck, as shown
in Figure 3.
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2.2.2. Improvement of Backbone Network

The recognition algorithm of the Zanthoxylum-picking robot must not only accurately
identify Zanthoxylum fruit in the complex environment of the Zanthoxylum forest park,
but also be built in the hardware of the robot with a lightweight model by optimizing and
improving the backbone based on YOLOv5s. Because the edge contour of Zanthoxylum
fruit is irregular, the FReLU activation function was adopted [37] to improve the accuracy.
Under the premise of ensuring detection accuracy, the parameter volume and number of
network weights were reduced to realize the lightweight improvement of the fruit target
detection network of the Zanthoxylum-picking robot.

The FreLU activation function is based on the ReLU activation function, and adopts
the simple nonlinear function Max (), which can be extended by adding a visual funnel
condition T(x) to connect each pixel to the 2D environment, as shown in Figure 4.

F(xC, I, j) = MAX(xC, I, j, T(xC, I, j)) (1)

T(xC, i, j) = xω
c,i,jP

ω
c (2)
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In Formulas (1) and (2), Xc, I, j represents the input pixel of the nonlinear activation
function on channel C. At the 2D space position (I, j), the function T() represents the funnel
condition, Xc, I, j,ω represents kh × kW centered on Xc, and pω

c represents the coefficients
shared by this window in the same channel.

As shown in Figure 5, squares of different sizes represent different activation fields
for each pixel in the activation layer at the top. For example, in Figure 5a, each pixel is a
square activation field with the same size; in Figure 5b, there are square activation fields
of different sizes; and in Figure 5c,d, curved and oblique shapes are more common object
outlines in fruits. Therefore, the original Hardwish activation function was replaced by the
FReLU activation function, and irregular and detailed pixel data could be better captured
in the complex Zanthoxylum fruit detection training by using funnel-modeling ability
during training.
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Figure 5. Activation fields of different shapes. (a) Normal activation field; (b) Oblique shape; (c) Arc
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Usually, immediately after capturing the spatial dependency in a convolution layer
linearly, an activation layer acts as a scalar nonlinear transformation. Many insightful acti-
vations have been proposed, such as ReLU, PReLU, Hardwish and FReLU, but improving
their performance on visual tasks is challenging. Therefore, currently, the most widely used
activation is still ReLU. We set the ReLU network as the baseline and show the relative
improvement in accuracy on the basic tasks in computer vision: object detection (mAP).
As shown in Figure 6, we trained YOLOv5s over the Zanthoxylum dataset to evaluate
the generalization performance of the model on this dataset. FReLU is more effective and
transfers better on the tasks.
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The original YOLOv5s network utilizes cross-stage partial (CSP) to increase the net-
work depth and thus improve the feature and detection capability of the network. However,
during the detection task of Zanthoxylum fruit in natural Zanthoxylum gardens, it was
found that some lightweight computing models can also achieve satisfactory test results
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and reduce memory operation to facilitate installation in mobile robots. As shown in
Figures 7 and 8, to improve network detection speed and reduce the model size, a Specter
bottleneck based on the Ghost bottleneck was used instead of a CSP bottleneck in the
original network. Conv (convolution), BN (batch normalization) and FReLU compose the
CBF module, which is the basic part of SpectertConv. Specifically, the input of SpectertConv
enters two CBF modules, and the outputs of those modules concatenate in the channel
dimension to be the output of SpectertConv. The core idea of Specter is to generate a
large number of feature graphs with rich Zanthoxylum information, by using low-cost
convolution operations. First, a few conventional convolution operations were performed
on the feature graph to generate the basic features. Then, more features were generated
using the deep convolutional network, which were finally combined with the basic features
to generate the final output features.
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The structure of the Specter bottleneck is shown in Figure 9. It consists of two Specter
modules. In this network model, the number of channels was first increased by the Specter
module, then features were integrated by deep convolution. Finally, the number of channels
was adjusted by the Specter module, which was the same as the number of channels in
another process, and added to obtain the output feature information. The Specter module
could change the number of input channels by changing the number of convolution kernels.
To effectively reduce parameter redundancy and increase the geometric characteristic
information of prickly pepper fruit, a convolution layer was added to the two Specter
modules. BN was added after the convolutional layer of each module, and the FReLU [37]
activation function was added after the convolutional layer of the two Specter modules to
improve the expressive ability of the neural network.
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2.3. Network Training
2.3.1. Platforms

In this experiment, the PyTorch deep learning framework was built on the hardware
platform of an AMD Ryzen7 5800H CPU (16 GB of memory) and an NVIDIA GeForce
RTX3060 Laptop GPU (6 GB of video memory) under the Windows 10 operating system.
CUDA Cudnn, OpenCV and related libraries were called to implement the target detection
model of a Zanthoxylum fruit-picking robot, trained and tested.

In the real-time detection process, the trained model was implemented on the platform
of the robot with the cutting-edge NVIDIA Jetson TX2 device. The TX2 equipped with
an NVIDIA PascalTM GPU with 256 NVIDIA CUDA cores provides superior speed and
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efficiency. Moreover, the module size of the TX2 is only 50 mm × 87 mm, which meets the
space–size requirements of the robot control platform.

In this study, the batch size was set as 24, and the weights of the model were regu-
larized and updated by the BN layer. The momentum was set as 0.937, and the weight
decay rate (decay) was set as 0.0005. The initial vector and IOU thresholds were set as 0.01,
and the enhancement coefficients of hue (H), saturation (S) and brightness (V) were set
as 0.015, 0.7 and 0.4, respectively. The number of the training epochs was set as 900, and
every message was recorded for each training. After the training, the weight files of the
recognition model were saved, and the performance of the model was evaluated by the
test set. The final output of the network was the predicted position box of the identified
Zanthoxylum fruit.

