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Abstract: Due to the wide application of human activity recognition (HAR) in sports and health, a
large number of HAR models based on deep learning have been proposed. However, many existing
models ignore the effective extraction of spatial and temporal features of human activity data. This pa-
per proposes a deep learning model based on residual block and bi-directional LSTM (BiLSTM). The
model first extracts spatial features of multidimensional signals of MEMS inertial sensors automati-
cally using the residual block, and then obtains the forward and backward dependencies of feature
sequence using BiLSTM. Finally, the obtained features are fed into the Softmax layer to complete the
human activity recognition. The optimal parameters of the model are obtained by experiments. A
homemade dataset containing six common human activities of sitting, standing, walking, running,
going upstairs and going downstairs is developed. The proposed model is evaluated on our dataset
and two public datasets, WISDM and PAMAP2. The experimental results show that the proposed
model achieves the accuracy of 96.95%, 97.32% and 97.15% on our dataset, WISDM and PAMAP2,
respectively. Compared with some existing models, the proposed model has better performance and
fewer parameters.

Keywords: human activity recognition; residual network; BiLSTM; inertial measurement unit

1. Introduction

HAR has received a lot of attention in recent years for its applications in smart homes,
fall detection for the elderly, sports training, medical rehabilitation, and misbehavior
recognition [1,2]. For example, by analyzing the movements of elderly people living alone,
the fall behavior can be detected for seeking help from family members in time. Fitness
people can obtain their own exercise data by counting steps and recognizing exercise status
to achieve scientific exercise and fitness management. Doctors can diagnose patients with
knee diseases by gait analysis. In the rehabilitation phase, the rehabilitation plan can be
adjusted based on the movement data of patients with lower limb diseases. The HAR
technologies could be divided into two categories: camera-based and sensor-based [3,4].
The camera-based method extracts the human activity features from the video stream by
placing a camera in the human surroundings. Although this approach can visually display
the details of human action, it suffers from privacy issues, and its performance is subject to
the quality of background illumination. On the contrary, the sensor-based approach has
many advantages. It is unaffected by the surrounding environment and is promising to
obtain higher accuracy. In addition, it will not cause privacy problems of users. Therefore,
sensor-based approaches are more suitable for human activity recognition [5]. In this paper,
we mainly discuss the problem of sensor-based HAR.

In the existing studies, researches placed the smart device on the waist [6], pants
pocket [7], or wrist [8], using the inertial measurement unit (IMU) in the smart device
to collect human activity data. The IMU including the accelerometer and gyroscope is
used to measure human body acceleration and angular rate. Firstly, the sensor data are
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preprocessed for noise reduction and normalization. Then, the feature extraction and
feature classification are performed to complete the human activity classification. In the
past, magnificent progress has been made by conventional machine learning algorithms
on HAR such as support vector machines (SVM), random forest (RF), and hidden Markov
models (HMM). In [9], a k-nearest neighbor (KNN) model was used to classify human
action, but some similar activities could not be distinguished. The paper [10] compared the
performance of three classifiers, KNN, SVM, and RF, and the RF has the highest accuracy.
Wang et al. [11] used extreme learning machine to recognize eight activities and achieved
an accuracy of 70%. Duc et al. [12] designed a HAR system based on SVM by extracting
248 features to recognize six activities. Even though these methods achieve good results in
some datasets, certain human experience is required for extracting hand-crafted features
which results in a limited accuracy [6].

Unlike the traditional machine learning, deep learning (DL) can process the prepro-
cessed IMU data without extracting hand-crafted features and is widely used in the activity
recognition [13,14]. In recent years, many CNN-based HAR methods which extracted
features automatically have been proposed [15–17]. In [18], a deep convolutional neural
network is proposed to perform an effective HAR. Ignatov [15] proposed a CNN model
for local feature extraction along with statistical features to obtain the global properties
of the sensor time series. The recognition accuracy of his method on the public dataset
WISDM is 93.32%. Huang et al. [17] proposed a two-stage end-to-end convolutional neural
network to solve the problem of low accuracy of going upstairs and going downstairs.
The model was tested on WISDM. Compared with the single-stage CNN, the recognition
accuracy of going upstairs and going downstairs is improved. Alemayoh et al. [6] proposed
a double-channel CNN to identify human behavior by accelerometer and gyroscope in the
smartphone strapped to the waist. The accuracy reached 97.08%, but the network could
overlook the temporal features. Qi et al. [19] proposed a fast and robust deep convolutional
neural network to identify 12 complex human activities collected from a smartphone and
the accuracy reached 94.18% in the experiment.

