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Abstract: Some artificial intelligence algorithms have gained much attention in the rotating machinery
fault diagnosis due to their robust nonlinear regression properties. In addition, existing deep learning
algorithms are usually dependent on single signal features, which would lead to the loss of some
information or incomplete use of the information in the signal. To address this problem, three kinds
of popular signal processing methods, including Fast Fourier Transform (FFT), Short-Time Fourier
Transform (STFT) and directly slicing one-dimensional data into the two-dimensional matrix, are
used to create four different datasets from raw vibration signal as the input data of four enhancement
Convolutional Neural Networks (CNN) models. Then, a fuzzy fusion strategy is used to fuse the
output of four CNN models that could analyze the importance of each classifier and explore the
interaction index between each classifier, which is different from conventional fusion strategies. To
show the performance of the proposed model, an artificial fault bearing dataset and a real-world
bearing dataset are used to test the feature extraction capability of the model. The good anti-noise
and interpretation characteristics of the proposed method are demonstrated as well.

Keywords: Convolutional Neural Network; rotating machinery; fuzzy fusion; fault diagnosis

1. Introduction

Rotating machinery is a key element in the modern industry, in particular within the
context of the fourth industrial revolution or Industry 4.0. Especially, gears and bearings
are essential components of rotating machinery and any faults in gears or bearings can
lead to machine failure, which can result in accidents, product unavailability, and financial
losses [1]. Hence, it is necessary to develop an efficient method that could identify the fault
as early as possible [2]. The traditional method is to perform signal analysis to identify
the fault type for rotating machinery, for instance, an acoustic signal, a current signal, or
vibration signal are often used for fault prognosis purposes [3]. Vibration signal analysis
is the most widely used method to identify some particular faults [4]. Nowadays, most
of the fault diagnosis methods are usually based on the vibration signals or the signals
transformed from the vibration signals based upon several popular signal processing
techniques, including fast Fourier transform (FFT), wavelet transform (WT), and short-time
Fourier transform (STFT). Expert fault diagnosis knowledge in the traditional rotating
machinery fault diagnosis is usually needed to extract effective features from the input
data [5,6].

With the development of deep learning algorithms, multiple layers are used to progres-
sively extract fault features from the input dataset [7-9]. Firstly, based on the strong feature
extraction and decision-making abilities of the deep learning algorithms, such as Convolu-
tional Neural Networks (CNN) [10,11], Recurrent Neural Networks (RNN) [12], Generative
Adversarial Networks (GAN) [13], and deep reinforcement learning [14], they have been
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increasingly used for the fault diagnosis context in recent years. For example, it has been
shown that CNN is specially suitable at dealing with 1-D, 2-D, or 3-D datasets [7,15], RNN
excels with time-series data. So RNN is a popular method for prognostic and health man-
agement [16], GAN is good to handle datasets with imbalanced samples [13] and deep
reinforcement learning could treat rotating machinery fault diagnosis problem as an end-to-
end learning process [17]. In literature, it is shown that different deep learning algorithms
can process raw vibration signals well when the signal is not complex. In addition, the
signals are more easily identified by deep learning models after they have been processed
by some signal processing methods because that could effectively reduce the difficulty of
the deep learning model to extract features from signals [18].

However, different signal processing methods would extract different features from
the raw vibration signal, which would also lead to the loss of some information in the
signal. For example, the FFT would transform the time-domain signal into the frequency-
domain signal, which would lose the time-domain information [19]. The STFT would
save the information regarding the energy distribution of the signal in time and frequency
domains, but there is a limit to the amount of time-domain information it extracts [20].
In addition, different types of deep learning models have shown different capabilities
for feature extraction in time or frequency domains. For instance, shallow learning algo-
rithms, like multi-layer perceptrons and the support vector machines are usually used to
deal with low-dimensional data due to their weak ability to extract features from high-
dimensional data [8]. Auto-encoder and RNN have a strong ability to extract efficient
features from a frequency-domain signal. CNN has a powerful feature extraction ability
from an image [2,8]. In addition, it is difficult to get the amount of fault data to train a
deep learning model which could precisely anticipate the fault type in the real world [21].
However, the CNN has many shortcomings, due to the limitation of the traditional pooling
layers and activation functions. For example, the traditional pooling layers result in the
loss of original information. The Sigmoid and other traditional activation functions have
the problem of gradient vanishing. Therefore, SoftPool and Mish activation functions are
proposed to deal with these problems [7,8].

