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Abstract: Unmanned aerial vehicles are prone to several cyber-attacks, including Global Positioning
System spoofing. Several techniques have been proposed for detecting such attacks. However, the
recurrence and frequent Global Positioning System spoofing incidents show a need for effective
security solutions to protect unmanned aerial vehicles. In this paper, we propose two dynamic
selection techniques, Metric Optimized Dynamic selector and Weighted Metric Optimized Dynamic
selector, which identify the most effective classifier for the detection of such attacks. We develop a one-
stage ensemble feature selection method to identify and discard the correlated and low importance
features from the dataset. We implement the proposed techniques using ten machine-learning models
and compare their performance in terms of four evaluation metrics: accuracy, probability of detection,
probability of false alarm, probability of misdetection, and processing time. The proposed techniques
dynamically choose the classifier with the best results for detecting attacks. The results indicate
that the proposed dynamic techniques outperform the existing ensemble models with an accuracy
of 99.6%, a probability of detection of 98.9%, a probability of false alarm of 1.56%, a probability of
misdetection of 1.09%, and a processing time of 1.24 s.

Keywords: unmanned aerial vehicles; global positioning system; GPS spoofing attacks; detection
techniques; machine learning; dynamic selection; hyperparameter tuning

1. Introduction

The use of unmanned aerial vehicles (UAVs) in military and civilian applications
has exponentially increased over the last decade. Military applications include inspection
and patrol, surveillance, reconnaissance, area mapping, and strike and rescue missions.
Civilian applications include multimedia shooting, agricultural monitoring, meteorologi-
cal monitoring, disaster detection, traffic control, cargo transportation, delivery services,
and emergency rescue. Middle and long-distance applications rely heavily on Global
Positioning Systems (GPSs) for navigation and precise positioning tasks [1].

Huge technical advances in the design, control, and automation have been made over
the last two decades; however, the security aspect of UAVs has been largely overlooked [2].
UAVs can be subject to several cyber-attacks, such as GPS spoofing and jamming, which can
impact the safety of civilians and airspace. Several UAV security incidents were reported
during warfare and conflicts in Iran, Ukraine, and Iraq. During these attacks, malicious
users transmitted fake GPS signals with incorrect positional and timing data that could be
easily detected, resulting in erroneous navigation. These signals are similar to those from
by satellites and are indistinguishable from authentic GPS signals.

A number of techniques have been proposed to detect GPS spoofing attacks. These
methods can be classified into three categories [3]: cryptography-based, signal processing
methods, and external UAV characteristics. Cryptography techniques encrypt the GPS
signals, which require a key to decrypt [4]. Techniques under the second category extract
spatial and geometrical characteristics, or physical layer characteristics, such as angle-of-
arrival, signal strength, signal phase, and discontinuities from legitime GPS signals. The
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third category is based on external UAV characteristics, such as speed and acceleration, that
that can be measured by the sensors of the UAV flight control system, such as barometer,
inertial measurement unit (IMU), and compass.

These GPS spoofing detection methods have some drawbacks that limit their ap-
plication. For instance, cryptographic methods are not practical for civil applications as they
require encryption/decryption keys (GPS signals have to be unencrypted for these applica-
tions). Methods based on signal processing or external characteristics of UAVs may require
additional hardware (sensors or antenna) or auxiliary equipment, apply changes to the
interface specifications, or need extensive signal processing capabilities, which adversely
affect real-time system performance or require additional communication overhead.

Inertial navigation systems (INS) techniques require continuous inertial sensor cali-
bration as the error in position estimates and their covariance continuously grow without
bounds. For the detection of GPS spoofing attacks, these techniques can be only used
when the quality of sensors with respect of size and cost is high. Therefore, using such
detection techniques for small drones is not possible [5]. In addition, using sensors, such as
gyroscope and accelerator, also involves some limitations in detecting GPS spoofing attacks.
For example, the accelerator can only measure changes in the velocity [6]. Furthermore,
this sensor cannot measure the rotation around its own axis of movement. Therefore, it
has to be used with a gyroscope to measure angular velocities. The accelerator is also
sensitive to temperature, which makes it difficult for it to perform properly in different
environmental situations of UAVs. Moreover, Gyroscope is a sensor that does not measure
linear motion in any direction or any static angle of orientation [7]. Therefore, as these two
sensors are the two main components of INS and IMU-based techniques, and based on
their drawbacks, they cannot be used in detecting GPS spoofing attacks on UAVs [8].

Several studies based on traditional machine learning (ML) techniques have been
proposed to classify and detect GPS spoofing attacks on UAVs. Examples of such techniques
include artificial neural networks [2] and tree models [9]. Such models provide effective
solutions for detecting these in the detection of GPS spoofing. Such models provide
effective solutions in the detection of GPS spoofing [10].