However, the activity recognition is a classification problem based on time series. CNN
is hard to extract the long-term dependency within the time series which makes it hard to
improve the performance of the model. To solve the problem, Long Short-Term Memory
(LSTM) network has been widely used in HAR because of its advantages in extracting
long-term dependence within time series [20,21]. Mohib et al. [22] proposed a stacked
LSTM network for recognizing human behaviors using smartphone data. The accuracy of
the proposed network is 93.13%. Zhao et al. [23] proposed a residual BiLSTM to address
the HAR problem. The residual connection built between the stacked cells can avoid the
gradient vanishing problem. Alawneh et al. [24] compared the results of the LSTM and
BiLSTM models on the sensor-based HAR dataset. The results showed that the BiLSTM
outperforms the LSTM in the recognition accuracy.

A lot of recent work on HAR focused on the hybrid model of CNN and RNN.
Nafea et al. [25] proposed a model using CNN with varying kernel dimensions along
with BiLSTM to obtain features at different resolutions. It has a high accuracy on the
WISDM and UCI datasets. Nan et al. [26] proposed a multichannel CNN-LSTM network
for smartphone-based HAR in elderly people. Fifty-three elderly people participated in the
experiment, and the results showed that the proposed network performed better than CNN
and CNN-LSTM. In [27], four deep learning hybrid models composed of CNN and RNN
were studied to recognize complex activities. Experimental results show that CNN-BiGRU
performs better than several other models.

In addition, some papers introduced the self-attention to HAR. Abdel et al. [28]
proposed a dual-channel network composed of convolutional residual network, LSTM,
and attention mechanism. The accuracy of the proposed network on WISDM reached
98.9%. Mahmud et al. [29] employed self-attention to identify human activities, and the
F1 score of the model is 96%. Although many DL studies have achieved great success
in the field of HAR, their performance is not the best due to neglecting to exploit both
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spatial and temporal information of sensor data. Some networks [6,25,29] are relatively
complex, making them difficult to run in the devices which have limited computer sources
and memory spaces. To solve these problems, in this study, we proposed a new DL model
which cascades a residual network with BiLSTM. Firstly, we use a residually connected
convolutions (ResNet) [30] to extract the spatial features of sensor data. Then we use
BiLSTM to obtain forward and backward dependencies of feature sequence.

The primary contributions of this work are as follows:

(1) A new model, combining the ResNet with BiLSTM, is proposed to capture the spatial
and temporal feature of sensor data. The rationality of this model is explained from
the perspective of human lower limb movement and the corresponding IMU signal.

(2) We introduce the BiLSTM into ResNet to extract the forward and backward dependen-
cies of feature sequence which is useful to improve the performance of the network.
We analyze the impact of model parameters on classification accuracy. The optimal
network parameters are selected through experiments.

(3) An HAR dataset, in which the human activity data are collected by a self-developed
IMU board, was made. The IMU board is attached to human shank to collect the
activity data of the human lower limbs. Our model performs well on this dataset. The
proposed model was also tested on both the WISDM and PAMA2 HAR datasets and
outperforms existing solutions.

The rest of this paper is organized as follows. In Section 2, the proposed mode
is described. Section 3 describes the collection of sensor data, the public HAR dataset,
experimental setup, experimental results and discussion. Section 4 is the conclusion of
this paper.

2. Proposed Approach

With the massive application of MEMS IMU in the smartphone and wearable systems,
the HAR is gradually shifting from image-based to sensor-based. Figure 1 shows the signal
of IMU attached to the shanks on different people while running. The traditional HAR
method firstly calculates the features of IMU signal in a period, such as the mean, variance,
and maximum value of sensor data in the sliding window, or the correlation coefficient
of different channel signals. Then, the calculated features are used to judge the activity
category by some preset thresholds, or the calculated features are put into a machine
learning model for training and classification. As we know, for the same activity, there are
differences in different people’s movements and differences in one person’s movement at
different times; therefore, the calculated features are quite different. The calculated features
of different actions by traditional methods tend to overlap. As shown in Figure 1, the
signal amplitude at a certain point (c, d, e, f) in the running cycle of two people is different,
obviously, which leads to large differences in the hand-crafted features. Therefore, it is hard
to recognize the human activity using such features and more powerful feature extraction
methods are needed.