Besides, the above-mentioned results are only based on the implementation of single
classifiers with one type of signal. The fusion of different classification models with multiple
types of signals is still rare [6]. In principle, there are three kinds of fusion strategies,
including data-level fusion, feature-level fusion, and decision-level fusion. The performance
of data-level fusion and feature-level fusion is highly dependent on the data. And, the
decision-level fusion strategy is more practical than the other two fusion strategies [22,23].
To get a higher accuracy based on the existing model and data, developing a decision-level
fusion model could improve the fault identification accuracy by combining several deep
learning models with different signals [24]. However, the advantages and disadvantages
of different deep learning models and fusion strategies are also different. For example,
on the one hand, a deep auto-encoder could rapidly extract effective features from low-
dimensional signals, but the results are more ordinary for high-dimensional signals [2,25].
CNN have strong feature extraction capability and can be used to process high-dimensional
data, but they are prone to overfitting and the risk of gradient vanishing [10,26]. On
the other hand, the conventional fusion strategies are vulnerable to poor quality of data,
and they usually fail to demonstrate the importance of each classifier and interaction
between each classifier. Fuzzy fusion is a good method that could integrate the important
information in the poor classifier, which is seldom used to fusion classifiers in the fault
diagnosis field. The above-mentioned shortcomings motivate the authors to develop the
novel model, that is proposed here [6].

In this article, to solve the aforementioned problems and improve the performance of
fault diagnosis, a highly accurate intelligence fault diagnosis framework is developed with
four different signals based on an explainable fusion framework. The results demonstrate
better performance than other existing methods. The main contributions of this paper are
highlighted as follows:
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(1) To make full use of the available data, a new intelligence fault diagnosis framework
is developed to improve the performance of fault type identification based on four kinds
of signals, including the raw vibration signal and other signals transformed from raw
vibration signal.

(2) An enhancement CNN structure is developed with Soft Pool layers and Mish
activation function, which could take advantage of the information from signals and
overcome the training problems in the conventional CNN. The results show that this
enhancement CNN structure has better feature extraction capability than the traditional
CNN with normal data and noise data.

(3) Fuzzy integral and Shapley scores are developed for classifiers fusion and anal-
ysis of the importance of each classifier at the decision-level to address the problems of
conventional fusion strategies, such as, the results of traditional fusion strategies are very
susceptible to the influence of poorly powerful classifiers and it is difficult to analyze the
interaction between classifiers based on the traditional fusion strategies.

The remainder of this paper is organized as follows. Section 2 presents the knowledge
of signal processing techniques and the basic theory of CNN. Section 3 illustrates the
structure of the proposed model in detail. In Section 4, the performance of the proposed
model is evaluated on two rotating machinery fault datasets. Finally, Section 5 concludes
this paper.

2. Background and Related Work

This section firstly describes the related knowledge, which would be used in subse-
quent parts of this article, including two popular signal processing approaches, FFT and
STFT, the brief introduction of convolutional neural networks (CNN), and two kinds of
empirical fusion strategies, including Majority Voting and Average Fusion.

2.1. Signal Processing Techniques

Signal processing techniques usually are essential tools in rotating machinery fault
diagnosis that could minimize the difficulty of identifying the fault types, not only tradi-
tional fault diagnosis but also deep learning-based fault diagnosis and data-driven fault
diagnosis. Among these approaches, FFT and STFT are currently widely used in signal
processing methods for rotating machinery fault diagnosis.

Fast Fourier transform (FFT) is a function that could transform a time-domain signal
into a frequency-domain signal. FFT is based on the discrete Fourier transform (DFT), but
the computation speed is faster than DFT due to the lower computation complexity [27].
The DFT function is defined as follows:

N-1 i2rtnk
Xp= Y xpe N ,(k=0,...,N—1) 1)
n=0

where X is the DFT of the sequence x;,.

Due to the characteristics of rotating machinery fault signals, the vibration signal
would usually be transformed into a frequency-domain signal for further analysis [28].

