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Abstract: The article presents an AI-based fungi species recognition system for a citizen-science
community. The system’s real-time identification too — FungiVision — with a mobile application
front-end, led to increased public interest in fungi, quadrupling the number of citizens collecting data.
FungiVision, deployed with a human-in-the-loop, reaches nearly 93% accuracy. Using the collected
data, we developed a novel fine-grained classification dataset — Danish Fungi 2020 (DF20) — with
several unique characteristics: species-level labels, a small number of errors, and rich observation
metadata. The dataset enables the testing of the ability to improve classification using metadata, e.g.,
time, location, habitat and substrate, facilitates classifier calibration testing and finally allows the
study of the impact of the device settings on the classification performance. The continual flow of
labelled data supports improvements of the online recognition system. Finally, we present a novel
method for the fungi recognition service, based on a Vision Transformer architecture. Trained on
DF20 and exploiting available metadata, it achieves a recognition error that is 46.75% lower than the
current system. By providing a stream of labeled data in one direction, and an accuracy increase in
the other, the collaboration creates a virtuous cycle helping both communities.

Keywords: fungi; species; classification; recognition; machine learning; computer vision; species
recognition; fine-grained; artificial intelligence

1. Introduction

The collection and annotation of data on the appearance and occurrence of species
are crucial pillars of biological research and practical nature conservation work focusing
on biodiversity, climate change and species extinction [1,2]. The involvement of citizen
communities is a cost effective approach to large scale data acquisition. Species observa-
tion datasets collected by the public have already been proven to improve data quality
and to add significant value for understanding both basic and more applied aspects of
mycology [3–6]. Citizen-science contributions provide more than 50% of all data accessible
through the Global Biodiversity Information Facility [7].

In citizen-science projects focusing on biodiversity, correct species identification is a
challenge. Poor data quality is often quoted as a major concern about species data provided
by untrained citizens [8]. Some projects handle the issue by reducing the complexity of
the species identification process, for example, by merging species into multitaxa indicator
groups [9], by focusing only on a subset of easily identifiable species or by involving
human expert validators in the identification process. Other projects involve citizen-
science communities in the data validation process. For instance, iNaturalist [10] regards
observations as research-grade labelled if three independent users have verified a suggested
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taxon based on an uploaded photo. Automatic image-based species identification can act
both as a supplement or an alternative to these approaches.

We are interested in automating the process of fungi identification using machine
learning. This has been made possible by the rapid progress of computer vision in the
past decade, which was, to a great extent, facilitated by the existence of large-scale image
collections. In the case of image recognition, the introduction of the ImageNet [11] database
and its use in the ILSVRC (The ImageNet Large Scale Visual Recognition Challenge.)
challenge [12], together with PASCAL VOC [13], helped start the CNN revolution. The
same holds for the problem of fine-grained visual categorization (FGVC), where datasets
and challenges like PlantCLEF [14–16], iNaturalist [17], CUB [18], and Oxford Flowers [19]
have triggered the development and evaluation of novel approaches to fine-grained do-
main adaptation [20], domain specific transfer learning [21], image retrieval [22–24], un-
supervised visual representation [25,26], few-shot learning [27], transfer learning [21] and
prior-shift [28].

In this paper, we describe a system for AI-based fungi species recognition to help
a citizen-science community — the Atlas of Danish Fungi. The system for fungi recognition
“in the wild” achieved the best results in a Kaggle competition sponsored by the Danish
Mycological Society, which was organized in conjunction with the Fine-Grained Catego-
rization Workshop at CVPR 2018. The real-time identification tool (FungiVision) led to an
increase in public interest in nature, quadrupling the number of citizens collecting data. It
supports hands-on learning, much as children learn from their parents by asking direct and
naïve questions that are answered on the spot. A supervised machine learning system with
a human in the loop was created by linking the system to an existing mycological platform
with an existing community-based validation process.