ResNet [30] is an important improved CNN model with powerful local spatial feature
extraction capability widely used in the field of image recognition. It can also be used to
extract the local features between different channels of IMU signal in a small sampling
segment, that is, the local spatial features of IMU signal. However, the human motion,
especially the motion of the lower limbs, is a non-rigid motion. There are some irregular
changes in the IMU signal due to the movement of the lower limbs of the human body
within a short period. For example, there is an irregular spike at point a for subject A,
but it is smooth at point b for subject B in Figure 1. Only extracting the spatial features of
the IMU signal may easily lead to false recognition. For a long time, the sensor signal is
relatively flat and periodic due to the stability and periodicity of human gait. We can obtain
the dependence of the sensor signal over a long time to improve the recognition accuracy.
Therefore, we consider using LSTM to extract the long-term dependency of IMU signal.

BiLSTM is a special LSTM that can extract both forward and backward dependence
on the time sequences [23]. We proposed a new model by merging the ResNet and BiLSTM
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based on the above analysis of the characteristics of human limb movement and IMU signal.
The architecture of our proposed model is presented in Figure 2. As shown in the figure,
the input data are firstly processed by the residual block to extract the local spatial features
of the data. Then, the flattened features are fed into BiLSTM. There is a dropout layer
followed by the BiLSTM to avoid overfitting. After a dense layer, a Softmax layer is used
for yielding a probability distribution over classes at the end of the model.

Figure 1. IMU signal of different people on running. a, b, c, d, e, f: the different moment of IMU
signal when two people are running.

2.1. Spatial Feature Extraction Based on ResNet

Due to the differences of the movements of the lower limbs when different individuals
exercise and the complexity of human movements, the extracted hand-crafted features of
different human activities are easy to overlap. It is difficult to separate these features by
threshold or machine learning model. Manual features that are easy to distinguish are
also difficult to design. Traditional methods use the manual features to recognize human
activities, and the effect is not good. The CNN model can automatically extract the local
spatial features of the sensor signal by learning lots of samples. The powerful capability of
feature extraction improves the accuracy of HAR. It has been widely used in sensor-based
HAR. However, increasing the number of convolutional layers in the model results in
accuracy saturation. The ResNet is proposed to solve this problem. In the shallow network,
the residual module can be also beneficial to improve network performance [30]. As shown
in Figure 2, the residual module is composed of two convolutional layers connected in
sequence, and a parallel skip link is added. In order to obtain the spatial features of the
different channels of sensor signal, the two-dimensional convolutional residual network is
used. The first convolution layer is designed with 32 kernels of size 2 × 2. The stride length
of the convolution window is 2. A Batch Norm (BN) layer is added to this convolutional
layer, to speed up the training process, and to avoid problems of covariate shift. The BN
layers are followed by the ReLu activation function, which has the advantage of avoiding
gradient disappearance. The second convolution layer has the same parameters except the
stride length is 1. In order to make the dimension of output of the two convolutional layers
consistent with the original input dimension, the same two-dimensional convolution is
performed in the parallel skip linking. Let the input of residual block be x, the output can
be expressed as

y = f (x) + h(x) (1)

where f (x) represents the mapping learned by the stacked convolutional layers and h(x)
represents the mapping learned by the shortcut connection part. When the shortcut
connection part is added, the residual network is prone to learn constant mappings after
the network reaches its optimal performance, thus at least not deteriorating the network
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performance, while more parameters allow for a greater model fitting potential. The model
parameters are described later.

Figure 2. Frame diagram of the proposed model.

2.2. BiLSTM Layer

As mentioned above, only extracting the local spatial features of the sensor signal of
human activity is not enough for HAR. The RNN model has the ability to capture temporal
information from time sequences. However, Bengio et al. [31] inform that RNN networks
can recognize the data for only a moment, owing to the vanishing and exploding gradient
issue. LSTM is a special type of RNN that solves the problem of long-time dependence of
time series due to its special memory cells [32]. In this study, we use a special LSTM named
BiLSTM to analyze the local spatial feature sequence to obtain the long-term regularity of
the sensor signal. Figure 3 shows the cells of LSTM.
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Figure 3. Long short-term memory cell [32].

