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Abstract: Aggressive driving behavior (ADB) is one of the main causes of traffic accidents. The
accurate recognition of ADB is the premise to timely and effectively conduct warning or intervention
to the driver. There are some disadvantages, such as high miss rate and low accuracy, in the
previous data-driven recognition methods of ADB, which are caused by the problems such as the
improper processing of the dataset with imbalanced class distribution and one single classifier
utilized. Aiming to deal with these disadvantages, an ensemble learning-based recognition method
of ADB is proposed in this paper. First, the majority class in the dataset is grouped employing the
self-organizing map (SOM) and then are combined with the minority class to construct multiple class
balance datasets. Second, three deep learning methods, including convolutional neural networks
(CNN), long short-term memory (LSTM), and gated recurrent unit (GRU), are employed to build the
base classifiers for the class balance datasets. Finally, the ensemble classifiers are combined by the
base classifiers according to 10 different rules, and then trained and verified using a multi-source
naturalistic driving dataset acquired by the integrated experiment vehicle. The results suggest
that in terms of the recognition of ADB, the ensemble learning method proposed in this research
achieves better performance in accuracy, recall, and F1-score than the aforementioned typical deep
learning methods. Among the ensemble classifiers, the one based on the LSTM and the Product
Rule has the optimal performance, and the other one based on the LSTM and the Sum Rule has the
suboptimal performance.

Keywords: aggressive driving behavior; class imbalance dataset; ensemble learning; deep learning;
advanced driver assistance system

1. Introduction

Traffic accidents have been around since Karl Benz invented the car. With the de-
velopment of society and economy, the number of cars is increasing, which has led to
the increase in traffic congestion and traffic accidents. The research suggests that more
than 90% of traffic accidents are caused by human factors [1]. Among them, a survey of
the AAA Foundation for Traffic Safety shows that about 55.7% of fatal traffic accidents were
associated with aggressive driving behavior (ADB) [2], and there is a positive correlation
between ADB and the probability of traffic accidents [3,4]. As one of the main causes
of traffic accidents, ADB is affected by situational factors such as traffic congestion [5,6]
and personal factors such as negative emotions [7]. Due to the increasingly crowded
traffic system and the accelerated pace of life, it is easier for drivers to exhibit ADB, so it
is urgent to accurately recognize ADB. However, there is no uniform definition of ADB.
ADB was mostly defined from the perspective of traffic psychology in existing studies as
a syndrome of frustration-driven instrumental behaviors, that is, deliberately dangerous
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driving to save time at the expense of others [8]; the driving behavior that is likely to
increase the risk of collision, and is motivated by impatience, annoyance, hostility, and/or
an attempt to save time [9]; or any driving behavior that intentionally (whether fueled by
anger or frustration or as a calculated means to an end) endangers others psychologically,
physically, or both [10]. The above definition based on traffic psychology is beneficial for
people to understand the causes of ADB, but it is difficult to be directly applied to the
recognition of ADB. Therefore, for the accurate recognition of ADB, we define ADB as
driving behaviors where a driver intentionally harms another driver in any form, which
are typically manifested as abnormal acceleration, abnormal deceleration, abnormal lane
change, and tailgating.

In recent years, some studies were conducted on the recognition of ADB, which can
be divided into studies based on simulated driving datasets [11–14] and studies based
on naturalistic driving datasets [15–23], according to the different datasets utilized. The
simulated driving experiment is commonly used in studies on ADB due to its high level of
safety. Wang et al. used a semi-supervised support vector machine to divide the driving
style between aggressive driving style and normal driving style based on the vehicle
dynamic parameters collected in simulated driving experiments [11]. Danaf et al. proposed
a hybrid model for aggressive driving analysis and prediction based on the state-trait anger
theory, which was verified using simulated driving experiment data [12]. Fitzpatrick et al.
studied the influence of time pressure on ADB based on simulated driving experiments [13].
Kerwin et al. concluded that people with high trait anger tend to view many driving
behaviors as aggressive, based on the ratings of the videos taken by 198 participants on a
driving simulator [14]. Compared with the naturalistic driving experiment, the simulated
driving experiment is safer and provides easier control of the experimental conditions.
However, there is a certain difference between the data collected through the simulation
driving experiment and those collected in the actual traffic environment, which may lead to
the problems of low recognition accuracy and high miss rate when the relevant recognition
methods are applied to the actual environment. With the development and popularization
of vehicle sensor technology and computing platforms, the research on ADB based on
naturalistic driving datasets has gradually increased. Ma et al. developed an online
approach for aggressive driving recognition using the kinematic parameters that were
collected by the in-vehicle recorder under naturalistic driving conditions [15]. Feng et al.
verified the performance of the vehicle jerk for recognizing ADB through naturalistic
driving data [16].