From the computer vision perspective, the application of the system to citizen-science
data collection creates a valuable continuous stream of labelled examples for a challenging
fine-grained visual classification task. Based on observations submitted to the Atlas of
Danish Fungi, we introduce a novel fine-grained dataset and benchmark, the Danish Fungi
2020 (DF20). The dataset is unique in its taxonomy-accurate class labels, small number of
errors, highly unbalanced long-tailed class distribution, rich observation metadata, and
well-defined class hierarchy. DF20 has zero overlap with ImageNet, allowing unbiased
comparison of models fine-tuned from publicly available ImageNet checkpoints. The
proposed evaluation protocol enables testing the ability to improve classification using
metadata — for example, precise geographic location, habitat and substrate, facilitates
classifier calibration testing, and finally allows us to study the impact of the device settings
on the classification performance.

Finally, we present a substantial upgrade of the first version of the fungi recognition
service by: (i) shifting from CNN towards Vision Transformers (ViT), we achieved state-of-
the-art results in fine-grained classification; (ii) utilizing a simple procedure for including
metadata in the decision process, improving the classification accuracy by more than
2.95 percentage points, reducing the error rate by 15%; (iii) increasing the amount of training
data obtained with the help of the online identification tool. A new Vision Transformer
architecture, which lowers the recognition error of the current system by 46.75%, is under
review before deployment. By providing a stream of labeled data in one direction, and an
improvement of the FungiVision in the other, the collaboration creates a virtuous cycle that
helps both communities.

This paper is an extended version of our two papers published in WACV 2020 [29]
and WACV 2022 [30].

2. Related Work

This section introduces the fine-grained image recognition problem, describes existing
community-based image collections and platforms, reviews relevant publications about
machine learning for fungi recognition, and evaluates existing mobile and web applications
for fungi recognition "in the wild".
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2.1. Fine-Grained Image Classification

The task of image-based fungi recognition is an instance of a fine-grained visual clas-
sification (or categorization) problem. Fine-grained image classification has progressed
significantly with the emergence of very deep convolutional neural networks (DCNN),
after the success of Krizhevsky’s architecture [31] in the ImageNet ILSVRC-12 competition
— the ImageNet dataset itself contains a number of categories from the Fungi kingdom.
Recent FGVC approaches are based on discriminative region detection [32–34], visual
attention [35,36], multiple neural networks or bilinear architectures [37,38] and transfer
learning [39,40]. Moreover, methods based on CNNs perform well in multiple fine-grained
species identification tasks, including plant species classification [41–44], dog classifica-
tion [45], snake classification [46], bird classification [18,47,48] and in general species classi-
fication [17,49,50].

2.2. Community-Based Image Collection and Identification

The Global Biodiversity Information Facility (GBIF) [51] is the largest index of bio-
diversity data in the world. GBIF is organized as a network involving 61 participating
countries and 40 organisations (mainly international) publishing more than 62,400 biodiver-
sity datasets under open source licenses. The index contains more than 1.9 billion species’
occurrence records of which more than 88 million include images. With the recent advances
in the use of machine vision in biodiversity related technology, GBIF intends to facilitate
collaborations in this field, promote responsible data use and good citation practices. GBIF
has the potential to play an active role in preparing training datasets and making them
accessible under open source licenses [52].

iNaturalist [53] is a pioneering community-based platform allowing citizen scientist
and experts to upload and categorize observations of the world’s fauna, flora and fungi.
iNaturalist covers more than 345,000 species through almost 85 million observations. All
annotated data are directly uploaded to GBIF once verified by three independent users.

Wild Me is a non-profit organization that aims to combat extinction with citizen-
science and artificial intelligence. Their projects using computer vision [54] to boost de-
tection and identification include: Flukebook, a collaboration system to collect citizen
observations of dolphins and whales and to identify individuals, GiraffeSpotter, a photo-
identification database of giraffe encounters and many more.

The Atlas of Danish Fungi (Danmarks Svampeatlas) [55–57] is a citizen-science project
that currently involves more than 3,900 volunteers and contains approximately 1 million
quality-checked observations of fungi. The project and its data annotation process is de-
scribed in more detail in Section 3.1.