Ensemble learning techniques are considered as one of the main developments in
machine learning in the past decade as they perform better than traditional machine
learning methods [11]. Examples of ensemble models that have been proposed for detecting
cyber-attacks are bagging, boosting, and stacking [12]. The stacking classifiers apply
meta-learning algorithms to select the best combinations of the base machine learning
algorithms. The bagging methods use a combination of repetitive techniques to generate
several sets from the original data and evaluate the performance simultaneously. In
Boosting algorithms, the weight of observation is adjusted based on the last classification.
Therefore, these three ensemble techniques can provide a better performance than a single
conventional machine learning (ML) model. However, these models deal with some
limitations, such as the difficulty of interpreting outputs and low or high rates of bias,
which may lead to under or over-fitting issues.

Therefore, a holistic solution that can easily interpret and perform better than any
single conventional ML model in detecting GPS spoofing attacks is known as multiple
classifier systems (MCS). In this technique, a pool of classifiers is competing to provide the
best prediction for a data sample, and the final result belongs to the most efficient base
classifier. One example of MCS approach is the dynamic classifier selection (DCS) [13],
which focuses on learning methods that automatically choose a subset of techniques in the
prediction process. DCS focuses on fitting several ML classifiers on a training dataset and
choosing the model that provides the best result in the prediction process based on specific
proposed factors.

In this work, we propose two dynamic-based selection methods that detect GPS
spoofing attacks on UAVs: Metric-Optimized Dynamic (MOD) selection and Weighted-
Metric-Optimized Dynamic (WMOD) selection. We implement ten well-known supervised
machine learning classifiers in both the proposed methods. These models are Support
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Vector Machine, Naive Bayes, Decision Tree, K Nearest Neighbor, Linear Discriminative
Analysis, Random Forest, Artificial Neural Network, Logistic Regression, Elastic Net, and
AdaBoost. The two proposed classifier selection methods are trained and tested using
a dataset with 13 GPS signals features built from real-time experiments and MATLAB
attack simulations. The evaluation is conducted in terms of probability of detection (Pd),
probability of false alarm (Pf a), probability of misdetection (Pmd), accuracy( ACC), and
processing time.

The contributions of this paper are:

• A one-stage ensemble feature selection technique to identify correlated and low
importance features simultaneously.

• Two dynamic-based selection methods, MOD and WMOD, for efficient detection of
spoofing signals.

• Performance comparison of the MOD and WMOD dynamic methods with bagging,
boosting, and stacking-based ensemble models for validating the proposed techniques.

The remainder of this paper is organized as follows: Section 2 reviews the related
works, while Section 3 illustrates the proposed architecture. Section 4 describes the materi-
als applied in this work and highlights the methodology of the study. Section 5 discusses
the simulation results. A conclusion is presented in Section 6.

2. Related Work

Several studies have been performed on GPS spoofing detection and mitigation
methods. For instance, the authors of [7] proposed a GPS spoofing detection method
that depends on the acceleration error calculated by estimating the acceleration from the
GPS receiver and the acceleration measured from the IMU. In [9], the authors used IMU
measurements (angle, velocity, and acceleration) and GPS data (longitude and latitude)
in a two-step method that applies the XGBoost model and a Genetic Algorithm, to detect
GPS-spoofing attacks. XGBoost was applied to learn the relationship between the IMU
and GPS data, while the Genetic Algorithm was applied to tune the training parameters.
An approach based on an artificial neural network was proposed in [2] to detect GPS
spoofing signals. Several features, such as pseudo-range, doppler shift, and signal-to-noise
ratio (SNR), were used to perform the GPS signal classification. Different neural network
configurations were analyzed and tested. The proposed method revealed an acceptable
efficiency in terms of probability of detection and probability of false alarm.

In [14], the authors proposed an anti-spoofing model that used linear regression to
predict and model the optimal UAV route to its destination and used Long Short-Term
Memory in the trajectory prediction. The model provides more than one detection scheme
for GPS spoofing signals to improve UAV flight security and sensitivity to deception signal
detection. Simulation experiments have determined that this method could enhance the
ability to resist GPS spoofing without increasing hardware costs. Another GPS spoofing
detection method was proposed in [15], based on the vision sensor combined with a UAV’s
sensors, monocular camera, and IMU. This method used vision sensors combined with
IMU data to detect GPS spoofing. Another vision-based UAV spoofing detection method
that utilized Visual Odometry was presented in [16], which uses the UAV camera since fake
GPS signals would not alter its images. The UAV relative trajectory can be extracted from
images using Visual Odometry. This extracted trajectory is compared with flight trajectory
information obtained from GPS positions, to detect the spoofed signals.

In [17], the authors proposed a GPS spoofing-detection framework that needs minimal
prior configuration and applies information fusion. The real-time detection scheme derives
the current UAV location from IMU and compares it to the location information received
by the GPS receiver to determine if the UAV system was experiencing a GPS spoofing
attack. In [18], the authors proposed a new algorithm to handle GPS spoofing attacks
that caused unknown sudden system state variable changes. The compensation of the
GPS spoofing effect was manipulated using a prediction discrepancy based on a particle
filter algorithm. The proposed algorithm decreases the effects of GPS spoofing errors and
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estimates the true position of the UAV in the presence of GPS spoofing attacks. In [19], the
authors proposed a spoofing detection and classification algorithm based on Least Absolute
Shrinkage and Selection Operator. They used some signal processing techniques to observe
the decomposition of two code-phase values for authentic and spoofed signals using a
certain threshold to mitigate false alarms. The proposed method achieves a promising
detection error rate for a spoofer attack in nominal signal-to-noise ratio conditions.