STFT is a time-frequency analysis method, unlike FFT, the 1-D vibration signal would
be transformed into a 2-D signal by STFT. Hence, STFT is often used to get 2-D data as the
input of 2-D convolutional layers, the first layer of CNN. The transformed signal by STFT
would display the time and frequency domain information in the signal [29]. The basic
STFT calculation equation is expressed as follows:

STFT{x(t)}(t,w) = / x(s)g(s — t)e /¥tds ()
J —00

where x(t) is the time-domain signal, t denotes the time, w denotes the frequency and
g(s —t) is a window function whose center is at time .
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Although STFT presents time and frequency domain information in the signal, the
length of the window function of the STFT formula directly affects the resolution of the time
and frequency domain information. The shorter the window function demonstrates higher
resolution time-domain information, and conversely shows higher resolution frequency
domain information. Hence, a reasonable length of window function can reduce the
difficulty of signal analysis based on different signals. For more details, the time resolution
computing equation is shown by

Ny — N,
e ()

where [-] indicates a round down function. Ny, N, Ny, are the length of the signal prepared
for processing, the length of the signal overlap during the processing of the window
function, and the length of the window function, respectively. Besides, the frequency
resolution function is given by

F_ Nw/2+1, if Ny is even @)
Tl (Nw+1)/2, if Ny is odd

2.2. General Introduction of Conventional CNN

Conventional CNN usually constitutes several convolutional layers, pooling layers,
and a fully connected layer. To avoid overfitting and speed up convergence, dropout layers
and normalization layers are introduced into the structure of CNN [26]. 1-dimensional
(1-D) and 2-dimensional (2-D) input depth feature maps can be obtained on account of the
convolution and pooling layers. The calculation equation of the /th convolutional layer is
shown as follows:

I =1 ¢l | 4l
lEMj
Kl KW W ki Kl
x5 =f Y ) Ugp * Xi%o g1 jpp1 T 17 (6)
k=1i,j=1q,p=1

where * indicates the convolution operation. [ indicates the number of the network layer, K
1
j
denotes the input of the Ith layer, M; indicates the input set

is the convolutional kernel, b is the bias, x

-1 k-1
layer, X; and X q—1,j+p—1

of features, and f(-) is the activation function used in CNN, such as Rectified linear
unit (ReLU).

The pooling layer is usually located after the convolution layer to reduce the com-
putational complexity and extract features. The popular pooling layers are max pooling
and average pooling layers [30]. The advantages and disadvantages of max pooling and
average pooling will demonstrate in the next section. The functions of max pooling and
average pooling operation are respectively demonstrated as follows:

and xf’]-l denote the output of the /th convolutional

y = maxp(x) )

y = avep(x) (8)

where maxp(-) represents max pooling operation, and avep(-) represents average
pooling operation.

2.3. Conventional Fusion Strategies

There are several kinds of traditional fusion methods, including non-trainable methods
(Majority voting, Average, etc.). Majority voting and Average methods could be directly
used to combine the individual classifier outputs, but they are vulnerable to poor results.
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Majority voting is a kind of hard voting method, while Average could be seen as a kind of
soft-voting method, in which the target label is computed by the average probability.

Majority voting is a simple fusion method, which is usually used in ensemble learning
to deal with classification problems. The key idea of Majority voting is to count the number
of the predicted classes which was the output of each classifier. If the fusion does not result
in an optimal value, one of the results will be selected randomly [31,32].

The computation process of Average fusion is to average the output values of the
softmax layer in each classifier. The performance of Average fusion is easily influenced by
the worst output values [24].

3. Framework of the Proposed Method

In this section, a CNN-based decision fusion model is proposed for rotating machinery
fault diagnosis, which consists of the following steps. Step 1: Collect vibration signals.
Step 2: Transform the raw vibration signals into Frequency domain (transformed by FFT)
and 2-D signals (directly sliced or transformed by STFT). Step 3: Build CNN models, replace
the pooling layers and activation function with soft pooling and Mish activation function.
Step 4: Train each CNN by different signals. Step 5: Design a fuzzy decision fusion strategy
to fuse all outputs of CNN models. The general architecture of the designed fusion method
is demonstrated in Figure 1, and specific details are demonstrated in the subsections below.

Raw vibration signal
( Rotating machinery \ Sensors WWWMW
>

Aircraft engines

Centrifugal compressors

J

Softmax output

IZDZI Final prediction

Fuzzy fusion

T

Frequency domain signal

b

2-D signal
S .

v

Reshaped
>

2-D signal

STFT

Figure 1. A general architecture of the designed fusion method.