LSTM is implemented through three gates: input gate, forget gate and output gate.
An LSTM unit can be defined and explained as follows, where U, W is the weight matrix,
and b is the bias term:

it = σ(Ui · xt + Wi · ht−1 + bi) (2)

where, it is the input gate at time t, · is the matrix multiplication, σ is the sigmoid function,
xt is the input data at time t, and ht−1 is the output of the previous LSTM unit. The input
gate determines which information in the previous unit needs to be updated.

ft = σ(U f · xt + W f · ht−1 + b f ) (3)

where, ft represents the forget gate which calculates the importance of the information and
forgets some old information.

c̃t = tan h(Uc · xt + Wc · ht−1 + bc) (4)

ct = ft � ct−1 + it � c̃t (5)

The candidate state c̃t is calculated with the tanh function as depicted in Equation (3).
Then, the present cell state is computed as expressed in Equation (4), where, � denotes
element multiplication.

ot = σ(Uoxt + Woht−1 + bo) (6)

ht = ot � tan h(ct) (7)

In Equation (6), the output gate ot is calculated. In Equation (7), ht is the output of
LSTM unit.

Baseline LSTM predicts the human current activity based only on former data. It is
obvious that some information may be lost if the data are considered on only one direction.
The BiLSTM is made up of two LSTM layers in two directions. As shown in Figure 4, the
output of the BiLSTM is determined by the LSTM in the forward layers and backward
layers together. In the BiLSTM, the output layer yt is expressed as follow [33]:

yt =

[→
h t,
←
h t

]
(8)

where, the
→
h t and

←
h t represent the forward and backward results of LSTM units. The

output yt is formed by concatenating these two LSTM units.
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Figure 4. Frame diagram of the BiLSTM.

3. Experiments Results and Discussion
3.1. Data Collection
3.1.1. The Collection of Homemade Dataset

Unlike most studies in which the devices such as smartphones are fixed to a person’s
waist to collect human activity data, the self-developed IMU module is fixed to the human
body below the knee at the shin in this paper, as shown in Figure 5. Regarding human
activities, lower limb activities have attracted much attention. For example, runners want
to know their amount of exercise. The monitoring of walking time of patients with lower
extremity diseases during rehabilitation is also considered. Therefore, we mainly consider
the recognition of human lower limb activities. The sensor is placed under the human knee
to directly obtain the movement information of the human body’s lower limbs. The sensor
module can be fixed together with commonly used knee pads and is very convenient to
use in the real applications.

Figure 5. Fixed position of IMU module.

This IMU module is powered by a lithium battery (3.7 V, 230 mah), which can be
charged by USB. A 9-axis inertial sensor (MPU9250) is integrated on the module, including
a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. There is a processor
(Texas Instruments, CC2642) on the module, which integrates the ARM Cortex-M4F micro-
controller unit. The size of our module is about 3.5 cm (length) by 2.5 cm (width) by 1 cm
(height). As the magnetometer in the IMU module may be affected by the surrounding
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environment, the accelerometer and gyroscope are used here. The 3-axis acceleration and
three-axis angular rate data were collected by the accelerometer and gyroscope at a sam-
pling frequency of 50 Hz. The dynamic range of the accelerometer and gyroscope output
data were set to ±8 g and ±2000 dps, respectively. The sensor data were firstly stored in
the Flash memory of the IMU module, and then the data were transmitted to the computer
through serial port for processing.

Figures 6 and 7 show the acceleration and angular rate data collected under the
running and sitting within 77 s, respectively. From Figure 6, we can see that the human
activities of the running are intense, and the fluctuation range of both acceleration and
angular rate is relatively large. In this paper, five volunteers (age range from 22 to 32)
from the laboratory participated in the data collection. Each volunteer was asked to do
six classes of human activities: sitting, standing, walking, running, going upstairs and
going downstairs. Finally, a dataset containing 130,056 samples was made. The detailed
information is shown in Table 1. The whole dataset was divided into training and validation
sets, with 70% for training and 30% for validation.

Figure 6. Data collected by accelerometer and gyroscope on running.

Figure 7. Data collected by accelerometer and gyroscope on sitting.
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Table 1. Activities of our dataset.