Both naturalistic driving and simulated driving can provide considerable datasets,
which provide the conditions for the studies of ADB recognition based on data-driven
methods. Compared with the theory-driven methods, the data-driven methods [17–26]
are naturally suitable for accurately recognizing the complex behaviors in the actual envi-
ronment because of their capacity to explore the inherent correlations of the captured data
warning [27,28] and have been applied in the studies of ADB recognition [17–23]. Zylius
used time and frequency domain features extracted from accelerometer data to build a ran-
dom forest classifier to recognize aggressive driving styles [17]. Ma et al. used the vehicle
motion data collected by the smartphone sensors to compare the recognition performance
of the Gaussian mixture model, partial least squares regression, wavelet transformation,
and support vector regression on ADB [18]. Carlos et al. used the bag of words method to
extract features from accelerometer data and built the models of ADB recognition based on
multilayer perceptron, random forest, naive Bayes classifier, and K-nearest neighbor algo-
rithm [19]. Although the recognition of ADB can be realized based on the above methods,
a large number of data preprocessing and feature engineering are required in the modeling
of time series. In recent years, many deep learning methods have proved to be an effective
solution to time series modeling due to their capacity to automatically learn the temporal
dependencies present in time series [29]. These deep learning methods have already been
applied in the research of ADB recognition [20–23]. Moukafih et al. proposed a recognition
method of ADB based on long short-term memory full convolutional network (LSTM-FCN),
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and the results showed that the performance of this method is better than some traditional
machine learning methods [20]. Matousek et al. realized the recognition of ADB based on
long short-term memory (LSTM) and replicator neural network (RNN) [21]. Shahverdy
et al. recognized normal, aggressive, distracted, drowsy, and drunk driving styles based
on convolutional neural networks (CNN) [22]. Khodairy achieved the recognition of ADB
based on stacked long short-term memory (stacked-LSTM) [23].

Although the methods used in the above studies have realized the recognition of ADB,
there are still some disadvantages. These methods usually assume that the distribution of
the classes in the dataset is relatively balanced and the cost of misclassification is equal.
Therefore, these methods cannot properly represent the distribution characteristics of
the classes when dealing with class imbalance datasets, which leads to poor recognition
performance [30–33]. Unfortunately, the samples of ADB are usually less than the samples
of normal driving behavior (NDB) in the naturalistic driving datasets, which leads these
methods to focus on correctly predicting NDB, while ignoring ADB as a minority class.
Ensemble learning refers to the methods of training and combining multiple classifiers to
complete specific machine learning tasks, which is considered as a solution to the class
imbalance problem of machine learning [34]. By combining multiple classifiers, the error
of a single classifier may be compensated by other classifiers. Therefore, the recognition
performance of the ensemble classifier is usually better than that of a single classifier [34].

According to the above analysis, we propose a recognition method of ADB based on
ensemble learning. In this method, the majority class data in the dataset is first divided
into multiple groups, and each group of data is combined with the minority class data to
construct the class balance dataset; next, the base classifiers are built based on the class
balance datasets; finally, the base classifiers are combined based on different ensemble rules
to build ensemble classifiers. The salient contributions of our work to the research of ADB
recognition can be summarized as follows:

• The acquisition of multi-source naturalistic driving data: combined with the devel-
opment status of intelligent and connected technology, an integrated experimental
vehicle for driving behavior and safety based on the multi-sensor array is constructed.
Based on this integrated experimental vehicle, a real vehicle experiment is designed
and completed, and a naturalistic driving dataset containing ADB data is acquired;

• The research of the recognition performance of ensemble classifiers: to solve the
problem of the poor recognition performance of machine learning method for the
ADB data as a minority class in the dataset, a recognition method of ADB based on
ensemble learning is proposed.

The rest of this paper is organized as follows. Section 2 introduces the composition
of the integrated experimental vehicle for driving behavior and safety, the scheme of the
real vehicle experiment, and the method of the data processing. Section 3 introduces the
recognition method of ADB based on ensemble learning. Section 4 introduces the comparison
results and discussion of the performance of the established ADB identification method and
three typical deep learning methods. Section 5 presents the conclusion of this research.

2. Data Acquisition and Processing

In order to acquire the dataset suitable for the training and verification of the ADB
recognition method based on ensemble learning, an integrated experimental vehicle for
driving behavior and safety was constructed. As shown in Figure 1, the integrated ex-
perimental vehicle consists of the sensors, the data acquisition device, the cameras, the
computing center, and the experimental vehicle. The functions of each component of the
integrated experimental vehicle are shown in Table 1. The sensors used in the integrated
experimental vehicle include long range radar (LRR), short range radar (SRR), inertial
measurement unit (IMU), global positioning system (GPS), and an ultrasonic sensor. The
functions and installation positions of the above sensors are shown in Table 2. The detec-
tion range of the LRR and SRR are shown in Figure 2. The coordinates of the IMU are
shown in Figure 3.
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Figure 1. Integrated experimental vehicle for driving behavior and safety.

Table 1. The composition and function of the integrated experimental vehicle.

Compositions Functions

Sensors Acquire the vehicle motion parameters and the driving environment parameters.
Data acquisition device Receive the data acquired by sensors and send it to the computing center.

