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Abstract: Motion classification can be performed using biometric signals recorded by 
electroencephalography (EEG) or electromyography (EMG) with noninvasive surface electrodes for 
the control of prosthetic arms. However, current single-modal EEG and EMG based motion 
classification techniques are limited owing to the complexity and noise of EEG signals, and the 
electrode placement bias, and low-resolution of EMG signals. We herein propose a novel system of 
two-dimensional (2D) input image feature multimodal fusion based on an EEG/EMG-signal transfer 
learning (TL) paradigm for detection of hand movements in transforearm amputees. A feature 
extraction method in the frequency domain of the EEG and EMG signals was adopted to establish 
a 2D image. The input images were used for training on a model based on the convolutional neural 
network algorithm and TL, which requires 2D images as input data. For the purpose of data 
acquisition, five transforearm amputees and nine healthy controls were recruited. Compared with 
the conventional single-modal EEG signal trained models, the proposed multimodal fusion method 
significantly improved classification accuracy in both the control and patient groups. When the two 
signals were combined and used in the pretrained model for EEG TL, the classification accuracy 
increased by 4.18–4.35% in the control group, and by 2.51–3.00% in the patient group. 

Keywords: brain–computer interface (BCI); convolutional neural network (CNN);  
electroencephalography (EEG); electromyography (EMG); transforearm amputees;  
transfer learning (TL) 
 

1. Introduction 
The functional prosthesis is an important rehabilitation aid for upper limb amputees, 

as it allows them to successfully perform social activities by restoring lost functions. 
About 1.6 million people suffer from limb loss in the United States, 35% of whom are 
upper limb amputees [1], while 30% of those 35% are transforearm amputees [2]. 

Citation: Kim, S.; Shin, D.Y.; Kim, T.; 

Lee, S.; Hyun, J.K.; Park, S.-M.  

Enhanced Recognition of Amputated 

Wrist and Hand Movements by Deep 

Learning Method Using Multimodal 

Fusion of Electromyography and  

Electroencephalography. Sensors 

2022, 22, 680. https://doi.org/ 

10.3390/s22020680 

Academic Editor: Steve Ling 

Received: 8 December 2021 

Accepted: 14 January 2022 

Published: 16 January 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Sensors 2022, 22, 680 2 of 18 
 

 

Prosthesis-based rehabilitation of amputees enables a return of activities of basic daily life 
including community, leisure, and even vocational endeavors [3]. 

The first myoelectric prosthesis was commercialized in the 1980s by Otto Bock [4]. 
Since then, many amputees have benefited from various forms of myoelectric prostheses 
controlled by electromyography (EMG). In 2006, Touch Bionics developed a five-finger 
myoelectric prosthesis, which allows for simple gripping as well as various hand 
movements, thus helping to further improve the quality of life of upper limb amputees 
[5]. Starting with the LUKE, various bionic arms with multiple functions have been 
developed since 2009 [6–8]. A myoelectric arm should not cause significant inconvenience 
to users. To that end, for classification of two different movements, it is necessary to record 
at least two independent EMG signals. In recent studies, methods using high-density 
surface EMG to record EMG activity from multiple recording sites in a single muscle were 
suggested [9,10]. However, amputation site conditions are often highly diverse, and 
muscles tend to become too weak or atrophied over time; hence, a myoelectric prosthesis 
may not be usable in many cases [11,12]. Creating prosthetics for young patients is 
particularly challenging because the remaining ranges and parts of muscles are constantly 
changing as those individuals grow [13]. Due to low spatial resolution and usability 
issues, most patients eventually stop using myoelectric prostheses [14,15]. Therefore, it is 
necessary to develop a motion classification technique for prosthesis control based on 
more general-purpose biosignals than EMG from the remnant muscles. As a result, 
intention-based bionic arms using brain electrodes and chips implanted in the motor 
cortical region of the brain have attracted extensive interest recently in the brain–
computer interface (BCI) field [16]. However, invasive brain electrodes are not long-
lasting owing to the operation of the immune system of the central nerves and the chronic 
inflammation that results [17]. Consequently, there remains a strong need for prosthetic 
arms that can detect movement intention using noninvasive electrodes such as 
electroencephalography (EEG) and surface EMG signals. 