3.1. Enhancement CNN Models

Although the conventional CNN is used in many fields due to its powerful perfor-
mance, much attention has been paid to improving its pooling strategy and activation
function for improving capabilities. There are some disadvantages of max pooling and
average pooling. For instance, max-pooling just utilizes the most powerful feature ele-
ments, which is unavoidable to cause the loss of valuable data in the signals used for fault
diagnosis. Average pooling loses particular attention to the contribution of feature elements
because different feature elements are always considered equally. Besides, the certainty of
the max pooling and average pooling will additionally raise the possibility of over-fitting.

Soft pooling(SoftPool) is a strategy recently introduced to address the restrictions of
max pooling and average pooling [33]. The mathematical equation of SoftPool is given

as follows:
et

w; = W )
jER
a= Z w; - a; (10)

i€R
where R is the kernel region, a; is the feature value within region R, 7 is the index in region
R, w; is the weight transformed from feature value. 7 is the output value of Soft pooling.
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SoftPool is a more balanced method than max pooling or average pooling which simply
selects the average value or maximum value. In this case, it would preserve the maximum
feature value, which would ensure that the most important feature is maintained. On the
other hand, it also does not minimize the strength of the features within the calculation
region as the average pooling does.

The activation function is a key component of the neural network structure, which
would avoid high calculation cost, overfitting, and gradient vanishing. For example,
Sigmoid and Tanh functions have these drawbacks. Although ReLU was developed to deal
with these problems, it would stop upgrading parameters when the inputs are all negative.
Hence, it is necessary to develop a better activation function to get better performance.
Here, the Mish activation function is proposed [34], which is similar to the Swish function.
Mish activation function is defined as

f(x) = xtanh(softplus(x)) (11)
where softplus(x) = x tanh(In(1 + ¢*)).

3.2. Decision-Level Fuzzy Fusion Strategy

After training the modified CNN model with different signals, to take full advantage
of the vibration signals, it is necessary to develop an explainable ensemble model. Average
value fusion and majority voting have been the most popularly adopted fusion methods for
ensemble learning models. Nevertheless, the outputs provided by submodels are always
treated equally in these two fusion strategies, which would enhance the contributions of
worse outputs and do not explain the interaction between each classifier. Based on the
benefits of the fuzzy integral [35], such as the explainable characteristics, it could explain
not only the importance of each classifier but also the interaction between classifiers. For
example, firstly, as shown in Figure 2, the red line could demonstrate the calculation order
of fuzzy integral. Secondly, the Shapley index and interaction index are used to analysis the
importance of each classifier and the interaction between classifiers, which could enhance
the explainable ability of the fusion strategy. The Shapley index is used to demonstrate the
contribution of the sources. And the interaction index could explain how well classifiers
interact with each other [36].

Hence, an improved explainable decision-level fusion strategy based on the fuzzy
measure and fuzzy integral is proposed in the sequel.

Ho

i) (i) (i) [m

Hyy His Hiy [ Hys ] [ Hoy } Hiy

Hins Hiry Hisg Hozy

Hizzg

Figure 2. Lattice visualization for four classifiers based on fuzzy measures.

Step 1: According to the accuracy of each CNN model, set fuzzy measures G. Accord-
ing to the SoftMax layer of each CNN model based on different features, set confidence
scores S. The fuzzy measure g(e) has the following monotonic property:

e; Cej = g(e;) < gl(ej) (12)
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Based on the Sugeno fuzzy-A measures, if ¢; N ej = @, there exists A > —1, such that

gleiUe)) = glei) +g(ej) +Ag(ei)g(e) (13)
With the attributes developed, A can likely be acquired from this equation.

A+1= II\—I[ (Ag(en)+1) (14)

n=1

where N is the number of values in confidence scores S, here the features in our cases are 4.
So A is obtained from this equation which is greater than —1.

Step 2: Based on the Choquet integral, it allows for all linear ensembles as well as a
wider range of combinations of empirical fusion strategies, such as average and majority
voting. The fuzzy fusion can be operated by this formula:

N
Ce(8) = Z,l Srn(g(eni) — g(eni-1)] (15)

where confidence scores S is replaced to Sy, that is
Sm12>Sm >,...,> San-1 = San (16)

and e,; is the subset of the i maximum scores in S; acquired by applying Sugeno
fuzzy-A approaches.