Cameras Record the video of the driving environment in the front and rear of the integrated experimental vehicle.
Computing center Receive and save the data acquired by the data acquisition device and the video recorded by the cameras.

Experimental vehicle The carrier for the sensors, data acquisition device, cameras, and computing center.

Table 2. The functions and installation positions of the above sensors.

Sensors Functions Installation Positions

Long range radar Acquire the distance and relative speed between the
integrated experimental vehicle and the front objects. Above the front bumper.

Short range radar Acquire the distance and the relative speed between the
integrated experimental vehicle and the rear objects. Above the rear bumper.

Inertial measurement unit Acquire the acceleration and yaw rate of the vehicle. About 1.8 m away from the front of
the vehicle in the cab.

Global positioning system Acquire the speed of the vehicle. Above the console.

Ultrasonic sensor Acquire the distance between the integrated experimental
vehicle and the objects on the left and right sides. On the left and right sides of the car.

The vehicle motion parameters and the driving environment parameters are col-
lected at 10 Hz through the integrated experimental vehicle. The vehicle motion parame-
ters include speed, acceleration, yaw rate, etc. Driving environment parameters include
the distance and the relative speed between the integrated experimental vehicle and the
objects, etc.

Six consecutive weeks of real vehicle experiment was conducted based on the inte-
grated experimental vehicle for driving behavior and safety. The real vehicle experiment
was conducted on one working day and one non-working day every week, and the data
acquired every day included the data in rush hour and non-rush hour. Sixteen drivers were
selected, including thirteen males and three females, to take part in the experiment. The age
distribution of the drivers was between 23 and 50 years, and the average age was 28.9 years
old. The driving age distribution was between 2 and 20 years, and the average driving age
was 5.3 years. As shown in Figure 4, the road sections of Songling Road-Xianggang East
Road in Laoshan, Qingdao were selected as the real vehicle experimental route. The route
is a two-direction six-lane urban road with a total length of about 12 km.
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Figure 2. The detection range of the radars.

Figure 3. The coordinates of the IMU.

Figure 4. The experimental route of actual driving.
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According to the aforementioned definition of ADB and previous studies, the lon-
gitudinal acceleration, lateral acceleration, yaw rate, distance between the experimental
vehicle and the front vehicle, and relative speed between the experimental vehicle and the
front vehicle were selected as the features of ADB. The above features are listed in Table 3.
Among them, ax is related to abnormal acceleration and deceleration, because the abnormal
acceleration and deceleration are usually manifested as large longitudinal acceleration
and deceleration; ay and ωz are related to abnormal lane changes because abnormal lane
changes are usually manifested as large lateral accelerations and the large yaw rate; and d f
and v f are related to the tailgating.

Table 3. Features.

Features Descriptions Units

ax The acceleration in the x-axis direction of the IMU, that is, the longitudinal acceleration of the vehicle. m/s2

ay The acceleration in the y-axis direction of the IMU, that is, the lateral acceleration of the vehicle. m/s2

ωz The angular velocity in the z-axis direction of the IMU, that is, the yaw rate of the vehicle. deg/s
d f The distance between the vehicle and the front vehicle. m
v f The relative speed between the vehicle and the front vehicle. m/s

The essence of ADB recognition is a problem of the time series classification. Therefore,
before building the model, a sliding window of fixed length is utilized to segment the data
into overlapping series [23,35,36]. The length of the sliding window should be longer than
the duration of the four abnormal driving events recorded in our experiment. However,
the difference between the ADB series and the NDB series may be reduced if the sliding
window is too long, which will lead to an increase in the miss rate and a decrease in
the recognition accuracy. To balance the recognition and real-time performance of the
recognition method of ADB, a sliding window with 50 time steps and 80% overlap is
selected to process the raw data after several iterations of experiments.

Because the features we selected have different scales, the z-score is used to standardize
the features, and the definition is shown in Equation (1).

z =
x− µ

σ
(1)

where x is the unstandardized data, µ is the mean of the feature vector, σ is the standard
deviation of the feature vector, and z is the standardized data.

After the above processing steps, a class imbalance dataset consisting of 31,506 stan-
dardized driving behavior series was obtained, which contained 28,908 NDB series and
2598 ADB series.

3. Recognition Method

Deep learning methods such as CNN [37], LSTM [38], and gated recurrent unit
(GRU) [39] are widely used in time series modeling [40–44] due to their capacity to au-
tomatically learn the temporal dependencies present in time series [29]. The essence of
ADB recognition is the classification of the time series, so CNN, LSTM, and GRU are
utilized in this research. However, the recognition performance of the above methods is
also sensitive to the imbalance of classes. Aiming to deal with this problem, an ensemble
learning method [45] is employed to realize the recognition of ADB. The ensemble learning
method models the class imbalance datasets by transforming one class imbalance problem
into multiple class balance problems. The processes are as follows:

(1) Dataset balancing: the majority class data in the dataset are divided into several
groups so that the amount of data in each group is similar to that of the minority
class data, and then each group of data is combined with the minority data to form
multiple class balance datasets.
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(2) Base classifiers building: a base classifier is built for each class balance dataset based
on a specific classification method.