Noninvasive EEG signals might be more appropriate for upper limb amputees’ 
motion classification than EMG signals, because, according to the extent of amputation, 
the forearm or hand muscles required for performance of daily living activities are not 
fully intact or are even absent. In addition, owing to the fact that body movements are 
fundamentally controlled by the brain, many previous studies have reported using 
surface EEG or EMG signals for motion classification, the impetus of which has driven the 
primary motion classification research trend of using noninvasive EEG signals [18,19]. A 
previous study that performed motion classification using only EEG signals (and thus can 
be considered to be a motor imagery (MI) classification study) employed independent 
component analysis (ICA) as a spatiotemporal filter with which to extract signals related 
to MI tasks in the left and right hemispheres [20]. In another study, a subject’s intention 
was recognized using the restricted Boltzmann machine technique from the viewpoint of 
rehabilitation research [21]. Indeed, the most recent trend in research is using EEG signals 
to detect motion intention. For example, quadcopter control has been conducted by 
extraction of real-time features related to MI tasks in the left and right hemispheres [22]. 
In this study, signals for up, down, left, and right controls were extracted from MI tasks 
that moved the left and right hands; and, based on the signal, the quadcopter was 
controlled in real time. The high spatial resolution of the EEG signal makes it possible to 
distinguish between complex motions. However, EEG signals are limited by high signal 
variability and low stability resulting from their low signal-to-noise ratio (SNR) [21]. To 
solve these problems, multimodal studies have been conducted to complement the 
shortcomings of EEG or surface EMG signals by fusion of those two signals. It is possible 
to combine, for intention detection, multiple signals, such as EMG with a high signal 
stability and SNR and EEG with a high spatial resolution [23]. Previous studies have 
combined EEG and EMG signals to distinguish hand and wrist movements using 
conventional machine learning or deep learning methods [24–27]. However, in those 
studies, EMG signals were used only as auxiliary signals to support the intention 
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detection. Furthermore, simultaneous EEG and EMG acquisition in daily life is difficult. 
For example, EEG signals are more versatile, with much higher spatial resolution than 
EMG signals. In this context, utilizing both EEG and EMG signals at only the training 
stage to enhance accuracy, but using transfer-learned EEG for detecting movements in 
daily life, is a better strategy than using both EEG and EMG signals simultaneously. 

In the present study, we adopted the transfer learning (TL) concept of motion 
classification. With it, input data can be enhanced by learning the features of other input 
data. Therefore, we tested the hypothesis that a motion classification algorithm of EEG 
signals, which is independent of EMG signals, can be improved by learning EMG data 
features. First, single-modal classification of EEG and EMG signals was performed. After 
that, each EEG-to-EMG and EMG-to-EEG TL was performed, and features extracted from 
each signal were trained when the two signals were combined. Preparatorily, we had 
recruited six transforearm amputees along with nine nonamputees for the control group, 
and then we verified, from experimental data, the effectiveness of the proposed 
multimodal classification algorithm for detection of motion intention. We believe that the 
proposed multimodal motion classification technique benefits from the advantages of 
both single model EEG- and EMG-based techniques.  

2. Materials and Methods 
2.1. Experimental Procedures 

We measured the EEG and EMG signals corresponding to the wrist and hand 
movements of transforearm amputees and combined them to improve motion 
classification using deep learning techniques. We used the event-related 
desynchronization/synchronization (ERDS) map [27] as an input feature of the EEG signal 
and then applied the same process to the EMG signal to create a 2D image input feature. 
Features in the ERDS map were extracted using convolutional neural network (CNN) and 
TL algorithms, wherein one signal trains the features of another signal. First, we 
performed motion intention classification based on the CNN algorithm with only single-
modal EEG or EMG signal. Next, we created a pretrained CNN algorithm model from 
multimodal EEG and EMG signals. After that, the convolutional layers, except for the last 
layer, were frozen and the TL concept was introduced for training of single-modal EEG 
or EMG signals. In this process, the classification model learned from multimodal EEG 
and EMG signals was retrained and used as input data only with an EEG or EMG signal. 
Based on the classification result of this model, we propose the motion intention detection 
concept, which is independent of the EMG signal acquisition. 

2.2. Experimental Setup 
For the experiments, we recruited six transforearm amputees (age 30–50 years, five 

males and one female) who had no form of neurological disease and had preserved 
forearm muscles and nervous tissues needed to acquire the data necessary for algorithm 
development and verification. The research protocol and procedures were approved by 
the Institutional Review Board (IRB) of Dankook University Hospital (IRB No. 2020-05-
009). For the control experiment, we recruited nine healthy controls without amputation 
(age 20–30, five males and four females). The research protocol was approved by the 
Pohang University of Science and Technology and is in compliance with their IRB 
procedure (IRB No. PIRB-2020-E016). Figure 1 presents a schematic of the experiment 
setting, which shows wrist and hand movements and the flow from data collection to 
storage. The patients performed six movements: wrist dorsiflexion and volar flexion, wrist 
radial deviation and ulnar deviation, and hand grasping and opening, and the two 
movements were combined into pairs as well. During the execution of each motion, we 
simultaneously acquired EEG and EMG signals from the skin and scalp of the subjects. 
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Figure 1. Schematic of experimental protocol based on two of six wrist and hand movements. 

Sixty-four (64) EEG signal channels were acquired from ANTneuro’s EEGO mylab 
(ANT Neuro, Enschede, The Netherlands) at a sampling rate of 500 Hz as shown in Figure 
2. Then, using the same equipment, EMG signals were obtained at a sampling rate of 500 
Hz for determining wrist and hand movements from four muscles of both arms: flexor 
carpi ulnaris, extensor digitorum communis, palmaris longus, and extensor carpi radialis. 
Before positioning the EMG electrode, the subject’s skin was washed with alcohol. We 
used Ag/AgCl disc electrodes with a diameter of 19mm (Catalog No. 019-400400, Natus 
Medical Inc., Pleasanton, CA, USA), and placed an active electrode to the center of each 
muscle belly as suggested in the reference [28], and a reference electrode to the proximal 
tendon of the target muscle near the elbow joint. 