In [20], the authors proposed a methodology that consists of several ML models with
a set of values for K-folds where voting techniques are integrated to choose the learning
model that achieves the highest accuracy. In [21], a hardware-based solution was proposed
to detect GPS spoofing attacks. The authors demonstrated a simple method to detect
hijacking based on gyroscopes measurements and GPS data. A switching mode resilient
detection and estimation framework for GPS spoofing attacks has been studied in [22]. The
authors tried to address the sensor drift issue by keeping the estimation errors to remain in
a tolerable region with high probability.

Machine learning methods do not require additional hardware, which may be attrac-
tive for small civilian UAVs. For instance, in [23], the authors proposed an approach to
detect UAV GPS spoofing attacks based on the analysis of state estimation using Support
Vector Machine. The proposed method detects GPS spoofing attacks to some extent; how-
ever, the system experienced performance degradation during long attacks due to the
interaction with the GPS sensor, especially with the Micro-Electro-Mechanical Systems
sensors. In [24], a GPS spoofing detection method was proposed that leverages the up-
link received signal strength measurements collected from base stations to identify the
adaptive trustable residence area, which represents the trust region within which the UAV
GPS position should be located to be classified as authentic or non-spoofed. In [3], the
authors proposed a method for GPS spoofing attack detection based on a machine learning
algorithm, Long Short-Term Memory, and compared the results to a method based on
specifically designed UAV flight paths. This method can detect attacks well when the flight
trajectory is not complicated. Table 1 provides a summary of existing studies in literature
with their advantages and limitations.

Table 1. Existing Literature on Detecting GPS Spoofing on UAVs.

Category Approach Advantages Limitations

External UAV
characteristics

Acceleration error [7]

• Uses magnitude
acceleration error to
provide better
performance

• Depends on
accelerator error.
• Pre-defined
probability of false
alarm.

IMU-based [9]

• Provides a detection
rate of 96.3% and 100%
in hijacked and
non-hijacked cases.

• Only detects attacks
with similar
behaviors during
training.

IMU-based [25]

• In best cases,
detection rate of
98.6%,within 8 s when
the system is under
attack.
• Provides a precision
of 97%, a recall of 97%,
and F1-score of 97%.

• In worse cases, the
detection of GPS
spoofing attacks can
table over 28 s after
the UAV started its
mission.
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Table 1. Cont.

Category Approach Advantages Limitations

Gyroscopes
measurement- based

[21]

• Easy to be
implemented in any
drone.

• Needs motion
sensors (gyro-scopes
and accelerators for
detection. These are
power hungry.

Artificial
Intelligence Method

Artificial Neural
Network-based [2]

• Provides an accuracy
of 98.3%, a probability
of detection of 99.2%, a
probability of
misdetection of 2.6%,
and probability of false
alarm of 0.8%.

• Uses a dataset with
only 5 features and
very limited samples.

Linear
regression-based and

long short term
memory [14]

• Works effectively in a
case of UAV flying
along the specified rout

• Lack of
optimization methods
from the perspective
of UAV sensor
integrated navigation
and UAV attitude
control.

Prediction-
discrepancy
based [18]

• Reduces the effects of
GPS spoofing errors
and estimates the true
position of the UAV in
the presence of GPS
spoofing attacks.

• Evaluated only
based on accuracy
and redundancy.

Least Absolute
Shrinkage and

Selection
Operator [19]

• Provides a 0.3%
detection error rate for
a spoofing attack in
nominal signal-to-noise
ratio conditions and an
authentic-over-spoofer
power of 3 dB.

• Uses a public old
dataset, namely, Texas
spoofing test battery
as benchmark,
• Lack of using
common evaluation
metrics, such as the
probability of
misdetection.

K-learning based [20]

• Provides an accuracy
of 99%, a precision of
98%, a recall of 99%,
and F-score of 98%.

• Uses only Shimmer
and Jitter as features
in the dataset.

Resilient State
Estimation [22]

• Addresses the sensor
drift problem.

• Evaluated only
based on estimated
error, and statistics of
attacks.

Support Vector
machine [23]

• Improves the
performance in case of
using magnetometer
sensors.

• Performance
degradation during
long attacks.

5G-assisted position
monitoring [24]

• A detection rate of
95%, and F1-score of
88%.

• Lacks of several
evaluation metrics.
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Table 1. Cont.

Category Approach Advantages Limitations

Long-Short Term
Memory [3]

• A comprehensive
comparison with
encryption-based
detection techniques in
terms of detection rate
and time cost.

• Detection rate of
78% and a time cost
of 3s.
• Detection rate is
high when the flight
trajectory is not
complicated.

Signal Processing

Vision-based [15]

• Detects spoofing
attacks with an average
of 5s based on several
parameters.

• Only applied when
the attacker is visible.