(3) Ensemble classifiers building: the obtained multiple base classifiers are combined into
an ensemble classifier based on ensemble rules.

The framework of the recognition method of ADB based on ensemble learning is
shown in Figure 5.

Figure 5. The framework of the recognition method of ADB based on ensemble learning.

3.1. Dataset Balancing

In the dataset balancing, the majority class data is divided into multiple groups, and
each group of data is combined with the minority data to form multiple class balance
datasets. Therefore, a clustering-based dataset balancing method is utilized [45], aiming
to make the divided groups of majority class data have a similar amount to the minority
class data in the dataset, and make the difference of the data within each group smaller.
In this research, the self-organizing map (SOM) [46] is used to cluster the majority class
data. SOM is an unsupervised learning neural network method that can map the high-
dimension data to low-dimension space and is widely used in various fields, such as
emotional intelligence [47], big data analysis [48], water quality assessment [49], and fault
prediction [50]. The basic structure of SOM is shown in Figure 6. The output layer of SOM
consists of a two-dimensional regular grid of neurons, and each neuron is represented by
a weight vector mk, mk = [mk1, mk2, . . . , mkd], where d is the dimension of the input data,
and kis the number of SOM neurons. In the clustering, SOM assigns the input data to the
nearest neuron and updates the weight vector to minimize the distance of the data in the
same neuron.
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Figure 6. The basic structure of SOM.

The processes of dataset balancing based on SOM are as follows:

(1) Randomly initialize the weight vectors mk.
(2) Input a 5-dimensional NDB series with 50-time steps as a 250-dimensional sample X

and calculate the distance between the sample X and the weight vectors mk. Calculate
the Best-matching unit (BMU) mc according to Equation (2), where BMU is the weight
vector closest to the sample X.

‖X−mc‖ = min
k
{‖X−mk‖} (2)

(3) BMU and its topological neighbors are updated according to Equation (3).

mk(T + 1) = mk(T) + Gc,k(T)(X−mk(T)) (3)

Gc,k(T) = α(T) exp

(
−

L2
c,k

2σ2(T)

)
(4)

where T is the regression steps, Gc,k(T) is the neighborhood function, Lc,k is the
distance between the sample X and BMU mc, σ(T) is the neighborhood kernel radius,
and α(T) is the learning rate factor. Both σ(T) and α(T) decrease monotonically with
the regression steps.

(4) Repeat steps (2) and (3) until the training is completed and the samples are divided
into k groups.

(5) Combine k groups of NDB samples with ADB samples to form k groups of class
balance datasets.

3.2. Base Classifiers Building

After dataset balancing, the deep learning methods of CNN, LSTM, and GRU are
employed to build multiple base classifiers with the multiple groups of class balance
datasets. CNN is a deep neural network, usually composed of the convolutional layer,
pooling layer, and fully connected layer. The basic structure of CNN is shown in Figure 7a.
CNN can automatically extract features from high-dimensional raw data with network
topology through convolution operations and is often used in machine vision and image
processing [51,52]. The convolution operation is a sliding filter, which can capture repetitive
patterns in time series through learning. The process of convolution operation is shown
in Figure 8. Due to the above characteristics, CNN has been applied in time series modeling,
such as financial market prediction [40], natural language processing [41], and driving
behavior prediction [22]. CCN performs better than LSTM in some time series modeling
tasks [53,54] and has a faster calculation speed [29,53]. LSTM and GRU are two improved
recurrent neural networks (RNN), which can solve the problems of gradient disappearance
and gradient explosion in traditional RNN when learning long-term dependence. RNN
is widely used in time series modeling because it can connect each time step with the
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previous time step to model the temporal dependencies of time series, such as traffic flow
prediction [42], natural language processing [43], and financial market prediction [44]. The
basic structure of RNN is shown in Figure 7b. As shown in Figure 9, the difference between
RNN, LSTM, and GRU is the hidden layer.

Figure 7. (a) The basic structure of CNN; (b) the basic structure of RNN.

Figure 8. The process of the convolution operation.

Figure 9. (a) The structure of RNN; (b) the structure of LSRM; (c) the structure of GRU.