Step 3: Using Shapley index and Interactive index to analyze the classifier ranking
and the interaction between each classifier.

The formula of the Shapley index is given as follows:

{ Dy(i) = ch\{-} Cxa(K) (u(KU{i}) = u(K))

Ix1(K) = w

(17)

where X\ {i} means the subset X (all classifiers) does not include classifier i. The Shapley
value of y is the vector ®, = [®,(1), -+, @, (N)], where YN, ®,(i) = 1. The Shap-
ley index can be explained as the average contribution value of each classifier i among
all classifiers.

The equation of the interaction index is expressed as follows:

L) = ¥ Cxa(K)(uKU{ij}) = pu(KU{i}) = (KU {j}) +u(K))
KEX\{i,j} (K| (K| 2K (18)
Ex2(K) = =g

The structures of the CNN classifiers are shown in Figure 3. The CNNs used as
classifiers consist of the convolutional layer, batch normalization layer, and pooling layer.
The raw vibration signal and frequency-domain signal are subject to a wide kernel in the
first convolutional layer. The activation function in these four CNN is the Mish function.

And, the pooling layer is Soft Pooling.
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Figure 3. CNN structures used in the proposed method. (a) the structure based on the raw vi-
bration signal, (b) the structure based on the frequency-domain signal, (c) the structure based on
the 2-dimensional data, including the raw vibration signal directly reshaped into 2-D signal and
transformed by STFT.

4. Experiments
4.1. Datasets

There are several open-source rotating machinery fault diagnoses, such as the bearing
fault dataset of Case Western Reserve University (CWRU), the bearing fault dataset of
Society for Machinery Failure Prevention Technology (MFPT), and the bearing fault dataset
of Paderborn University (PU), etc. Due to the easy identification of samples in the CWRU
bearing datasets compared to other databases, this section focuses on the performance of
the proposed model in the MFPT bearing dataset and PU bearing dataset.

MFPT bearing dataset (Artificial fault bearing dataset) contains three main health
conditions: normal state, inner race fault state, and outer race fault state [37]. The normal
state data was gathered under 270 Ibs load, the outer race fault state data were gathered
under seven different loads, respectively, 25, 50, 100, 150, 200, 250, and 300 lbs of load, and
the inner race fault state data were also gathered under seven different loads, respectively,
0, 50, 100, 150, 200, 250, and 300 lbs of load. The same fault type would contain different
information under different loads. Hence, there are seven labels in the inner race fault state
and outer race fault state. There is a total of 15 labels in this case. In addition, to test the
performance of the proposed model, the training sample does not contain any replicated
information, and the testing samples don’t contain any information from training samples.
Here, each sample of the raw vibration signals contains 1024 points and is then transformed
into other kinds of signals, including frequency-domain signal, time-frequency domain
signal and two-dimensional signal. The data processing of the raw vibration signals is
shown in Figure 4. Visualization of the four different input signals based on the MFPT
bearing dataset is illustrated in Figure 5. In each class of the MFPT bearing dataset, there
are 120 samples to train and 30 samples to test the performance of the model.

Samplel Sample2 Samplel

Training Samples Testing Samples
« > |« >

Figure 4. The data processing of raw vibration signals.
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Figure 5. Four kinds of different input signals from the MFPT bearing dataset.

To show the performance of the proposed model in the real-world dataset, Paderborn
University (PU) bearing dataset contains 13 kinds of real damages caused by accelerated
lifetime tests [38]. Here, the details of the used fault datasets are described as follows: the
bearing rotating speed is 1500 rpm; the load is 0.7 Nm; the radial force is 1000 N. Hence,
there is a 13-class classification task in each load. The detail of the training samples is the
same as the MFPT bearing dataset, which is based on the size of the datasets. Visualization
of four different input signals based on PU bearing dataset is illustrated in Figure 6. In each
class of the PU bearing dataset, there are 200 samples to train and 50 samples to test the
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Figure 6. Four kinds of different input signals from the PU-bearing dataset.