Vision-based [16]

• Detects spoofing in
the long-range UAV
flights when the
changes in UAV flight
direction is larger than
3°and in the
incremental UAV
spoofing with the
redirection rate of 1°.

• Only applied when
the attacker is visible.

Although many spoofing detection techniques have been proposed in the literature,
spoofers are continually evolving to produce new GPS spoofing attacks that are hard to
detect, which increases the necessity to develop new mechanisms to prevent this kind of
attack. Ensemble learning techniques can be a practical solution to address the limitations
of the existing methods. In literature, there are no studies to investigate the performance of
such approaches in detecting GPS spoofing attacks targeting UAVs; however, ensemble
approaches, namely, bagging, boosting, and stacking, have been frequently utilized in
detecting cyber-attacks in wireless communication systems. For instance, in [26], the
authors proposed a stacked-based ensemble model to classify and detect attacks on wireless
networks. The proposed approach consists of several base learning methods, namely,
Support Vector Machine, Decision Tree, Random Forest, and Artificial Neural Network. The
stacking approach outperforms the base learners. In [27], the authors compared different
ensemble models, namely, bagging, boosting, and stacking, for predicting received signal
power on UAVs. Their results demonstrate that the stacking model, including Support
Vector Machine, Artificial Neural Network, and Gaussian Process, outperformed other
base classifiers.

Dynamic classifier selection methods have been recently proposed as ensemble ap-
proaches that select the best performance ML model among all base models. To the best of
our knowledge, no studies proposed such a technique for classifying and detecting GPS
spoofing attacks on UAVs. Therefore, to fill the existing gap, two dynamic-based selection
methods are proposed that use ten machine learning models. These methods select the
ML method that provides best results to detect the presence or absence of an attack. To
validate our proposed techniques and demonstrate that they provide optimal results, we
compared our proposed methods with the three most known ensemble models, namely,
bagging, boosting, and stacking, with our proposed techniques.

3. Proposed Architecture

The proposed system architecture is shown in Figure 1. This system consists of three
phases: dataset building, data pre-processing and feature selection, and training and
classification. For the dataset building, real-time experiments were conducted to collect real
GPS signals, while attacks were generated through simulations. Features were identified
and extracted from the real GPS signals, and the attack simulated signals [10]. The features
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for all samples are included in a dataset to be pre-processed. The second phase is the
data pre-processing and feature selection, which focuses on missing value imputation,
categorical data encoding, feature scaling, identifying correlated features, and discarding
low importance features. In this study, we use feature scaling and transfer categorical
feature values to numerical values to avoid any bias in the corresponding dataset.

Two feature selection techniques are applied: Spearman Correlation and Information
Gain. The ensemble feature selection can simultaneously identify the correlated and low
importance features and discard them from the corresponding dataset [28]. The primary
aim of using ensemble feature selection is to decrease the dimensionality of the dataset
and identify the most important features [29] that can enhance the performance of the
proposed model.

For the training, testing, and classification phases, we implement ten traditional ML
techniques: Support Vector Machine, Naive Bayes, Decision Tree, K Nearest Neighbor,
Linear Discriminative Analysis, Random Forest, Artificial Neural Network, Logistic Regres-
sion, Elastic Net, and AdaBoost. To get the optimal results of each model, a hyperparameter
tuning technique, Bayesian optimization, is used.

Two dynamic methods are implemented for detecting GPS spoofing attacks targeting
UAVs. The proposed methods dynamically choose the classifier that achieves the best
results for the considered performance metrics. Incoming signals are classified as authentic
or spoofed in the prediction phase, and their probabilities is evaluated.

Figure 1. Overview of the Proposed Architecture.
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4. Methodology

In the following, we discuss the dataset, data pre-processing, feature selection, de-
scription of the proposed models, and hyperparameter tuning that are used in this study,
as follows:

4.1. Dataset

In this study, the used dataset was built in the work described was implemented
in [10] . Real-time experiments and simulations were conducted to collect a dataset of
authentic and spoofed signals at different dates in several locations. The hardware used
in the implementation consisted of a universal software radio peripheral (USRP), a front-
end active GPS antenna, and an I5-4300U laptop with 8 G RAM running with Ubuntu
16.04.7 LTS version. GPS attacks were simulated using MATLAB by considering three
types of spoofing attacks with different complexity levels: simplistic, intermediate, and
sophisticated. Each of these attacks impacts specific features of the GPS signals, such as
Doppler Shift Measurement, Receiver Time, and Pseudo Range. In simplistic spoofing
attacks, a fake GPS signals, which was unsynchronized with the authentic signals, was
generated. In this case, higher Doppler Shift measurements were out of the normal range
of ±20 Hz, leading to a signal drift. In this type of attacs, GPS spoofing signals are also
transmitted at a higher power level, compared to that of authentic GPS signals, resulting in
a higher Signal-to-Noise Ratio value.