LSTM is widely used in time series modeling tasks in various fields [42–44,55]. As
shown in Figure 9b, LSTM solves the problem of exploding and vanishing gradients
through the cell state ct, which stores the long-term memory and retains or deletes the
information passing through the hidden layer by the forget gate ft, the input gate it, and
the output gate ot. The definitions of forget gate, input gate, and output gate are as follows:

ft = S(w f 1ht−1 + w f 2xt + b f ) (5)

it = S(wi1ht−1 + wi2xt + bi) (6)

ot = S(wo1ht−1 + wo2xt + bo) (7)
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where S is the sigmoid activation function, and ht−1 is the hidden state of time t− 1.
The current cell state and hidden state are defined as follows:

ht = ot � tanh(ct) (8)

ct = ft � ct−1 + it � tanh(
∼
c t) (9)

∼
c t = tanh(wc1ht−1 + wc2xt + bc) (10)

where � is the element-wise product, and tanh is the tanh activation function.
GRU and LSTM have similar performance, but the GRU is simpler to calculate and

implement [39] and has better convergence and generalization [56]. As shown in Figure 9c,
the hidden unit of the GRU retains or deletes the input information at the current time xt
and the hidden state at the previous time Ht−1 through the reset gate rt and the update
gate zt to achieve the capture of short-term and long-term dependence. The reset gate and
update gate are defined as follows:

rt = S(wr1Ht−1 + wr2xt + br) (11)

zt = S(wz1Ht−1 + wz2xt + bz) (12)

The hidden state Ht is defined as follows:

Ht = zt �Ht−1 + (1− zt)�
∼
Ht (13)

∼
Ht = tanh(rtwH1Ht−1 + wH2xt + bH) (14)

3.3. Ensemble Classifiers Building

After the base classifiers building, the base classifiers are combined into the ensemble
classifiers based on different ensemble rules. Referring to the ensemble process of the base
classifiers of the ensemble learning method employed in this research [45], 10 different
ensemble rules are applied to combine the base classifiers. There are five ensemble rules
based on classification probabilities, including Max Rule, Min Rule, Product Rule, Majority
Vote Rule, and Sum Rule [57]; and five ensemble rules based on classification probability
combined with distance weighting mechanism, including MaxDistance Rule, MinDistance
Rule, ProDistance Rule, MajDistance Rule, and SumDistance Rule [45]. The 10 ensemble
rules and their strategies are shown in Table 4. The C1 and C2 are the class labels of data.
The R1 and R2 represent the ensemble rules of the classes C1 and C2. The Pj1 represents the
probability that the jth classifier classifies the data into C1. The Pj2 represents the probability
that the jth classifier classifies the data into C2. The Dj1 represents the average distance
between the new data and the data with the class label C1 in the jth class balance dataset.
The Dj2 represents the average distance between the new data and the data with the class
label C2 in the jth class balance dataset.

The definition of the function f (x, y) is shown in Equation (15).

f (x, y) =
{

1 x ≥ y
0 x < y

(15)

The final classification result of the data is obtained based on the ensemble rules
in Table 4. The data class is C1 if R1 ≥ R2, otherwise C2.
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Table 4. The strategies of the ensemble rules.

Ensemble Rules Strategies

Max Rule R1 = arg max
1<j<K

Pj1, R2 = arg max
1<j<K

Pj2

Min Rule R1 = arg min
1<j<K

Pj1, R2 = arg min
1<j<K

Pj2

Product Rule R1 =
K
∏
j=1

Pj1, R2 =
K
∏
j=1

Pj2

Majority Vote Rule R1 =
K
∑

j=1
f (Pj1, Pj2), R2 =

K
∑

j=1
f (Pj2, Pj1)

Sum Rule R1 =
K
∑

j=1
Pj1, R2 =

K
∑

j=1
Pj2

MaxDistance Rule R1 = arg max
1<j<K

Pj1
Dj1+1 , R2 = arg max

1<j<K

Pj2
Dj2+1

MinDistance Rule R1 = arg min
1<j<K

Pj1
Dj1+1 , R2 = arg min

1<j<K

Pj2
Dj2+1

ProDistance Rule R1 =
K
∏
j=1

Pj1
Dj1+1 , R2 =

K
∏
j=1

Pj2
Dj2+1

MajDistance Rule R1 =
K
∑

j=1

f (Pj1,Pj2)
Dj1+1 , R2 =

K
∑

j=1

f (Pj2,Pj1)
Dj2+1

SumDistance Rule R1 =
K
∑

j=1

Pj1
Dj1+1 , R2 =

K
∑

j=1

Pj2
Dj2+1

4. Results and Discussion

The validation set is composed of 300 NDB samples and 300 ADB samples, which
are randomly selected from NDB samples and ADB samples, respectively. The training
set is composed of the remaining 28,608 NDB samples and 2298 ADB samples. After the
training is completed, the accuracy (a), precision (p), recall (r), and F1-score (F) of each
classifier are calculated. The F1-score is the harmonic mean of precision and recall, which
is closer to the smaller of the two; a high F1-score can ensure that both the precision and
recall are high [30]. Therefore, the performance of the classifiers in recognizing ADB is
evaluated by F1-score as the main evaluation metric and accuracy, precision, and recall as
the supplementary evaluation metrics. The definition of F1-score is shown in Equation (16):

F =
2pr

p + r
(16)

The definitions of accuracy, precision, and recall are as follows:

a =
TP + TN

TP + FP + TN + FN
(17)

p =
TP

TP + FP
(18)

r =
TP

TP + FN
(19)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
In the dataset balancing, the NDB samples in the training set are divided into multiple

groups, and the number of NDB samples in each group should be as close as possible to the
number of ADB samples in the training set. Therefore, according to the ratio of the ADB
samples to the NDB samples in the training set, the number of SOM neurons is set as 12,
and the mapping size is set to 4 × 3 after several tests. After the clustering, the NDB data
in the training set are divided into 12 groups. As shown in Figure 10, the white numbers in
grids represent the number of NDB samples in the group. The size of the purple shape in
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the grid is proportional to the number of NDB samples in this group. By combining the
12 groups of the NDB samples with the ADB samples in the training set, 12 groups of class
relative balance datasets are obtained.