 
Figure 2. Experimental environment. (A) Schematic of experimental environment setting showing 
experiment flow, starting from motion of patient and continuing to data collection and storage; (B) 
Actual experimental environment and subjects wearing the experimental device, as well as data 
collection; (C) Device and sensor collecting EEG and EMG signals; (D) Four EMG electrodes 
attached to subject’s distal upper arm and another four EMG electrodes attached to proximal 
forearm, on intact and amputated sides, respectively. 
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As shown in Figure 1, the subjects performed a target movement from the six motion 
classes displayed on the screen in random order and were asked to concentrate on the task 
by maintaining the action for 2.5 s. Each experiment was comprised of five sets in which 
each movement class was repeated 20 times. 

2.3. Data Preprocessing 
Figure 3 shows the flow of data processing in this study. The preprocessing step was 

performed using EEGLAB (sccn.ucsd.edu/eeglab (accessed on 26 August 2021), which is 
an open-source electrophysiological data processing software based on MATLAB 
(Mathworks, Natick, MA, USA) that is used for processing electrophysiological data, such 
as EEG and EMG signals. It includes various methods such as artifact removal, time 
domain analysis, frequency domain analysis, and visualization. After passing through the 
60-Hz notch filter, the EMG signal was passed through a bandpass filter between 15 and 
500 Hz. The EEG signal was passed through a bandpass filter between 5 and 35 Hz; then, 
frequency analysis was performed after noise was removed using an ICA technique. We 
selected nine channels (Fc3, Fc4, Cz, C1, C2, C3, C4, Cp3, and Cp4) in the motor cortical 
region as the input values of the motion classification model. For the EMG signals, we 
used the signals of all four measured channels. 

 
Figure 3. Schematic of algorithm flow starting from data acquisition and continuing to motion 
classification. 

2.4. Feature Extraction 
Based on the principle of the ERDS map, which is one of the feature extraction 

methods for the EEG signals, a two-dimensional (2D) image visualized along the 
frequency axis between 5 and 35 Hz was created using Biosig toolbox (BioSig 
Technologies, Inc., Minneapolis, MN, USA) and averaging the randomly picked 5 trials of 
the EEG signal. The principle of the ERDS map was applied to the EMG signal to extract 
the features in the frequency domain between 30 and 247 Hz. For ERDS computation, we 
utilized the bootstrap resampling technique from the Biosig toolbox [29]. In general, the 
calculation of ERD/ERS is performed by bandpass filtering the EEG signals, segmenting 
individual trials, detrending the trials, squaring the samples and subsequently averaging 
over trials and sample points [27]. Moreover, one ERDS map was generated by averaging 
the signals of 5 trials. Because different EEG and EMG input features have different spatial 
resolutions, different degrees of contribution may be required for output features [30]. 
Given that the characteristics of the two signals and the main analysis frequency domain 
significantly differed, the ERDS map was created by dividing the segment into a 
frequency step size of 1 Hz at a frequency border of 5–35 Hz and 30–247 Hz for the EEG 
and EMG signals, respectively. The ERDS map for the EMG signal was created by 
dividing the segments into 7-Hz frequency steps at the border. Typically, EEG-based 
algorithms that detect wrist and hand gestures use the mu and beta frequency bands. 
However, ranges of the mu and beta frequency are ambiguous to define. Previous studies 
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have used the frequency bands such as 8 to 25, 8 to 26, or 8 to 30 Hz [27,31,32], and there 
is no absolute agreement of the range of these frequency bands. Therefore, we set the 
range of EEG signal between 5 and 35 Hz at a step size of 1 Hz with an intention to cover 
the most of the mu and beta regions. This diversity of frequency range has been also 
shown in EMG signals, and relatively arbitrary frequency bands between 0–500 Hz have 
been typically used [33]. In our study, since the number of rows of the EEG input image 
was 31, we analyzed the EMG from 30 to 247 Hz grouped in 7 Hz units that organizes the 
data in 31 rows as well. The time axis progressed every 0.1 s in a 4.5-s length based on the 
trigger point at which both signals were present on the monitor. Thus, the input image 
generated from the two signals exhibited a size of 46 × 31 for each channel. Figure 4 shows 
the feature-extracted 2D image projected from the frequency domain. 

 
Figure 4. Two-dimensional (2D) image of EMG signal generated using an ERDS principle, a feature 
extraction technique for EEG signals in frequency domain. The signals were provided as inputs to 
the training model. 