Activity Sitting Standing Walking Running Going
Upstairs

Going
Downstairs

42.4% 12.7% 14.4% 9.6% 10.9% 10%

3.1.2. The Public Dataset

The WISDM dataset includes 1,098,209 samples [7]. Thirty-six subjects used a smart-
phone placed in their trouser pockets to complete six daily activities. The data were
collected by an accelerometer in the mobile phone at a sampling frequency of 20 Hz.
Walking (38.6%), jogging (31.2%), upstairs (11.2%), downstairs (9.1%), sitting (5.5%), and
standing (4.4%), were the collected activities.

The PAMAP2 dataset contains 18 daily activities, including 12 protocol activities
(walking, running, rope skipping, vacuum cleaner cleaning, etc.) and six optional activities
(watching TV, folding clothes, etc.). The activity information of nine subjects was collected
by heart rate meter, three IMU modules and thermometer. The three IMU modules were
placed on different positions on the subjects: one IMU on the arm, one IMU on the chest,
one IMU on the ankle. The sampling frequency of the sensor is 100 Hz [34].

3.2. Data Preprocessing

Figure 8 is the sensor raw data processing flow. Accelerometers and gyroscopes use
the same frequency 50 Hz sampling to obtain time series. After a period of sampling, the
sequence obtained by the six-axis IMU can be represented as

I = {Xi, i = 1, 2, . . . , N}, Xi = (ax,i, ay,i, az,i, gx,i, gy,i, gz,i) (9)

where (ax,i, ay,i, az,i) is the triaxial data sampled by the accelerometer and (gx,i, gy,i, gz,i) is
the triaxial data sampled by the gyroscope. A label yi is assigned to each vector Xi to obtain
I′ = {(Xi, yi), i = 1, 2, . . . , N}.

Figure 8. Frame diagram of the sensor raw data processing flow.

As the scale of raw data from different sensors varies greatly, the unprocessed data with
big fluctuation affected the performance of network [35]. In addition, the standardization
of the data range is helpful to find the global optimal solution in training compared the
raw data. Therefore, it is necessary to standardize the data. In this paper, the mean and
standard deviation are used to standardize the acceleration data and gyroscope data. The x
axis data of accelerometer are standardized according to Equation (10).

a′x =
ax − µx

σx
(10)
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where, ax is the x axis data of accelerometer, and µx, σx represents the average value and
standard deviation of all the x axis raw data of accelerometer, respectively. The output data
of the other five axes are standardized in a similar way.

In the current research, the segmentation of basic actions mostly adopts a fixed window
size of the sliding window method with fixed overlap coverage rate. The cycle of dynamic
actions such as walking is 1–2 s. In this paper, we also use a sliding window with a window
length of 100 and an overlap coverage of 50% to segment human actions.

3.3. Experimental Environment

The network in this paper was trained on a computer equipped with Intel Core i9-9900
CPU, 16 GB RAM and a graphics processor (GPU) (NVIDIA GeForce GTX 1060 with 6 GB
memory). The algorithm was implemented using python 3.8 based on Google’s open
source deep learning framework Tensorflow 2.3.0, and the development environment of
experiments is Pycharm on a 64-b version of Windows 10. The GPU is used to speed up the
training and testing of the model.

3.4. Evaluation Index

To evaluate the performance of the proposed model for HAR, the followed metrics [36]
were used for evaluation generally.

Accuracy =
TP + TN

TP + FN + FP + TN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1−score =
2× Precision× Recall

Precsion + Recall
(14)

Fw =∑
i

2×ωi
Precisioni × Recalli
Precisioni + Recalli

(15)

where TP, TN are the number of true and false positives, respectively, and FN, FP corre-
sponds to the number of false negatives, false positives. ωi is the proportion of samples of
class i.

3.5. The Optimal of Hyperparameters
3.5.1. The Optimal of Model Parameters

In order to obtain the optimal parameters of the proposed model, i.e., the size of
convolution kernels, the number of convolution kernels, the number of LSTM units, and
the dropout ratio, we adjust them in turn and finally select the appropriate parameters.

Firstly, we analyze the effect of the size of the convolution kernel on the classification
accuracy. Seven different convolution kernel sizes are set to test. Figure 9 shows the effect
of convolution kernel size on recognition accuracy. It can be seen that the network accuracy
is degraded when the size of the convolution kernel increases. We choose the size of the
convolution kernel to be 2 × 2 because this size has the best recognition accuracy.