4.2. Implementation

The input dimensions for raw vibration signals and FFT signals are 1024, 512 and the
size of input images for the slice signal and STFT signal is 32 x 32, 33 x 33 on MFPT bearing
dataset and PU bearing dataset. The sample sizes for each operation state in the MFPT
bearing dataset and PU bearing dataset were 120 and 200, respectively. The CNN classifiers
are trained with Adaptive Moment Estimation (Adam) with an initial learning rate of 0.001.
The models are trained for up to 200 epochs, with a batch size of 100, 200, respectively, in
the MFPT bearing dataset and PU bearing dataset. No form of data augmentation is used
in our method.
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In addition, the proposed model is programmed with Python 3.7.12 with Pytorch 1.9.0
(Machine learning framework) and executed on the Windows 10 operating system based
on Google Colaboratory.

4.3. Training Process Analysis

To display the advantages and disadvantages of the proposed method, it is necessary to
compare the time spent on the modified CNN model with the traditional CNN model. The
time spent on these two kinds of CNN models that were trained with MFPT bearing dataset
and PU bearing dataset was shown in Figure 7. In this case, the training epochs of models
were 200. As there is no GPU speed up the calculation, the time cost is more than 10 min.
In addition, according to the basic theory of SoftPool and Mish activation functions, as
mentioned above, the computation complexities of SoftPool and Mish activation functions
are higher than MaxPool and ReLU, so the time cost of the proposed model is two times
bigger than the traditional CNN. Even if the training time of the enhancement CNN model
is a little larger than the conventional CNN model, its training process is better than the
conventional CNN model (frequency-domain signal), which is shown in Figure 8. The
enhancement CNN model could extract more important information than the conventional
CNN model.

B RelU+MaxPool B RelU+MaxPool
2000 = Mish+SoftPool 7000 = Mish+SoftPoal

Time(s}

Time(s)

2000

raw data FFT

@) (b)

raw data

Figure 7. Training time of the modified CNN and conventional CNN. (a) MFPT bearing dataset.
(b) PU bearing dataset.

254
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204
Z a0 4
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z z
= a
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"= B g4
=
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0 0 @ & & 100 0 0 0 60 & 00
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(c) (d)

Figure 8. Training process of the modified CNN and conventional CNN. (a) MFPT training loss.
(b) MFPT validation accuracy. (c) PU training loss. (d) PU validation accuracy.
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4.4. Comparison of Fuzzy Fusion with Empirical Fusion

The choice of fuzzy measures is initialized based upon the performance of the indi-
vidual classifiers as tabulated in Table 1. In addition, as shown in Table 1, the CNN model
using Mish activation function and SoftPool would perform better than the CNN model
using ReLU activation function and MaxPool. As shown in Tables 2 and 3, the proposed
CNN model was tested with noise data, in this case, the proposed method also has a
better performance than the traditional CNN. We take the average accuracy as the initial
fuzzy measure for every modified classifier. The fuzzy measures are then experimentally
refined through a search in their neighborhood, which yields 0.05, 0.2, 0.01, 0.07 as the
choice of fuzzy measures which is the best performance for MFPT bearing dataset. To show
the performance of the fusion strategy, the PU-bearing database does not use the fusion
algorithm here with the normal data. Here, the noise data of PU bearing data (SNR = 4)
was used to test the performance of the proposed fusion method.

To test the performance of the proposed fusion method, it is compared with two
empirical fusion strategies, including average and majority vote. Table 4 shows the results
of our experiments. Fuzzy fusion could effectively utilize each classifier based on their own
performance on different datasets, which is different from the Average fusion strategy and
Majority Vote strategy. As shown in Table 4, the Average strategy and Majority Vote strategy
are easy to be affected by the worst classifier, which could even lead to worse performance.

Table 1. Performance of individual CNN classifiers on two benchmark datasets.

MFPT PU
Feature Used ReLU Mish ReLU Mish ReLU Mish ReLU Mish
MaxPool MaxPool SoftPool SoftPool MaxPool MaxPool SoftPool SoftPool
Raw vibration 84.17% 86.11% 84.44% 88.33% 90.92% 90.98% 92.18% 93.32%
FFT 94.44% 95.56% 96.11% 97.50% 96.09% 96.70% 96.69% 98.62%
Slice 71.19% 72.22% 73.22% 74.44% 92.97% 93.31% 92.34% 93.49%
STFT 86.16% 89.72% 88.56% 90.00% 95.24% 95.27% 95.49% 96.69%

Table 2. Comparison with traditional CNN on MFPT gearbox dataset with different SNR values.