Consequently, a 46 × 279 matrix was generated using the EEG data from the nine 
channels, a 46 × 124 matrix was generated using the EMG data from the four channels, 
and a 46 × 403 matrix was generated in order for a pretrained model to be obtained from 
the both EEG and EMG data. Figure 5 shows the 2D images generated for each signal and 
channel. We could expand the size of the image created to that of the original size for both 
EEG and EMG signals in order to resolve differences in the size of the input data during 
TL. However, the condition of a specific location affecting feature extraction is 
meaningful, because the signal feature extraction is based on the cue sign timing at the 
start of the motion. Therefore, for input size control, the size of the not-included EMG data 
was treated as a blank. We set the ERDS value at every 7 Hz in the frequency band, then 
an image of 46 × 403 size was created. When only EEG data are used, EMG data was set 
to be zero, so it was displayed when displayed in color. 
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Figure 5. Input data format. Gray scaled ERDS map images generated using EEG signals from nine 
selected channels and EMG signals from four selected channels. “m1” refers to the movement of 
wrist dorsiflexion and volar flexion, “m2” refers to the movement of wrist radial deviation and ulnar 
deviation, and “m3” refers to the movement of hand grasping and opening. 

2.5. Motion Classification 
2.5.1. Convolutional Network 

The CNN algorithm does not extract information from data to learn, but rather 
extracts the features of data and identifies the patterns of those features [34]. The CNN 
algorithm uses the convolution and pooling processes. These two layers are combined to 
create a model. In the present study, 2D images were formed by visualizing the effective 
frequency axis which is y-axis of each EEG and EMG signal based on the time axis, which 
is x-axis. These images, as input data, were then used to train the CNN model. In this 
model, a five layer and max pooling function was used. This subject-specific model was 
created for performance comparison with the transfer learning model, which used both 
EEG and EMG signals. Therefore, only the EEG or EMG signal, not both, were used as 
input data for this classification model. Figure 6 shows the structure of the CNN 
algorithm. The algorithm was trained with five shallow convolutional layers using only 
the feature extraction process for extracting a relatively small number of input data 
features, and the synthesis process was performed only on the time axis. The 
hyperparameter used in this model was optimized based on the grid search. We trained 
the neural network with an initial learning rate of 0.01 (initial search range: 0.1 to 0.001 for 
log scale) using Stochastic Gradient Descent with Momentum (SGDM). The training 
epoch was 10 times, the validation frequency was three times, and the data were shuffled 
every epoch. Because the model was generated using clinical data, the training data were 
relatively small in order to prevent overfitting and a dropout layer was created for 
regularization. 
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Figure 6. Architecture of our model showing training model for motion classification based on a 
CNN algorithm for each single datum. 

2.5.2. Pretrained CNN for TL 
The TL concept was implemented to create a pretrained model using both EEG and 

EMG signals. Transfer learning (TL) is an emerging method in computer vision because it 
can achieve high accuracy in a relatively short time [35]. By learning a new feature from a 
background model trained with a large data set, it is possible to solve a new target 
problem that is similar to the problem to be solved in the existing pretrained model. 
Hence, it is possible to apply previously learned patterns instead of building models from 
the start. In this study, the overall TL process from the generation of pretrained models to 
classification, was completed using that data. Figure 7 shows an overall schematic of the 
TL model. The model was also tested on part of the experimental data. 

 
Figure 7. Architecture of present model showing (A) training model for motion classification based 
on pretrained CNN algorithm and (B) TL process based on that model. 

In the pretrained model, the image size in the network input layer was 46 × 403 × 1 
because it consisted of gray-scale images. The five convolutional layers of the CNN 
architecture were defined. Thereafter, a fully connected layer and Softmax activation 
function layer were used to normalize the output value of the fully connected layer. 
Finally, in the classification layer, using the probability returned by the Softmax activation 
function for each input value, the input value was assigned to one of the mutually 



Sensors 2022, 22, 680 9 of 18 
 

 

exclusive classes and the loss was calculated. The maximum number of epochs was set to 
10. The validation data were not used to update the neural network weights. 

An important characteristic of deep learning models is their ability to learn 
instrumental features. The later the layers are in the model structure, the more advanced 
learning is achieved, specifically by extracting more specific features. At this point in the 
process, the layers at the front can be reused when learning images from other datasets, 
although the layers in the back will need to be learned anew whenever they encounter a 
new problem [36]. 

2.5.3. TL Model 
Retraining the entire pretrained model involves using only the structure of the 

prelearning model and performing all retraining based on the data set. Therefore, such 
operations require a high level of computation and a large data set. If the data set is small, 
there is a risk of overfitting if the entire set is newly trained [37]; hence, it might be 
necessary to freeze many layers and perform retraining at the higher-level layers. In this 
study, because the size of the data set was small and the objective was to verify similarities 
between data, we selected a strategy of freezing most of the convolutional base layers and 
learning only the last layer. From a data set of 300 trials for three actions generated per 
subject, 70% of the data were randomly extracted to generate the TL model, and the 
remaining 30% was used for testing. 