Figure 10. The number of NDB samples in each group.

The weight vectors of 12 neurons after training are shown in Figure 11. To show the
characteristics of the 12 weight vectors more intuitively, they are compared with several
randomly selected ADB samples. As shown in Figure 11a–c, the values and the fluctuations
with time steps of the ax, the ay, and the ωz of the 12 weight vectors are small, whereas
the values and the fluctuations with time steps of the ax, the ay, and the ωz of most ADB
samples are large. Because the difference between d f and v f of the 12 weight vectors
and the ADB samples is difficult to be directly observed, the time to collision (TTC) is
calculated based on d f and v f . The definition of TTC is shown in Equation (20), and the
negative value of TTC means that the experimental vehicle is approaching the vehicle in
front. As shown in Figure 11d, the TTC of the 12 weight vectors and some ADB samples is
less than 0. However, the TTC of these ADB samples is closer to 0, which means a higher
risk of collision.

TTC =
d f

v f
(20)

After the dataset balancing, all the methods, including CNN, LSTM, and GRU, are
used to build 12 base classifiers with the 12 groups of class balance datasets, respectively,
and the 12 base classifiers are combined into the ensemble classifiers based on the 10
different ensemble rules shown in Table 4. In addition, CNN, LSTM, and GRU are used
to directly build the classifiers on the class imbalance dataset without ensemble learning.
The main parameters of CNN, LSTM, and GRU are shown in Table 5, which are selected
after several tests. The number of layers in Table 5 indicates the number of convolutional
layers, LSTM layers, or GRU layers in the models. The CNN is designed with a single
convolutional layer. LSTM is designed with a single LSTM layer with 128 hidden units.
GRU is designed with a single GRU layer with 128 hidden units. In addition, the “/” in
Table 5 indicates that the parameter is not utilized in the models.
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Figure 11. (a) The ax of the weight vectors and ADB samples; (b) the ay of the weight vectors and
ADB samples; (c) the ωz of the weight vectors and ADB samples; (d) the TTC of the weight vectors
and ADB samples.

Table 5. The parameters of models.

Models Batch Size Learning
Rate

Layers Units

Convolution Max Pooling

Filters Filters
Size Stride Padding

Size Size Stride Padding
Size

CNN 32 0.001 1 / 10 5 × 2 1 0 2 × 2 2 0
LSTM 32 0.001 1 128 / /
GRU 32 0.001 1 128 / /
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The confusion matrices of all the classifiers and ensemble classifiers obtained by ver-
ification are shown in Figures 12–14. The results obtained by the three deep learning
methods before and after the application of ensemble learning have similar characteristics.
Compared with the classifier built without ensemble learning, the ensemble classifier built
with ensemble learning has a slight increase in the misclassification of NDB samples, but
it greatly improves the accuracy of the classification of ADB samples. For the ensemble
classifiers, the ones built with the ensemble rules based on classification probability have
obtained similar results, and they have fewer misclassification of ADB samples. However,
after the ensemble rules based on classification probability are combined with the dis-
tance weighting mechanism, they have more misclassification of ADB samples and fewer
misclassification of NDB samples.

Figure 12. The confusion matrices of CNN: (a) the confusion matrix of the classifier built without en-
semble learning; (b–k) the confusion matrices of ensemble classifiers built with 10 different ensemble
rules.
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Figure 13. The confusion matrices of LSTM: (a) the confusion matrix of the classifier built without en-
semble learning; (b–k) the confusion matrices of ensemble classifiers built with 10 different ensemble
rules.
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Figure 14. The confusion matrices of GRU: (a) the confusion matrix of the classifier built without en-
semble learning; (b–k) the confusion matrices of ensemble classifiers built with 10 different ensemble
rules.

In order to express the performance of each classifier more intuitively, the accuracy,
precision, recall, and F1-score of each classifier are calculated and listed in Tables 6–8.

Table 6. The validation results of CNN classifiers based on different ensemble rules.

Ensemble Rules Accuracy Precision Recall F1-Score

No Rule 74.33% 98.66% 49.33% 65.78%
Max Rule 88.00% 88.51% 87.33% 87.92%
Min Rule 88.00% 88.51% 87.33% 87.92%

Product Rule 89.67% 90.75% 88.33% 89.53%
Majority Vote Rule 89.00% 89.26% 88.67% 88.96%

Sum Rule 90.17% 91.41% 88.67% 90.02%
MaxDistance Rule 86.33% 94.31% 77.33% 84.98%
MinDistance Rule 86.67% 88.19% 84.67% 86.39%
ProDistance Rule 88.67% 92.65% 84.00% 88.11%
MajDistance Rule 88.33% 91.97% 84.00% 87.80%
SumDistance Rule 88.67% 92.96% 83.67% 88.07%
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Table 7. The validation results of LSTM classifiers based on different ensemble rules.