SNR

Model Signal Average

2 4 8 10
ReLU Raw  68.05% 71.94% 73.33% 80.55% 81.67% 84.72%  76.71%
N FET 82.50% 85.83% 89.44% 89.44% 90.28% 91.94%  88.23%
MaxPool Slice 41.11% 48.61% 52.50% 55.83% 61.39% 65.00%  54.07%
STFT 64.44% 68.33% 69.17% 80.55% 81.11% 82.22%  74.30%
Mish Raw  74.17% 78.89% 80.27% 84.72% 85.55% 87.78%  81.89%
+ FET 85.83% 87.78% 91.11% 92.22% 93.33% 94.17%  90.74%
SoftPool Slice 50.28% 52.22% 59.44% 63.33% 64.17% 66.11%  59.26%
STFT 65.56% 76.94% 7811% 81.94% 82.78% 84.44%  78.26%
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Table 3. Comparison with traditional CNNs on PU bearing dataset with different SNR values.

SNR
2 4 6 8 10
Raw  79.49% 81.95% 85.66% 87.02% 88.08% 88.91%  85.19%

Model Signal Average

Re}U FFT  81.92% 87.38% 88.91% 92.60% 92.86% 93.12%  89.47%
MaxPool Slice  78.54% 83.41% 84.66% 89.03% 89.37% 90.82%  85.97%
STFT 81.33% 86.66% 87.34% 90.26% 91.03% 91.16%  87.96%

Mish Raw  83.01% 84.63% 86.42% 89.22% 90.43% 91.79%  87.58%
N FFT  82.48% 89.08% 92.01% 92.58% 94.34% 95.21%  90.95%
SoftPool Slice  81.23% 86.18% 88.98% 91.54% 91.34% 92.21%  88.58%

STFT 85.43% 87.31% 89.52% 90.08% 94.18% 95.79%  90.39%

Table 4. Comparison of two empirical fusion strategies with the proposed fusion strategy.

Datasets
Fusion Strategy
MFPT PU
Average 95.55% 96.04%
Majority Vote 96.67% 96.31%
Proposed Fusion 98.06% 96.62%

4.5. Classifier Ranking and Interactive

Fuzzy fusion is different from the empirical fusion strategy. It can be used to analyze
not only the contribution of individual signals in the fusion process but also the influence
of signals on each other, which is based on the Shapley index and Interactive index that
are strictly computed from the fuzzy measure. For the MFPT bearing dataset without any
noise, as shown in Figure 9a, the FFT signal plays the most important role in the fusion
process (close to 50% contribution) followed by the STFT signal. In addition, the interaction
index among four kinds of signals is shown in Figure 9b. It can be seen that there is positive
interaction between signals, and there is the largest positive interactive value between the
FFT signal and STFT signal.

For the PU bearing dataset that added some noise, which could demonstrate the
capability of the proposed model in the real-world environment, the analysis is shown
in Figure 10. As signals of non-artificial faults in the PU bearing dataset are used here,
there is a small difference in the performance of the CNN for the four signals. As shown
in Figure 10a, based on the Shapley scores, the importance of each classifier could be
easily described. The importance of each classifier is similar to the fuzzy measures of each
classifier. The classifier based on frequency-domain signals is the most important followed
by the classifiers (close to 30% contribution) which the input signals are raw vibration
signals or time-frequency domain signals. As shown in Figure 10b, although the classifier
based on the Slice signals plays a weaker role in the fusion process than other classifiers,
this classifier has a large positive interaction value with the classifier based on raw-data
signal and STFT signal, respectively, which are different from MFPT bearing dataset.