On the basis of the optimal size of convolution kernel, we analyze the effect of the
number of convolution kernels on the recognition accuracy. We set the number of con-
volution kernels to 4, 8, 16, 32, 64, and 128 and record the accuracy. It can be seen from
Figure 10 that as the number of convolution kernels increases, the recognition accuracy is
improved. When this parameter increases to 32, the improvement of accuracy is very small.
The accuracy corresponding to the values of 64 and 32 is basically the same. As we know,
a larger number of convolution kernels will increase the model size and require higher
training costs. Finally, we choose 32 as the number of convolution kernels.
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Figure 9. The effect of convolution kernel size on recognition accuracy.

Figure 10. The effect of the number of convolution kernels on recognition accuracy.

Figure 11 shows the effect of the number of LSTM units in the BiLSTM module on
the recognition accuracy. It can be seen from the figure that as the number of LSTM units
increases in the beginning, the recognition accuracy will also improve. When the number
of LSTM units increases to 128, the accuracy of the proposed network gets worse. In this
paper, we choose 64 as the number of model LSTM units. Similarly, we select the dropout
ratio from 0.1 to 0.9 in step of 0.1, and test the accuracy of the network in turn. Figure 12
shows that the best network accuracy is obtained when the dropout ratio is 0.5.

Figure 11. The effect of the number of LSTM units on recognition accuracy.
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Figure 12. The effect of the value of dropout rate on recognition accuracy.

3.5.2. Hyperparameters of the Model Trained

The proposed model was trained by minimizing the cross entropy using the Adam
optimizer as in [37]. As in [38], the learning rate is firstly set to several constants, i.e.,
0.00001, 0.0001, 0.001, 0.01. Then, we find that the possible optimal learning rate may
be between 0.0001 and 0.001 for our dataset and the WISDM dataset by comparing the
accuracies. For the PAMAP2 dataset, the possible optimal learning rate will be between
0.00001 and 0.0001. We look for the optimal parameter between [0.0001, 0.001] with a step
of 0.0001 for our dataset and WISDM dataset. Similarly, we seek the optimal parameters on
[0.00001, 0.0001] with a step of 0.00001 for the PAMAP2 dataset. Finally, we select the 0.0003,
0.0006, 0.00003 as the learning rate for our dataset, WISDM, and PAMAP2, respectively.
The batch size used to train the model on three datasets is 64. The number of repeated
trainings of the model is 80. The hyperparameters used for model training are shown in
Table 2.

Table 2. Hyperparameters of the model trained.

Hyperparameters Value

Loss function Cross entropy
Optimizer Adam
Batch size 64

Learning rate
0.0003 (for our dataset)

0.0006 (for WISDM)
0.00003 (for PAMAP2)

Training times 80

3.6. Experiment Result

The proposed model was trained and tested using a homemade human activity dataset.
The model was trained 80 times. The experimental results in Figure 13a show that both
training loss and validation loss decrease as the number of training times increases. The two
curves are very close after 20 times, and after 70 times, the amplitude of the curves basically
remain stable. Figure 13b shows the accuracy curve of the model on the homemade dataset,
and the accuracy of the validation set finally reached 96.95%. The result indicates that the
model has good performance on the homemade human activity dataset.
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Figure 13. Experiment results on the homemade lower extremity activity dataset: (a) the training loss
and validation loss, (b) the training accuracy and validation accuracy.

Table 3 shows the confusion matrix for the proposed model on our dataset. In the table,
HA1 = running, HA2 = walking, HA3 = standing, HA4 = sitting, HA5 = going upstairs,
HA6 = going downstairs, PRC: precision, RCL: recall, and F1S: F1 − score. The diagonal
element of the confusion matrix represents the number of correctly recognized activity, and
the off diagonal element represents the number of incorrectly recognized activities. There
is some confusion between the going upstairs and going downstairs. This is mainly due to
the great similarity between the two human activities, resulting in the similar data collected
by accelerometer and gyroscope. HA1–HA4 is confused. It can be seen from Figure 5 that
the pedestrian is in a static state at the beginning of running. The signal at this stage is
similar to the signal of sitting. In addition, the amount of running data in the dataset are
relatively small, which makes the model less sensitive to this mode. Therefore, the trained
model incorrectly identifies a few running samples as sitting. The table lists the indicators
for each category. Among them, the F1 − score of walking and sitting is up to 0.99. The
lowest F1 − score is running, only above 0.92. The Fw is 0.9712, indicating that the network
has good classification performance.