In intermediate spoofing attacks, the attacker has a knowledge of UAV position. The
intermediate attacker is able to control of the generated GPS signals. In this type of attack,
the Doppler Shift Measurements and Pseudo Range values are kept within the normal
ranges. In sophisticated attacks, the spoofer gains control over several channels of multiple
synchronized antennas. This type of attack is the most threatening spoofing attack, due to
the effect of multipath signals and the motion of the satellites and receiver.

Thirteen features were extracted from various receiver stages, starting from the track-
ing loop to the observable block. The extracted features from the received GPS signals with
their short descriptions are listed in Table 2 . The corresponding dataset is balanced and
contains 10,055 samples, of which 5028 are authentic signals and the remaining are equally
divided between the three types of GPS spoofing attack signals. A sample of dataset is
presented in Figure 2.

Figure 2. Sample of Dataset.

4.2. Data Pre-Processing

The dataset was previously pre-processed by identifying and removing any null,
unknown, and noisy values during the missing value identification step [30]. The next step
is to encode any categorical values to numerical values. There are only two categorical data
values in our dataset, which represent the signals as attack or normal. For this purpose,
we encode normal signals as 0 and spoofed signals as 1. Afterward, feature scaling is
performed by applying normalization and standardization methods. Normalization can
re-scale the values into ranges between 0 and 1. In this study, we use the power transformer
technique based on the Yeo-Johnson transformer. Unlike other techniques, this method can
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handle positive, negative, and zero data values. We also applied a simple standardization
technique, which re-scaled the values to a mean of 0 and a standard deviation of 1.

Table 2. List of Features.

Feature Abbreviation Description

Satellite Vehicle Number PRN Identifying uniquely each satellite in or-
bit.

Doppler Shift Measurement DO

Difference in the frequency of a GPS re-
ceiver moving relatively to its source.
Difference in the frequency of a GPS re-
ceiver moving relatively to its source.

Pseudo Range PD Difference between the transmission and
the reception time.

Receiver Time RX Time of transmission of the navigation
messages.

Decoded Time Information TOW Information regarding the reception
time of a subframe.

Carrier Phase Shift CP
Beat frequency difference between the
received carrier and a receiver-generated
carrier replica.

Prompt Correlator PC
Happens when the replica signal gener-
ated from the receiver is compatible with
the incoming signals.

Late Correlator Output LC Occurrs at the 1/2 chip spacing after the
prompt correlator.

Early Correlator Output EC Happens at the 1/2 chip spacing before
the prompt correlator.

Prompt In-phase Prompt PIP In-phase component of the Prompt cor-
relator amplitude.

Prompt Quadrature Prompt PQP Quadrature component of the prompt
correlator amplitude.

Carrier Loop Doppler Measurements TCD Doppler shift that is measured during
the correlation stage.

Signal to Noise Ratio CN0
Doppler shift that is measured during
the correlation stage. Ratio of the power
signal to noise.

4.3. Feature Selection

Ensemble feature selection techniques are widely used to enhance the robustness of
feature selection techniques. These techniques are classified into two categories, namely,
homogeneous and heterogeneous. In homogeneous ensemble feature selection, the same
method is used with different sizes of training data, while heterogeneous ensemble fea-
ture selection mostly focuses on different feature selection methods with similar training
datasets. This study employs a heterogeneous ensemble feature selection technique using
two traditional feature selection techniques, namely, Spearman’s Correlation and Infor-
mation Gain. The goal of selecting these two feature-selection techniques is to remove
correlated and unimportant features from the given dataset.
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Spearman Correlation [31] primarily calculates the association and direction between
each two features by calculating the score τ given by:

τ = 1 −
6

n
∑

i=1
(di)

2

n(n2 − 1)
(1)

where di is the difference between the two ranks of each observation, i is the index of the
observation, and n is the number of observations. A feature is correlated if it attains a coef-
ficient over 0.9. We consequently removed a feature from each pair of correlated features.

We also used the information-gain feature-selection technique, called mutual infor-
mation [32], for feature importance to estimate the gain of each variable in terms of the
target variable. The information gain, also known as entropy, is calculated for every feature;
features with high entropy are selected as important features, and those with low entropy
values are considered of low importance. Any feature that achieves an entropy less than
0.1 is discarded from the dataset in this work.

4.4. Hyperparameter Tuning

Several types of tuning techniques have been proposed in the literature; however,
Bayesian optimization has emerged as an effective approach, outperforming other tech-
niques such as random search and grid search since grid search suffers from the curse
of dimensionality and random search is not suitable for training complex models [33–35].
Bayesian optimization can provide a practical solution to optimize functions using a com-
putationally cheap surrogate model [36]. This approach can offer robust solutions for
optimizing the black-box functions, applying a non-parametric Gaussian process to sim-
ulate unknown functions. A surrogate utility function, also known as the acquisition
function, is another main component of Bayesian optimization, which is defined as a way
to improve the optimality of the underlying function [37]. In this study, considering the
benefits of Bayesian Optimization and shortcomings of other techniques, we employ this
technique for optimization tuning.