In addition, based on the Shapley scores and interactive index, each classifier could
make a positive influence on the fusion process in this fault diagnosis problem, unlike
the Average Fusion and Majority Vote, which could be influenced by the poor classifier.
However, there is a drawback in fuzzy fusion, which is the performance of fuzzy fusion is
dependent on the selection of the fuzzy measure. Hence, fuzzy fusion is also a trainable
fusion strategy that could be conveniently used to fusion other information sources.
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Figure 9. The explainable features of fuzzy fusion with MFPT bearing fault dataset. (a) The
contributions of each signal in fuzzy fusion. (b) The interaction index among signals.
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Figure 10. The explainable features of fuzzy fusion with PU bearing fault dataset. (a) The contribu-
tions of each signal in fuzzy fusion. (b) The interaction index among signals.
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4.6. Comparison with State-of-the-Art

MEFPT: Table 5 shows a comparison with previous methods. Many deep learning
methods based on MFPT bearing datasets usually considered three health states, which
would simplify the identification task of these models. These models usually have the best
performance to the FFT signal than other kinds of signals, except for the CNN used in [2].
The structures of the models(BiLSTM, LeNet, AlexNet, and ResNet18) are described in [2].
The structure of a novel CNN is shown in [39]. In addition, shallow machine learning
methods (SVM and MLP) are also used to compare the performance with the proposed
model [39,40]. The proposed method outperforms the ResNet18, even if only the FFT signal
is used. The performance of the proposed framework based on four classifiers is around
3% improvement compared to the classifier with one type of signal.

Table 5. Comparison with existing approaches on MFPT bearing dataset.

Method Year Feature Accuracy (%)
BiLSTM [2] 2020 FFT 94.76
LeNet [2] 2020 FFT 94.76
AlexNet [2] 2020 FFT 93.4
ResNet18 [2] 2020 FFT 95.92
SVM [41] 2021 CWT 91.2
MLP [39] 2020 Scalogram 94.00
SVM [39] 2020 Scalogram 92.7
CNN [39] 2020 S-Transform 95.59
CNN [40] 2021 raw-data 79.63
Proposed - Integration 98.06

PU bearing dataset: Table 6 shows a comparison with previous methods based on
PU bearing dataset. The proposed method outperforms several kinds of existing state-
of-art deep learning models, including BiLSTM, SAE, LeNet, AlexNet [2], which the data
processing methods are the same as this paper. The structure of the novel CNN, Direct
Training Net(DTN), and Feature Transfer Net(FTN) are shown in [40,42,43], respectively.
The structures of the models (BiLSTM, SAE, LeNet, AlexNet, and Resnet18) are described
in [2]. The performance of the proposed CNN model based on the frequency domain is the
same as ResNet18, which has the powerful ability to deal with classification problems. And,
the proposed fusion method could effectively improve the performance of the modified
CNN model with noise datasets, which could increase the confidence of the model in
predicting complex signals.

Table 6. Comparison with existing approaches on PU bearing dataset.

Method Year Feature Accuracy (%)
BiLSTM [2] 2020 FFT 94.29
SAE [2] 2020 FFT 92.86
CNN [42] 2019 raw-data 95.57
CNN [40] 2021 raw-data 99
DTN [43] 2021 raw-data 95.26
FTN [43] 2021 raw-data 97.79
LeNet [2] 2020 FFT 96.13
AlexNet [2] 2020 FFT 95.57
ResNet18 [2] 2020 FFT 99.48

Proposed - Integration 99.62
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5. Conclusions

With the development of the modern industry, the consequences of mechanical break-
downs are becoming increasingly unacceptable. Therefore, it is necessary to develop a
highly accurate model for fault diagnosis. However, the accuracy of a model for fault iden-
tification depends on how many effective identification features can be extracted. Hence, to
make full use of the information of the existing signals, this study developed a novel fuzzy
fusion method for rotating machinery fault diagnosis. In this method, firstly, SoftPool and
Mish activation functions were introduced into traditional convolutional neural networks
to enhance the feature extraction ability of CNNSs. Secondly, raw vibration signals were
transformed into three kinds of signals which were used to train a series of CNNs to
supply the outcomes. Thirdly, an explainable fuzzy fusion strategy was introduced into
rotating machinery fault diagnosis to improve diagnostic performance and the Shapley
index was used to explain the classifier contributions and their interactions index among
these classifiers.

As the results demonstrate, the modified CNN had a better performance than con-
ventional CNN even in the noise environment, although they needed more time than the
conventional CNN. However, the proposed model could have a more explainable property
than empirical fusion strategies, it would provide better performance than a single signal
or single model, which could provide more precise and confident diagnosis outcomes. In
the future, we will focus on the explainability of the CNN, and examine which features are
learned by deep learning concepts.
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