2.3.2. Training Results

The mAP (mean average precision) of the training set is displayed in Figure 10a;
Figure 10b shows the loss curve of the training process, indicating that the loss value
decreased rapidly in the first 150 epochs and tended to be stable after 600 epochs. The
training was good, and no fitting occurred. Therefore, the output model of training
900 epochs was determined as the fruit target detection model of the Zanthoxylum-picking
robot in this study.
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3. Experimentation and Results
3.1. Model Evaluation Index

In this study, precision P (precision)—namely, accuracy, recall and mAP—were used
to evaluate the performance of the detection model.

3.2. Experimental Results

To verify the performance of the optimized network model for Zanthoxylum fruit
detection, this study designed a real-time identification model of a Zanthoxylum-picking
robot, which was based on the improved YOLOv5s. The optimized network model was
applied in 4000 images, and the detection results in multiple clusters of blocked Zan-
thoxylum fruits, multiple clusters of unblocked Zanthoxylum fruits and a single cluster of
Zanthoxylum fruits under different lighting conditions were carefully analyzed. The mAP
of this model is 94.5%. As shown in Figures 11–13, it can be seen that in the early morning
environment, the natural light is weak, and a small number of multicluster pepper fruits
cannot be fully identified; in the afternoon environment, the natural light is strong, and
most pepper fruits can be well identified and detected. Overall, the identification results of
the improved YOLOv5s network proposed in the study were accurate.
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3.3. Comparison of the Recognition Results of Different Target Detection Algorithms

To further analyze the recognition performance of the proposed algorithm for Zan-
thoxylum fruit, the improved YOLOv5s network was compared with the original YOLOv5s,
YOLOv3-TINY and YOLOv4-TINY networks on 2000 verification set images. The mAP
value and average recognition speed of the model were used as evaluation indexes. The
identification results, size and number of parameters of each network model are shown in
Table 2.

Table 2. Comparison of different detection models in the Zanthoxylum pepper dataset.

Object
Detection
Networks

mAP (%)
Average

Detection
Speed (s/pic)

Average Detection
Speed of TX2 (s/pic)

Average GPU Load
on TX2(%)

Average
Detection

FPS of TX2

Model Size
(MB)

YOLOv3-TINY 73.4 0.030 0.114 38.72 35.13 33.7
YOLOv4-TINY 82.3 0.017 0.153 27.98 22.45 23.1

YOLOv5s 90.7 0.015 0.097 24.25 28.62 14.4
Our network 94.5 0.012 0.072 20.11 33.23 14.0

According to Table 2 and Figure 14, the mAP value of the improved YOLOv5 recog-
nition model proposed in this paper is the highest, which is 4.19% higher than that of the
original YOLOv5 network, 28.7% higher than that of YOLOv3-TINY and 14.8% higher
than that of YOLOv4-TINY, respectively. The results showed that the algorithm is the
best among the four methods. The average detection speed of the improved YOLOv5s
model is 0.012 s/image, which is 1.25 times, 1.42 times and 2.5 times those of the original
YOLOv5, YOLOv4-TINY and YOLOv3-TINY networks, respectively. All these showed
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that the model can meet the requirements of the picking robot for real-time identification
of Zanthoxylum. On the other hand, Table 2 and Figure 12 showed that the size of the
improved YOLOv5s recognition model proposed in this paper is only 14.0 MB, accounting
for 97.2%, 60.6% and 41.5% of the original YOLOv5s, YOLOv4-TINY and YOLOv3-TINY
networks, respectively. The results demonstrated that the network could not only ensure
the recognition accuracy but also effectively realize the lightweight characteristics of the
network. In general, the model proposed in this study is the lightest among the five network
models with the highest mAP value. The recognition speed of this model is better than
that of YOLOv3-TINY, the original YOLOv5s and YOLOv4-TINY, which could meet the
requirement of real-time Zanthoxylum fruit recognition. Further analysis can be obtained
in Table 2. On the TX2 platform, the inference speed of our model was the fastest, the speed
is 33.23 FPS, and the average load of the GPU was the lowest in these models. The irregular
and detailed pixel data of pepper fruit are better captured by FReLU activation function,
and a large number of feature maps with rich pepper information are generated by low-cost
convolution operation. Firstly, some conventional convolution operations are performed on
the feature map to generate the basic features. Then, more features are generated by using
the deep convolution network, and are finally combined with the basic features to generate
the final output features, which effectively improve the detection speed and performance
of our network.
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4. Conclusions

In this paper, a method that could effectively detect and recognize Zanthoxylum fruit
in natural scenes is proposed. Based on the YOLOv5s algorithm and FReLU activation
function, the method greatly improved the integrity of pepper fruit information and the
quality of the training set. A Specter module was proposed to replace the bottleneck
CSP module to improve the detection speed with a lightweight structure. In addition,
several classical target detection networks were compared and analyzed for real-time
detection of Zanthoxylum pepper fruit. Based on these improvements, the feature extraction
and multiscale detection of the network were significantly enhanced, and the training
parameters were reduced. Good results were achieved in the Zanthoxylum fruit dataset.
In future work, we will focus on the main branch of Zanthoxylum fruit and integrate the
picking point location algorithm with the main branch detection algorithm, in order to
achieve real-time localization and detection of Zanthoxylum fruit-picking points.
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