4.5. Description of the Proposed Methods

Dynamic classifier selection techniques consist of a pool of homogenous or hetero-
geneous base classifiers. Homogenous classifiers are defined as using a set of classifiers
that are of the same type built upon various data. In contrast, heterogeneous classifiers are
designed using a group of classifiers belonging to various types built upon same data. In
this work, we employed a set of heterogeneous base classifiers: Support Vector Machine
(SVM), Naive Bayes (NB), Decision Tree (DT), K Nearest Neighbor (KNN), Linear Discrimi-
native Analysis (LDA), Random Forest (RF), Artificial Neural Network (ANN), Logistic
Regression (LR), Elastic Net (EN), and AdaBoost. The primary reason behind selecting
heterogeneous classifiers is to increase the final model diversity without changing any
model parameters [38].

We propose two dynamic selection methods for detecting GPS spoofing attacks on
UAVs: MOD and WMOD classifiers, as shown in Figure 3. These methods focus on
evaluating the ML models in terms of the probability of detection Pd, probability of false
alarm Pf a, probability of misdetection Pmd, and accuracy ACC. Figure 3a depicts the M
base models and K performance metrics, i represents the base model index, and j represents
the performance metric index. We initially calculate the performance metrics (Ki,j) for
every base model Mi to find the optimal results; then,we determine the count (Ki,j) where
Mi achieves the best results for every base model Mi. As a model achieves higher Pdand
ACC values and lower Pf a and Pmd values, the model is considered better at detecting
GPS spoofing attacks; therefore, the model with higher Pd and ACC, and lower Pmd and
Pf a, will be selected for the final incoming GPS spoofing signal detection. This concept is
implemented in the proposed MOD classifier approach since the algorithm will identify
the model with the highest number of best metrics, using Max(Ki,j) for final detection.
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MOD classifier is simpler to implement compared to other approaches, does not need
extensive processing, does not require additional hardware, and has low time complexity.
This classifier heavily depends on the selected base algorithm, which achieves the best
metrics. As a result, no additional cost of processing or computational complexity was
added to the overall algorithm. However, if two base models achieve the same number of
best metrics , the MOD classifier will select one of the two classifiers trivially as the best
model, in some cases when two base models achieve the same number of best metrics.
To address this issue, we propose another approach: WMOD classifier. WMOD classifier,
shown in Figure 3b, assigns a weight, w, for each performance metric to calculate a score
using sum (wi,j) for each base model. In this model, a weight is assigned to each of
the selected metrics based on their importance. We consider the importance of accuracy
higher than the importance of Pd, Pf a, and Pmd. Therefore, we assign a weight of 0.4 for
accuracy, while other metrics, such as Pd, Pf a, and Pmd, have each a weight of 0.2. We have
to determine the count (Ki,j) for every model Mi, where Mi obtains the highest weights
according to the defined weights. The model that achieves the best score is used for the
final detection of any incoming signal.

Figure 3. Flowcharts of the Proposed Dynamic Selection Methods.

5. Results

We ran our simulation on intel core i7-10750H, CPU of 2.60 GHz, and 16.0 GB memory.
We used four evaluation metrics to assess the proposed model’s efficiency: the probability of
detection (Pd), probability of false alarm (Pf a), probability of misdetection (Pmd), accuracy
(ACC), and processing time. These metrics were calculated using the following equations:

Pd =
TP

TP + FN
(2)

Pf a =
FP

TF + FN
(3)

Pmd =
FN

TN + FP
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)
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where TP is the number of corrected predicted malicious flows, TN is the number of
predicted normal flows, FP is the number of incorrectly predicted malicious flows, and
FN is the number of incorrectly predicted normal flows.The processing time is defined
as a time to train and test the classifiers. This metric highly depends on the ML model
and dataset size. A three-fold cross-validation technique was applied to train 80% of the
data and test 20% of the remaining dataset. The simulation analysis for the proposed
dynamic methods was compared with the ten base selected classifiers in terms of the
selected evaluation metrics.

Figure 4a,b show the results of the ensemble feature selection techniques, Spearman’s
Correlation and Information Gain, respectively. We discarded one feature of each pair of
correlated features with a mutual coefficient > 0.9 as well as features of low importance
with scores < 0.1 from the corresponding dataset. As one can see in Figure 4a, two pairs
of features have a high correlation; the first pair, DO and TCD, has a correlation of 95%,
and the second pair, TOW and RX, has a correlation of 94%. In addition, DO has a higher
importance than TCD, and TOW has a higher importance than RX. Therefore, TCD and RX
were discarded from the dataset. The remaining features are the relevant features selected
to classify GPS signals.

Figure 4. Importance of Features based on Ensemble Feature Selection: Spearman’s Correlation
Coefficient and Information Gain.