Table 3. Confusion matrix for the proposed model on our dataset.

Activity HA1 HA2 HA3 HA4 HA5 HA6 RCL F1S

HA1 65 1 2 5 1 1 0.87 0.92
HA2 0 112 0 0 0 0 1.00 0.99
HA3 0 1 97 1 0 0 0.98 0.95
HA4 0 0 3 328 0 0 0.99 0.99
HA5 1 0 3 0 77 4 0.91 0.94
HA6 1 0 1 0 1 75 0.96 0.95
PRC 0.97 0.98 0.92 0.98 0.97 0.94

We compared the accuracy of the proposed model and two baseline models on the
homemade dataset. The test was performed 10 times. Each time the dataset was randomly
divided into the training set (70%) and the validation set (30%). CNN, BiLSTM and our
model were tested in turn for each test. Then, we saved the accuracy of each model on the
validation set and averaged it. In the experiment, the CNN has two convolution layers.
Each layer has 32 convolution kernels with a size of 2 × 2. The number of hidden units
of BiLSTM model is 64. The hyperparameters of training are shown in Table 1. Figure 14
shows the average accuracy of our model, CNN and BiLSTM on the homemade dataset. As
shown in the figure, the accuracy of the proposed model is higher than CNN and BiLSTM.
The proposed model can extract comprehensive feature information from human activity
data, so the accuracy is better than the CNN model and BiLSTM model.
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Figure 14. Comparison between the proposed model and two baseline models on the home-
made dataset.

3.7. Model Performance on Public Datasets

Although the proposed model has achieved good results on our homemade dataset,
to comprehensively verify the performance of the model, the public WISDM and PAMAP2
datasets were tested in our experiment.

3.7.1. Performance on WISDM Dataset

The WISDM dataset was collected by a single accelerometer in the smartphone placed
in the trouser pocket with a sampling frequency of 20 Hz [7]. Like the preprocessing of our
homemade dataset, the sliding window size is set to 40, and the overlapping area accounts
for 50%. The whole dataset is divided into training set (70%) and validation set (30%). The
hyperparameters of training are set as Table 2. As shown in Figure 15, the proposed model
of accuracy is 97.32% on WISDM. Table 4 is the confusion matrix on the WISDM dataset,
where HA1 = downstairs, HA2 = jogging, HA3 = sitting, HA4 = standing, HA5 = upstairs,
and HA6 = walking. The table shows that the highest F1 − score of HA2, HA3, HA4, and
HA6 reached 0.99, while HA1–HA5 is easily confused as the acceleration producing by
these activities is similar. Figure 16 shows the signal of upstairs and downstairs from
WISDM. As shown in the figure, there is no obvious difference between the signals for
downstairs and upstairs. The amplitude and frequency of the signals of the two activities
are similar. The Fw is 97.31%.

Figure 15. Results of the model on WISDM dataset: (a) training loss and validation loss, and
(b) training accuracy and validation accuracy.
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Table 4. Confusion matrix of model on WISDM dataset.

Activity HA1 HA2 HA3 HA4 HA5 HA6 RCL F1S

HA1 455 3 0 1 29 11 0.91 0.90
HA2 10 1919 0 0 5 7 0.98 0.99
HA3 0 0 68 0 1 0 0.98 0.99
HA4 0 0 0 53 0 0 1.00 0.99
HA5 36 12 0 0 469 10 0.88 0.90
HA6 5 0 0 0 7 2049 0.99 0.99
PRC 0.89 0.99 1.00 0.98 0.91 0.98

Figure 16. Comparison of the signal of upstairs and downstairs.

3.7.2. Performance on PAMAP2 Dataset

In this paper, the data of 18 channels collected by three IMU modules in the PAMAP2
dataset are selected to test the proposed model. The data from subject 5 and 6 are used as the
validation set, and the data from the other subjects are used as the training set. The sliding
window size is set to 100 and the overlapping area accounts for 50%. The hyperparameters
of training are shown in Table 2. Twelve protocol activities in the dataset were used to test.
As shown in Figure 17, the accuracy of the model in this dataset is 97.15% and Fw is 97.35%.
Table 5 shows the confusion matrix of the proposed model on the PAMAP2 dataset. In
the table, HA1 = lying, HA2 = sitting, HA3 = standing, HA4 = walking, HA5 = running,
HA6 = cycling, HA7 = Nordic walking, HA8 = ascending stars, HA9 = descending stars,
HA10 = vacuum cleaning, HA11 = ironing, and HA12 = rope jumping.