The convolutional layer of the neural network extracts image features that are used 
by the last learnable layer and the last classification layer to classify the input image. For 
training the pretrained neural network to classify new images, the last layer with learnable 
weights are trained as a new layer. The first-half layers fix weights to accelerate neural 
network training and prevent overfitting to new data sets. The learning speed is set to a 
relatively small value of 3 × 10−4 so as to slow the learning of the nonfixed transferred 
layer. 

2.6. Statistics 
Statistical analysis was performed using IBM SPSS Statistics 26 (International 

Business Machines Corp., Armonk, NY, USA). A Kolmogorov–Smirnov test was used to 
confirm the normal distributions of obtained data, and according to the results, a 
nonparametric test was chosen. Mann–Whitney U tests were also performed to detect any 
differences in the classification accuracies between the control and patient groups, left and 
right sides in the control group, and the intact and amputated sides in the patient group. 
Wilcoxon signed-rank test was used to compare the classification accuracies between 
single-modal EEG and transfer-learned EEG in the control and patient groups. p-values 
less than 0.05 were considered to indicate statistical significance. 

3. Results 
Average Classification Performance of Single-Modal and Multimodal Models 

After the classification, the performance of each fusion method was evaluated. For 
this study, performance analysis based on two types of metrics was adopted [38]. The first 
metric applied was classification accuracy in which the performance of the single-modal 
classification model was based on the CNN algorithm and that of the multimodal 
classification model was based on TL. This value was calculated using Equation (1). This 
ratio reflects how well the classifier can properly distinguish between different types of 
arm motions. Thus, the higher the classification accuracy value, the better the performance 
of the classifier. 

Classification accuracy = (Number of correct classifications)/(Total number 
of testing samples) × 100%  

(1)
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We created the single-modal classification model using EEG/EMG signals as input 
data for both the amputated and nonamputated subjects based on the CNN classification 
algorithm. Furthermore, we formulated a new multimodal CNN classification algorithm 
using both the EEG and EMG signals as input data for the training model, as obtained 
from both the control and patient groups. Then, the lower four layers of the multimodal 
classification model were reused as a pretrained model for TL. In this TL model, only the 
EEG or EMG signal was used as the training input data; then, the features of the pretrained 
model were trained. We tested the classification accuracy of the three sets of wrist and 
hand movements: wrist dorsiflexion and volar flexion, wrist radial deviation and ulnar 
deviation, and hand grasping and opening.  

Table 1 shows the average model classification accuracies for all subjects in the 
control and patient groups according to each classification model. Because the SNR of the 
EMG signal was high, a relatively distinct feature extraction process was possible, and as 
a result, the EEG signal was more effective in EMG signal feature learning [28,39]. In 
addition, the average classification accuracies of single-modal EMG in amputated and 
intact sides were 94.2 ± 3.42 % and 94.8 ± 3.43 % respectively in the patient group, and 
those in right and left sides were 93.3 ± 3.43 % and 93.0 ± 4.81 % respectively in the control 
group (data not shown in Table 1). 

Table 1. Average classification accuracy [%] of single-modal EEG, multi-modal EEG and EMG, and 
transfer-learned EEG of each subject in control and patient groups. 

Group Subject 

Lt. Side Rt. Side 

Single-
Modal EEG 

Multi-
Modal EEG 
and EMG 

Transfer-
Learned EEG 

EEG 
Difference  
before and 

after Training 

p-Value 
Single-

Modal EEG 

Multi-Modal 
EEG and 

EMG 

Transfer-
Learned EEG 

EEG 
Difference 
before and 

after Training 

p-
Value 

Control 

Case 1 58.8 91.6 64.2 5.4  61.78 79.33 68.22 6.44  

Case 2 59.67 94.11 63.11 3.44  67.45 90.22 69.78 2.33  

Case 3 60.71 91.43 66.25 5.54  52.67 87.67 64.67 12  

Case 4 62.78 92.67 66.56 3.78  58.6 87.8 57.6 -1  

Case 5 60.11 88.18 65.33 5.22  64.22 87.89 69.89 5.67  

Case 6 55 89.89 59.45 4.45  65.56 87.98 64.04 -1.52  

Case 7 71 83.67 76.33 5.33  65.53 82.89 70 4.47  

Case 8 56.11 74.33 59.21 3.1  62.22 89.56 67.44 5.22  

Case 9 62.57 81.57 65.43 2.86  63.22 80 67.22 4  

Mean ± 
SD 

60.75 ± 4.64 87.49 ± 6.44 65.10 ± 5.01 4.35 ± 1.07 0.008 * 62.36 ± 4.46 85.93 ± 4.09 66.54 ± 3.99 4.18 ± 4.07 0.021 * 