Table 3 provides the parameter setting and best parameter results obtained after ap-
plying the Bayesian Optimization algorithm. As can be seen, we specify several parameter
settings with multiple values to check the optimality of every ML model. The parame-
ter setting for every ML model is selected based on the provided values in Scikit-learn.
Scikit-learn tool is a simple and efficient library that provides the suitable implementation
for training, testing , and validating ML models, along with parameter settings for every
ML model. The lists of setting parameters are provided in the table. These values are
applied to achieve the best performance for each of the individual models. For instance, the
activation function in the NN model is set to identity, logistic, tanh, or relu, and our selected
tuning technique identifies Tanh as the activation function that guarantees the highest
performance for the NN model. The NN model also has other parameters, including solver
and alpha, that are required to be provided by tuning technique to achieve optimal results.
In addition, the NB model consists of a parameter, namely, var_smoothing. This parameter
is set to several values, provided in Scikit-learn tool. The Bayesian optimization technique
identifies 1 × 10−3 as a hyperparameter, among other values, that ensures the best possible
performance for the NB model. The same observations can be seen for the other selected
models. To this end, these best parameters are used in training the selected models to
ensure the optimality of the results.
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Table 3. Parameter Setting Results.

Model Parameter Setting Best Parameters

SVM C = [0.1, 1, 10, 100], C = 10,
degree = [1, 2, 3, 4, 5], degree = 5,
gamma = [1, 0.1, 0.01, 0.001, 0.0001]. gamma = 0.1.

NB var_smoothing = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15]. var_smoothing = 1e-3.

DT Criterion = [‘gini’, ‘entropy’], criterion = ‘entropy’,
Splitter = [‘best’, ‘random’], splitter = ‘best’,
max_features = [‘auto’, ‘sqrt’, ‘log2’], max_features = ‘auto’,
max_depth = range (1, 32). max_depth = 26.0.

RF n_estimators = [10, 100, 1000, 10,000], n_estimators = 1000,
max_depth = range (10, 200), max depth = 110,
min_samples_split = range (2, 10). min_samples_split = 2.

KNN n_neighbors = range (1, 20), n_neighbors = 6,
p = range (1, 10). p = 1.0.

LDA Solver = [‘svd’,‘lsqr’]. solver = ‘lsqr’.

NN Activation = [‘identity’, ‘logistic’, ‘tanh’, ‘relu’], activation = ‘tanh’,
Solver = [‘lbfgs’, ‘sgd’, ‘adam’], solver = ‘lbfgs’
Alpha = linspace(0.0001, 0.5, num = 50). alpha = 0.0409,

LR l1_ratio = linspace(0.0001, 1, num = 50), l1_ratio = 0.0001,
C = [0.1, 1, 10, 100], C = 100.0,
Solver = [‘newton-cg’, ‘sag’, ‘lbfgs’]. solver = ‘lbfgs’.

EN l1_ratio = linspace(0.0001, 1, num = 50), l1_ratio = 0.190,
alpha = linspace(0.0001, 2, num = 50), alpha = 0.1409,
selection = [“random", “cyclic"]. selection = ‘cyclic’.

AD n_estimators = [10, 100, 1000, 10,000]. n_estimators = 100.

Ten ML models are used with their best parameters’ values in implementing the
proposed dynamic classifiers. WMOD is proposed to handle a limitation of MOD. Such
limitation occurs when two ML classifiers have the same number of metrics with the best
results; therefore, two classifiers are selected as optimal. To address this issue, WMOD is
proposed to return only the model with the best metric results.

Figure 5a provides the results of the proposed methods and the three ensemble models
in terms of accuracy. As one can observe, the proposed MOD and WMOD dynamic methods
provide the best results in terms of accuracy in comparison with bagging, boosting, and
stacking-based ensemble models. As shown, the MOD and WMOD classifiers both have
an accuracy of 99.8%. The stacking classifier has an accuracy of 99.7%, followed by bagging
and boosting classifiers. Bagging model has an accuracy of 99.6%, while the boosting-based
ensemble has the lowest accuracy of 99.56% compared to the other classifiers.

Figure 5b presents the results of the five models in terms of probability of detection.
As can be seen, the proposed dynamic methods outperform the three ensemble models
in terms of probability of detection with a slight difference. MOD and WMOD have the
highest probability of detection of 99.9%, followed by the stacking, bagging, and boosting
models. The stacking model has a probability of detection of 99.8%, bagging model has
a probability of detection of 99.6%, and the boosting model has the lowest probability of
detection of 99.35%.
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Figure 5. Evaluation results of the selected methods in terms of accuracy, probability of detection,
probability of misdetection, probability of false alarm, and processing time.

Figure 5c illustrates the results of the proposed dynamic selection methods and the
three ensemble models in terms of the probability of misdetection. As one can observe,
MOD and WMOD have an acceptable probability of misdetection; however, the lowest
probability of misdetection belongs to the stacking model. The proposed dynamic selection
methods have a probability of misdetection of 1.56%, while the stacking model has a
probability of misdetection of 1.4%. The other two ensemble models, bagging and boosting,
also provide acceptable probability of misdetection results of 1.67% and 1.76%, respectively.

Figure 5d provides the results of the 5 models in terms of the probability of false alarm.
As can be seen, MOD and WMOD have the lowest and best probability of false alarm
compared to the other ensemble models. These methods have a probability of false alarm
of 1.09%, the bagging classifier has a probability of false alarm of 1.2%, and the stacking
and boosting have a probability of false alarm of 1.6% and 1.64%, respectively.