Ensemble Rules Accuracy Precision Recall F1-Score

No Rule 73.67% 97.97% 48.33% 64.73%
Max Rule 88.83% 89.76% 87.67% 88.70%
Min Rule 88.83% 89.76% 87.67% 88.70%

Product Rule 90.50% 91.19% 89.67% 90.42%
Majority Vote Rule 90.17% 90.30% 90.00% 90.15%

Sum Rule 90.33% 90.88% 89.67% 90.27%
MaxDistance Rule 85.83% 96.54% 74.33% 83.99%
MinDistance Rule 87.33% 92.42% 81.33% 86.52%
ProDistance Rule 89.17% 94.68% 83.00% 88.45%
MajDistance Rule 89.00% 95.35% 82.00% 88.17%
SumDistance Rule 88.33% 94.57% 81.33% 87.46%

Table 8. The validation results of GRU classifiers based on different ensemble rules.

Ensemble Rules Accuracy Precision Recall F1-Score

No Rule 75.33% 96.34% 52.67% 68.10%
Max Rule 86.00% 86.49% 85.33% 85.91%
Min Rule 86.00% 86.49% 85.33% 85.91%

Product Rule 87.17% 86.32% 88.33% 87.31%
Majority Vote Rule 86.67% 86.18% 87.33% 86.75%

Sum Rule 86.83% 85.99% 88.00% 86.99%
MaxDistance Rule 81.17% 96.52% 64.67% 77.45%
MinDistance Rule 85.83% 91.51% 79.00% 84.79%
ProDistance Rule 86.67% 93.64% 78.67% 85.51%
MajDistance Rule 86.33% 94.67% 77.00% 84.93%
SumDistance Rule 86.17% 93.93% 77.33% 84.83%

As shown in Tables 6–8, the ensemble classifiers achieve higher accuracy, recall, and
F1-score, which shows that compared with classifiers built without ensemble learning, the
ensemble classifiers can recognize ADB more accurately. Classifiers built without ensemble
learning achieve higher precision and lower recall, which reflects the problem that some
machine learning methods are more likely to misclassify minority classes. Compared with
the ensemble rules based on classification probability, the ensemble rules combined with
the distance weighting mechanism achieve higher precision and lower recall, which means
that they have more misclassification of ADB samples. This may be caused by the high
dimension of time series data because the distance difference between different data points
gradually decreases with the increase of dimension [58]. Therefore, the ensemble classifiers
built without distance weighting mechanism are more suitable for the recognition of ADB.

Among the classifiers built without ensemble learning, the one based on the GRU
achieves the highest accuracy of 75.33%, recall rate of 52.67%, and F1-score of 68.10%,
whereas the one based on the CNN achieves the highest precision of 98.66%. Therefore,
among the three classifiers built without ensemble learning, the one based on the GRU
with the highest F1-score achieves the best performance in the recognition of ADB.

Among the ensemble classifiers, the one based on the LSTM and the Product Rule
achieves the highest accuracy of 90.50%, which indicates that only 9.50% of the samples are
misclassified. The one based on the LSTM and the Majority Vote Rule achieves the highest
recall of 90.00%, which indicates that only 10.00% of ADB samples are misclassified. The
one based on the LSTM and the MaxDistance Rule achieves the highest precision of 96.54%,
which indicates that only 3.46% of the samples classified as ADB are misclassified. The one
based on the LSTM and the Product Rule achieves the highest F1-score of 90.42%.
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Ensemble learning has the greatest improvement to the LSTM, which makes the LSTM
ensemble classifiers perform the best in the recognition of ADB. The performance of the
CNN ensemble classifiers in the recognition of ADB is second only to the LSTM ensemble
classifiers, and the GRU ensemble classifiers have the worst performance.

To intuitively compare the influence of different ensemble rules on the recognition
performance under different evaluation metrics, the classifier built without ensemble
learning, which has the worst performance in each evaluation metric, is used as the
benchmark “1” to calculate the increase rate and decrease rate of the evaluation metrics for
ensemble classifiers. The results are shown in Figures 15–18.