Patient 

Subject 

Intact side Amputated side 

single-modal 
EEG 

multi-modal 
EEG and 

EMG 

transfer-
learned EEG 

EEG difference 
before and 

after training 
p-value 

single-modal 
EEG 

multi-modal 
EEG and 

EMG 

transfer-
learned EEG 

EEG difference 
before and 

after training 
p-value 

Case 1 60.44 86.56 67 6.56  58.92 79.64 60.17 1.25  

Case 2 60 77.5 60.8 0.8  65.45 85.11 68.45 3  

Case 3 66.33 79.78 69.56 3.23  70.11 87.33 71.66 1.55  

Case 4 60.4 79.6 61 0.6  49.89 77.33 53.11 3.22  

Case 5 63.99 87 65.33 1.34  59.78 77.33 65.78 6  

Mean ± 
SD 

62.23 ± 2.80 82.09 ± 4.38 64.74 ± 3.81 2.51 ± 2.49 0.028 * 60.83 ± 7.61 81.35 ± 4.61 63.83 ± 7.33 3.00 ± 1.89 0.028 * 

p-value 0.766  0.037 **  0.628  0.205   0.823  0.031 **  0.881  0.233   

* p < 0.05 compared between single-modal EEG and transfer-learned EEG by Wilcoxon signed-rank 
test, ** p < 0.05 compared to both sides in control group by Mann–Whitney U test. 

The convergence curve of the accuracy (upward convergence curve) and loss rate 
(downward convergence curve) according to cyclic iteration training is shown in Figure 8. 
This subject showed the highest classification accuracy increase among the patient groups. 
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Figure 8. Representative accuracy and loss rate convergence curves of case 5 in the patient group. 

Figure 9 plots the average classification accuracy of motion classification performed 
by each control subject. In this graph, the average classification accuracy of single-modal 
EEG was shown initially when using only EEG signals as the input data for the training 
model for each left and right arm, and then the transfer-learned EEG, which was trained 
and classified using the CNN network model was matched. When pretrained weights 
from the multimodal model were used for EEG signal classification, the average 
classification accuracy increased by 4.35 and 4.18% for the left and right arms, respectively 
(Table 1). The classification accuracy of each subject in the EEG signal TL increased, except 
for the right arm in Cases 4 and 6 in the control group.  

 

 
Figure 9. Classification accuracy for wrist dorsiflexion and volar flexion, wrist radial deviation and 
ulnar deviation, and hand grasping and opening, as performed by each control subject (%). “Lt side” 
refers to the accuracy result for the left arm, and “Rt side” to that for the right arm. * p-value between 
single-modal EEG and transfer-learned EEG by Wilcoxon signed-rank test. 
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Figure 10 shows that when pretrained weights from the multimodal model were 
used for EEG classification, the average classification accuracy increased by 2.51 and 3.0% 
for the intact and amputated sides, respectively (Table 1). In the patient group, the 
classification accuracy increased for all subjects including the intact and amputated sides 
after TL using both trained EEG data. This result demonstrates that EEG data successfully 
trained the weighted features of the combined EEG and EMG signals for the amputated 
subjects. The classification accuracy based on EEG data increased the most, showing a 
6.56% improvement on the intact side of case 1 in the patient group; and notably, case 5 
showed a 6.0% improvement in classification accuracy for the amputated side (Table 1 
and Figure 10). 

 

 

Figure 10. Classification accuracies for wrist dorsiflexion and volar flexion, wrist radial deviation and 
ulnar deviation, and hand grasping and opening, as performed by each amputated subject (%). “Intact 
side” refers to the accuracy result for the intact arm, and “Amp side” to that for the amputated arm. * 
p-value between single-modal EEG and transfer-learned EEG by Wilcoxon signed-rank test. 

4. Discussions 
The prediction of motion classification based on EEG or EMG signals is very 

important to the development of prosthetic arms for amputees. However, technical 
challenges to motion classification studies based on single-modal EEG or EMG signals 
remain. To solve these problems, in this study, we developed a motion classification 
algorithm for intention-based prosthesis control using EEG and EMG signals with a CNN-
based TL algorithm. We improved the input feature extraction method based on 2D 
images of an EEG signal in the frequency domain by applying the same process to the 
EMG signal. The proposed classification technique can be used in the following way: in 
the rehabilitation of upper limb amputees, the multimodal fusion model is pretrained 
using both the EEG and EMG signals with the TL technique, and then, in real-life usage, 
the pretrained model detects patients’ intention using only the single-modal EEG or EMG 
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signal in order to greatly enhance both the usability and accuracy of the motion detection 
algorithm. 

Other means of improving a muscle signal’s low spatial resolution exist. If we acquire 
electroneurography signals by invasive insertion of electrodes, we can obtain more 
accurate muscle signals with a higher spatial resolution of muscles. However, in the 
present study, a noninvasive method was adopted because an invasive electrode entails 
surgical steps and cannot be used for a long period. For feature extraction with high 
spatial resolution, it will be possible to develop an algorithm for ultimate high-fidelity 
prosthetic control by extracting additional high-quality features. 