Figure 17. Results of the model on PAMAP2 dataset: (a) training loss and validation loss, and
(b) training accuracy and validation accuracy.
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Table 5. Confusion matrix of model on PAMAP2 dataset.

HA1 HA2 HA3 HA4 HA5 HA6 HA7 HA8 HA9 HA10 HA11 HA12 RCL F1S

HA1 493 0 0 0 0 0 0 0 0 0 0 0 1.00 0.96
HA2 46 504 10 0 0 0 0 0 0 0 0 0 0.90 0.95
HA3 0 0 459 2 0 0 0 0 0 0 0 0 1.00 0.99
HA4 0 0 0 667 0 0 0 0 0 0 0 0 1.00 0.99
HA5 0 0 0 6 483 24 0 0 0 0 0 0 0.94 0.97
HA6 0 1 0 1 3 490 17 0 0 0 0 0 0.96 0.96
HA7 0 0 0 0 0 0 547 0 0 0 0 0 1.00 0.98
HA8 0 0 0 0 0 0 0 295 2 0 0 0 0.99 0.98
HA9 0 0 0 0 0 0 0 0 246 11 0 0 0.93 0.96
HA10 0 0 0 0 0 0 0 0 0 500 9 0 0.98 0.96
HA11 0 0 0 0 0 0 0 0 0 19 669 0 0.97 0.98
HA12 0 0 0 0 0 0 0 0 0 0 0 160 1.00 1.00
PCR 0.91 1.00 0.98 0.99 0.99 0.95 0.97 0.97 0.99 0.94 0.99 1.00

3.8. Comparison with Existing Work

In the following, we compare the proposed model in this paper with the related work
in recent years. The selected works are based on the WISDM and PAMAP2 datasets in
Table 6. It could be noted that the recognition accuracy and Fw of our model have improved
compared with the relevant work. Firstly, our model is more accurate than CNN, TSE-
CNN and SC-CNN, because these models ignored the long-time dependence of sensor
feature data. Secondly, our model is more accurate than the hybrid model of CNN and
LSTM, or hybrid model of CNN and GRU, because BiLSTM can extract the forward and
backward information between time series, while LSTM or GRU only considers the forward
information. In addition, the accuracy and Fw of our model are higher than the model based
on attention mechanism. It reflects that the performance of our model is better than most
existing models. In terms of the number of model parameters, our model is also smaller
than those in [6,29,39]. Smaller models are easier to apply in mobile devices.

Table 6. Comparison with existing work.

Dataset Reference Accuracy Fw Params

WISDM

CNN [15] 93.32% - -
TSE-CNN [17] 95.7% 94.01% 9223

SC-CNN [6] 97.08% - 1,176,972
CNN-GRU [21] 97.21% 97.22% -
LSTM-CNN [40] 95.01% 95.85% 62,598

Our Model 97.32% 97.31% 71,462

PAMAP2

CNN-GRU [21] 95.27% 95.24% -
CNN [41] 91% 91.16% -

Self-Attention [29] - 96% 428,072
CNN-Attention [39] 93.16% - 3,510,000

Our Model 97.15% 97.35% 185,376

4. Conclusions

A model incorporating residual network and BiLSTM is proposed for the problem of
HAR. The model can comprehensively extract the local spatial features of the sensor data
and bi-directional long-term dependence within the spatial features. A new homemade
HAR dataset in which the human lower limb activity data are collected by a self-developed
IMU module was constructed. The proposed model was tested using the homemade HAR
dataset with the accuracy of 96.95%. We tested the proposed model with WISDM and
PAMAP2 datasets, and the results show that our model accuracy is 97.32% and 97.15%,
respectively. Through the comparison with the previous work, we find that the proposed
model obviously achieves improved accuracy and Fw. In addition, our model has fewer
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parameters than some existing models. We believe that our work has important applica-
tion prospects in the fields of physical training, health management, human lower limb
rehabilitation therapy, etc. The model will be further improved in the future to enhance the
accuracy of the model.
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