Figure 5e provides the results of the selected models in terms of their processing time.
As one can see, the MOD and WMOD classifiers require a processing time of 1.24 s, which
is considered much lower in comparison with other techniques, such as bagging, boosting,
and stacking. The bagging classifier has a processing time of 1.321 s, while the boosting
classifier achieves a processing time of 1.987 s. The stacking classifier has a processing time
of 5.432 s, which is significantly higher than MOD and WMOD.

The number of false positives ( fp) is another important factor in evaluating models that
compares the number of false positively predicted samples to total number of samples that
are negatively predicted. Figure 6 provides the number of false positive for the highlighted
methods. As one can observe, the MOD and WMOD provides the best number of false
positives, followed by bagging, stacking, and boosting. The proposed dynamic selection
methods have a number of false positives of 10.9 per second. In contrast, the bagging
classifier has a number of false positives of 12 per secondm and the stacking and boosting
classifiers have a number of false positives of 16 and 16.4 per second.
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Figure 6. Number of False Positives for the Proposed Dynamic Selection Methods: MOD and WMOD
Against the Classical Ensemble Techniques.

Table 4 provides the results of the proposed dynamic selection methods and the
ensemble techniques, namely, bagging, boosting, and stacking. This table shows that
MOD and WMOD have the best results in terms of accuracy, probability of detection, and
probability of misdetection. In contrast, the stacking model provides the best result in
terms of the probability of misdetection. It can be noticed that the proposed methods,
MOD and WMOD, provide a probability of misdetection of 1.56%, which is higher than the
stacking model by 0.16% considered as an insignificant difference. In contrast, the stacking
model has a probability of false alarm of 1.6%, which is 0.51% higher than the probability
of false alarm of these proposed methods. In addition, this stacking model has an accuracy
of 99.7% and a probability of detection of 99.8%, which are 0.1% lower than the accuracy
and probability of detection of the proposed dynamic selection methods.

As one can observe, the processing time of the proposed classifiers is 1.24 s, which is
significantly lower than that of the other ensemble approaches. The bagging classifier has
a processing time of 2.321 s, which is 1.081 s higher than that of MOD and WMOD. The
boosting classifier has a processing time of 1.511 s, which is 0.271 s higher than that of the
proposed classifiers. The stacking classifier has the worst processing time, which is 4.41 s
higher than the processing time of MOD and WMOD.

To shed more light on the effectiveness of the proposed methods, we calculate the
number of false positives ( fp) for MOD and WMOD, followed by bagging, stacking,
and boosting. The proposed methods provide a number of false positives of 10.9 per
second, which is 1.1 lower than the bagging classifier, 5.5 lower than the boosting classifier,
and 5.1 lower than the stacking classifier. To conclude, our proposed classifiers provide
higher accuracy and probability of detection, and lower probability of misdetection, false
alarm processing time, and the number of false alarms compared to the other classical
ensemble techniques.

Table 4. Evaluation Results of the Proposed Dynamic Selection Methods and Ensemble Models.

Methods
Metrics

ACC (%) Pd (%) Pmd (%) Pf a (%) Processing Time (s) fp (s)

MOD 99.8 99.9 1.56 1.09 1.24 10.9

WMOD 99.8 99.9 1.56 1.09 1.24 10.9

Bagging 99.6 99.6 1.76 1.2 2.321 12

Boosting 99.56 99.35 1.67 1.64 1.511 16.4

Stacking 99.7 99.8 1.4 1.6 5.65 16

In short, the key insights can be summarized as follows:
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• Ensemble feature selection removes the correlated and low importance features and
decreases computational power and time.

• MOD and WMOD methods dynamically select one best classifier between the imple-
mented ML models.

• The proposed dynamic methods can choose the best metric among the implemented
models based on the considered metrics, which means such methods can be easily ex-
tended to include additional metrics that can significantly enhance the selection criteria.

• Comparison of the ensemble models with the proposed dynamic methods shows that
the two dynamic methods can achieve good results in detecting GPS spoofing attacks
on UAVs.

6. Conclusions

Interest in detecting GPS spoofing attacks on UAVs has increased significantly in the
last decade, leading to considerable progress in different technologies. Several techniques
have been proposed to identify and detect these vulnerabilities; however, this field of study
still needs to address several challenges and limitations, such as high misdetection and false
alarm rates. In this work, we used a one-stage heterogeneous ensemble feature selection
to discard correlated and low importance features from the considered dataset using
Spearman Correlation and Information Gain. As a result, two features, RX and TCD, were
discarded from the given dataset. We implemented two dynamic selection methods, MOD
and WMOD, which dynamically selected the best ML model among the ten implemented.
However, MOD has a limitation when two ML classifiers have the same number of metrics
with the best results. WMOD addresses this limitation and perfectly optimizes the selection
criteria. The results show that MOD and WMOD have an accuracy of 99.6%, a probability
of detection of 98.9%, a probability of false alarm of 1.56%, a probability of misdetection
of 1.09%, and a processing time of 1.24%. These results outperform those of the existing
ensemble learning models.
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