For amputees, it is difficult to control, in real life, a prosthetic arm using both sensor 
types in multimodal sensor fusion. However, patients can usually wear both sensors 
during the rehabilitation period. Therefore, the scenario becomes more realistic where TL 
with both EEG and EMG signals are performed during the rehabilitation session, after 
which the actual prosthetic arm is controlled by a single EEG signal in daily life outside 
the hospital. In addition, the approach to movement intention detection with only a single 
EEG signal is needed for the goal of avoiding eventual EMG-signal dependence owing to 
various muscle problems, such as the conditions of the amputation site, the signal 
strength, and/or the need for surgery [11,13,40]. If the motion intention of the EMG data 
enhances the EEG data, this approach could be realized, owing specifically the advantage 
of the high spatial resolution of the EEG signal. For this, the concept of TL was adopted 
for learning of other signals’ features. Deep learning technology, with its automated end-
to-end learning processing capability, affords a significant advantage for signal 
processing [41]. Transfer learning (TL), which extracts features from existing learning 
models and newly acquired signals, is suitable for discriminating and training motion 
intentions using the fusion of individual EEG and EMG signals. In this study, the 
classification algorithm based on the TL process showed significantly improved 
performance over that of the single-signal motion classification model of the EEG signal. 
This improved performance may have been due to the proposed algorithm’s 
complementary benefit of multimodal sensor fusion, such that the stability of the EMG 
signal compensates for the noise issue of the EEG signal while the high spatial resolution 
of the EEG signal solves the EMG’s problem associated with muscle deformation or 
muscle strength reduction after amputation. The proposed process can be implemented 
for development of an algorithm that drives a prosthetic arm using single-modal EEG 
signals. 

In this study, when the EEG and EMG signals were fused, the fusion accuracy of the 
EEG signal increased while that of the EMG signal tended to decrease. It seems that the 
signal was saturated due to the fact that the classification accuracy of the single-modal 
EMG sensor was high. The current classification accuracy result seems biased to the 
surface EMG signal. In addition, since the accuracy of the EMG signal was somewhat low 
in the patient group experiment, the rate of accuracy increase was also somewhat low in 
the transfer-learned EEG. We believe that this was due to the study protocol having 
included only relatively simple movements. The purpose of this study was to show that 
the EEG signal can be trained using the EMG signal and that the multimodal fusion 
algorithm enhances the performance of motion classification. When more complex 
motions such as finger movements are performed, the high-resolution characteristics of 
the EEG signal might be required, and furthermore, its resolution can be further increased 
by incorporation of a larger number of electrodes. In recent studies, high-density EMG 
also has been highly accurate in predicting finger movements [9,42,43]. In this light, the 
role of this multimodal fusion algorithm becomes more important. This study is the first 
step toward the achievement of the goal of training the EEG signal with the EMG signal 
within a person. The present results serve to demonstrate the possibility of overcoming 
the shortcomings of prosthetic arm dependency on EMG signals by combining BCI 
technologies (EMG and EEG). Furthermore, they will help to solve known problems in 
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the fields of EEG/EMG signal fusion and prosthesis research and will contribute, thereby, 
to the development of more highly functional prostheses.  

In this study, the classification accuracy of EEG signals was increased by 2.51–4.35% 
in the control and patient groups after training (Table 1). Previous studies have reported 
increments of classification accuracy for upper-limb amputees. Li et al. achieved an 11.9% 
increment of classification accuracy by an optimized fusion method of EEG and EMG 
signals compared with 64-ch EEG alone for an upper-limb amputee [44], whereas our 
results showed about a 20% increment after TL of EEG and EMG signals relative to single-
modal EEG for amputees (Table 1). Paek et al. obtained 75% accuracy (incurring a 25% 
error rate) of EEG signals in distinguishing objects held or not held, which is a simpler 
task than ours [45]. 

We found that the accuracy of multimodal EEG and EMG was lower in the patient 
group than in the control group (82.09 ± 4.38% and 81.35 ± 4.61% on intact and amputated 
sides in patient group vs. 87.49 ± 6.44% and 85.93 ± 4.09%, Table 1). For accurate detection 
of wrist and hand movements, contraction of all active forearm muscles should be 
obtained by surface electrodes. Although the extent of amputation for the five patients 
differed, it would not have been possible to obtain the same EMG signal as for the control 
group, because all of them (the patients) had a partial forearm muscle defect. However, 
since the accuracy of the multimodal EEG and EMG of the intact side also was reduced 
relative to that of the control, this reason alone is not a sufficient explanation. Recent 
studies have found that the cortical area occupying the center of gravity was shifted 
laterally in the affected hemisphere after upper-limb amputation [39], and that 
sensorimotor map reorganization is quite variable over time and also depends on the use 
of the prosthesis, intact hand use, and the existence of phantom pain [46]. Therefore, it can 
be explained that the accuracy decrement of the multimodal EEG and EMG in the patient 
group was due to the combination of the partial loss of forearm muscles on the amputated 
side and the simultaneous changes of brain mapping. 