As shown in Figures 15–18, the accuracy, recall, and F1-score of the three deep learning
methods are significantly improved by ensemble learning. As shown in Figure 15, the
increase rate of the accuracy for each ensemble classifier is more than 10%, among which the
one based on the LSTM and the Product Rule achieves the highest increase rate of 22.85%,
followed by the one based on the LSTM and the Sum Rule. This means that although
the ensemble learning method increases the misclassification of NDB samples, it reduces
the misclassification of more ADB samples. As shown in Figure 16, the precision of most
ensemble classifiers has slightly decreased, among which the one based on the GRU and
the Sum Rule achieves the highest decrease rate of 10.74%. Although only the ensemble
classifiers based on the MaxDistance rule have increased precision, their increase rates of
other evaluation metrics are the lowest. Therefore, we consider that the ensemble classifiers
based on the MaxDistance Rule have the worst performance. As shown in Figure 17, the
increase rate of the recall for each ensemble classifier is more than 33%, among which
the one based on the LSTM and the Majority Vote Rule achieves the highest increase rate
of 86.22%, followed by the one based on the LSTM and the Product Rule and the Sum
Rule. The recall has been significantly improved, which shows that the misclassification
of minority class samples is substantially reduced after the application of the ensemble
learning method. As shown in Figure 18, the increase rate of the F1-score for each ensemble
classifier is more than 19%, among which the one based on the LSTM and the Product Rule
achieves the highest increase rate of 39.69%, followed by the one based on the LSTM and
the Sum Rule. The F1-score of most ensemble classifiers is about 30%, which shows that the
ensemble learning method effectively improves the recognition performance of three deep
learning methods for ADB.

Among the 10 ensemble rules, the Product Rule has the highest improvement to the
LSTM and the GRU. Compared with the LSTM and the GRU classifiers built without ensem-
ble learning, the increase rate of the F1-score for the LSTM and the GRU ensemble classifier
based on the Product Rule are 39.69% and 34.88%, and the LSTM ensemble classifier based
on the Product Rule achieves the highest F1-score of 90.42%. The Sum Rule achieves the
highest improvement to the CNN. Compared with the CNN classifier built without en-
semble learning, the increase rate of the F1-score for the CNN ensemble classifier based on
the Sum Rule is 39.07%. Compared with the other ensemble classifiers, CNN, LSTM, and
GRU ensemble classifiers based on the MaxDistance Rule achieves higher precision and
lower accuracy, recall, and F1-score, and have the worse performance in the recognition
of ADB. Overall, ensemble learning significantly improves the recognition performances
of the three deep learning methods for ADB. The LSTM ensemble classifier based on the
Product Rule with the highest F1-score of 90.42% achieves the best performance for ADB
recognition, followed by the LSTM ensemble classifier based on the Sum Rule. However,
most of the ensemble classifiers built based on ensemble learning have a slight decrease in
precision, which means that their recognition performance for NDB has decreased.
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Figure 15. The increase rate and decrease rate of the accuracy for ensemble classifiers. The bold data
indicates the highest increase rate.

Figure 16. The increase rate and decrease rate of the precision for ensemble classifiers. The bold data
indicates the highest increase rate.
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Figure 17. The increase rate and decrease rate of the recall for ensemble classifiers. The bold data
indicates the highest increase rate.

Figure 18. The increase rate and decrease rate of the F1-score for ensemble classifiers. The bold data
indicates the highest increase rate.
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In the research, the recognition of ADB is realized based on the motion parameters of
vehicles. However, ADB is not only reflected in the four abnormal driving behaviors speci-
fied in this research, it is also reflected in behaviors such as frequent whistles and disregard
of traffic rules. Therefore, the research on the recognition of aggressive driving behavior
that integrates existing parameters and other behavior-related parameters is the focus topic
of further work. In addition, verifying the application of other methods in this ensemble
learning framework is also the focus of future work, such as applying other clustering
methods or directly dividing the majority class samples in the dataset balancing and the
application of other deep learning methods in the base classifiers building. Moreover, we
will also focus on the application of unsupervised learning and semi-supervised learning
methods in the research of aggressive driving behavior recognition.

5. Conclusions

The accurate recognition of ADB is the premise to timely and effectively conduct
warning or intervention to the driver, which is of great importance for improving driving
safety. In this paper, a recognition method of ADB is built based on ensemble learning
through the dataset balancing, base classifiers building, and ensemble classifiers building,
and the method is trained and verified by a multi-source driving behavior dataset acquired
under naturalistic driving conditions. The results suggest that the ensemble classifiers built
with ensemble learning achieve higher accuracy, recall, and F1-score. In contrast, although
the classifiers built without ensemble learning achieve higher precision, they have lower
accuracy, recall, and F1-score. This comparison result suggests that the ensemble classifier
is more suitable for accurately recognizing the ADB with a small proportion in the dataset,
whereas the classifier built without ensemble learning is more suitable for recognizing the
NDB that is more common. Among the ensemble classifiers built with different rules, the
one based on the LSTM and the Product Rule obtains the highest accuracy (90.50%) and
F1-score (90.42%), which has the optimal performance for ADB recognition. The one based
on the LSTM and the Sum Rule has the suboptimal performance for ADB recognition. In
summary, the recognition method of ADB based on ensemble learning proposed in this
paper can solve the problem of class imbalance in the dataset and achieve a significant
improvement in recognition performance. The results can provide a reference for the
improvement of the advanced driver assistance system and the realization of personalized
driver assistance systems as well as the anthropomorphic automatic vehicle.
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