Brain reorganization after transforearm amputation might also have affected EEG 
accuracy changes after the use of pretrained weights from the multimodal model in the 
patient group, which results were lower in the patient group (2.51 and 3.0% on the intact 
and amputated sides, respectively) than in the control group (4.35 and 4.18% on the left 
and right sides). Although this difference was not obvious statistically, if it is possible to 
modify EEG signal processing according to the reorganization of brain mapping, a further 
improvement of EEG accuracy also will be possible. 

In this study, the image generated by the features of the EEG or EMG signal in the 
frequency domain was provided as input to the CNN and transfer learning classification 
models. When the single-signal classification accuracy of the EEG data was high, the EEG 
and EMG data showed high-quality feature learning and improved classification accuracy 
when TL was performed. Additionally, the classification accuracy of EMG TL tended to 
decrease when the classification accuracy of EEG data was relatively low, owing to the 
difference in accuracy between the EEG and EMG data. Conversely, the classification 
accuracy of EEG TL tended to increase when the classification accuracy of EMG data was 
relatively high. These findings serve to highlight the potentiality of high-quality feature 
learning of EEG data. 

The data-level fusion of motion classification can be further divided into data-level, 
feature-level, and decision-level fusions after the data processing step [47]. Various 
studies have been conducted on the sensor fusion method according to each level of fusion 
of EEG and EMG signals, and certainly, it is important to determine the optimal 
combination to achieve better performance. Data-level fusion of physiological signals has 
been attempted after processing raw data at a high sampling frequency for each data set 
[47]. Furthermore, feature-level fusion is used in various applications pertaining to upper-
limb motion classification recognition; this is the most common technique. The use of 
feature-level fusion is extracted from segmented data for each sensor in order to simplify 
calculations, combined to create a higher-dimensional functional vector, and finally 
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provided as inputs to a classifier [41]. The data fusion conducted in this study is classified 
as feature-level fusion. Feature-level fusion independently performs acquisition and 
classification for each sensor and obtains the results for each value. In that way, we can 
consider the reliability and plausibility of each sensor [40]. This approach facilitates the 
comparison of motion intentions using the two signals, specifically by creating a single-
modal classification model from each EEG and EMG signal and then a multimodal 
classification model from the two signals. Feature-level fusion, such as in linking two 
different feature sets, has some limitations. As the dimension of the feature vector 
increases, the computational overhead increases; moreover, each extracted feature can 
have a different dimension [48,49]. In this study, to prevent any increase in computational 
overhead, both the EEG and EMG signals were generated as a 2D image and used as 
inputs for classification.  

The key challenges associated with the use of deep learning in BCI research are 
related to the amount of data involved. The training data set used for the classification 
network model proposed in this study was relatively small, because data were obtained 
from a limited number of subjects in a relatively uncomplicated experimental 
environment. Therefore, the learning model was also performed in a shallow-depth 
structure to avoid the overfitting problem. If the amount of available data increases, it will 
be possible to establish a more complex-structured deep learning network and TL model 
that will afford enhanced classification accuracy. In this study, we had intended to 
increase the accuracy of EEG signals for the control of wrist and hand movement. 
However, the classification accuracy of EEG was not superior to that of EMG, even after 
transfer learning, which is the main limitation of our study. Since EMG signals vary 
greatly depending on the extent of remnant forearm muscle(s), and cannot be obtained 
from nonexistent intrinsic hand muscles, they are difficult to standardize. Therefore, to 
increase the usefulness of EEG signal employment, we plan to further apply our deep 
learning algorithms to complicated hand motions that involve additional hand muscles.  

In general, the classification accuracy of EMG data is higher than that of EEG data. 
Therefore, using EMG signals together will inevitably increase the accuracy rather than 
using EEG signals alone, and it is general that the accuracy is the highest when EMG 
signals is used alone. However, current prosthetic prostheses based on EMG data 
experience many inconveniences for users. Therefore, it is necessary to develop direction 
of prosthetic development for motion classification using EEG signals rather than EMG 
signals. As a first step, our thesis focused on transfer learning by fusion of EEG and EMG 
signals. 

There is a limit in real-life rather than EMG signals measurement due to the use of 
EEG cap. However, convenience is also developing in measuring equipment such as dry 
electrode caps. Although we did not fully train with EMG, we proposed a fusion of EEG 
and EMG because the purpose of the study itself was to try transfer learning. In this case, 
since the classification accuracy of EMG data is high, the classification accuracy of EEG 
data can also be improved. Recently, a primary contributing factor for poor myoelectrical 
control is variability in muscle contraction intensity. Our study tried to control this in the 
experimental design. However, the muscle contraction intensity may not have been 
completely controlled in our study, and a study in which the muscle contraction intensity 
was controlled is needed in the future. 

5. Conclusions 
In this study, we revealed that the proposed multimodal fusion method using EEG 

and EMG signals significantly improved classification accuracy of wrist and hand 
movements in transforearm amputees and healthy controls. We concluded that the 
proposed multimodal fusion method might contribute to develop a more practical 
prosthesis for patients with upper extremity amputation. 
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