2.3. Machine Learning for Fungal Recognition

Machine learning and computer vision techniques are rapidly developing as tools
to enhance mycological research and citizen science, but has so far mainly been used
in real applications for the classification of microscopy images of fungal spores [58–60].
Tahir et al. [58] introduced a dataset of 40,800 labelled microscopy images of six fungal
infections and proposed a method to speed up medical diagnosis, avoiding additional
expensive biochemical tests. De Vooren et al. [61] published an image analysis tool for
mushroom cultivars identification, analyzing morphological characters such as length,
width and other shape descriptors. Zielinski et al. [60] used various CNN architectures and
bag-of-words approach to classify microscopic images of ten fungi species, making the last
stage of biochemical identification redundant. Thus, reducing costs and time necessary for
the identification. Another classical application has aimed to understand mycelial growth
patterns in order to understand fungal dynamics and interactions at the cellular level [62].
More recently, the interest in using AI as a tool to help citizen scientists and students to
identify mushrooms has expanded, but so far with rather few real life applications.
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Mobile Applications

A high number of mobile applications for fungi species identification include a com-
puter vision classification system, mostly with positive user reviews about the AI-powered
identification performance. The Picture Mushroom provides paid expert verification. None
contributes data to GBIF nor to mycologists. Examples of apps with positive user reviews
are the following:

• Mushroom Identificator with 1M+ downloads and a review score of 4.3/5, recogniz-
ing 900 fungi species — https://play.google.com/store/apps/details?id=com.pingou
.champignouf (accessed on 27 October 2021);

• Mushrooms App with 1M+ downloads and a review score of 4.2/5, recognizing 210
fungi species — https://play.google.com/store/apps/details?id=bazinac.aplikacena
houby (accessed on 27 October 2021);

• Mushroomizer with 10k+ downloads and a review score of 4.3/5, recognizing 530
fungi species — https://play.google.com/store/apps/details?id=my.tensorflow.lite.e
xamples.classification (accessed on 27 October 2021);

• Picture Mushroom with 1M+ downloads and a review score of 4.2/5. No record
about supported species was found — https://play.google.com/store/apps/details?i
d=com.glority.picturemushroom (accessed on 27 October 2021).

3. Data

All experiments were based on datasets collected from the Atlas of Danish Fungi,
which is described in Section 3.1. The details of the particular dataset are presented in
Sections 3.2–3.4. Quantitative parameters of the used datasets are summarized in Table 1.
For reference, the table includes iNaturalist 2021, the richest (in the number of species) and
largest (in the number of observations) publicly available fungi dataset not based on the
Atlas of Danish Fungi. The species from the Fungi kingdom are, by nature, visually similar,
thus introducing a challenging machine learning problem. The existing high intra- and
inter-class similarities and differences present in the data are visualized in Figure 1.

Table 1. The number of species and images in publicly available fungi datasets.

Dataset Species Training Images Val. Images Test Images

iNaturalist 2021 341 90,048 3410 ×

FGVCx Fungi ’18 1394 89,760 4182 9758
Danish Fungi 2020 1604 266,344 × 29,594
Danish Fungi 2021† 999 × × 14,391
Atlas of Danish Fungi ‡ 6406 × × 255,224

† Observations with species level labels submitted to Atlas of Danish Fungi in 2021; ‡ Observations with species
level labels submitted to Atlas of Danish Fungi since 2018.

Russula Russula Russula Hortiboletus Suillellus Neoboletus Amanita Amanita Amanita
emetica paludosa rosea rubellus queletii luridiformis muscaria rubescens pantherina

Figure 1. Examples of intra- and inter-class similarities and differences. Species selected from three
taxonomically distinct Fungi families — left: Russulaceae, center: Boletaceae, right: Amanitaceae.

https://play.google.com/store/apps/details?id=com.pingou.champignouf
https://play.google.com/store/apps/details?id=com.pingou.champignouf
https://play.google.com/store/apps/details?id=bazinac.aplikacenahouby
https://play.google.com/store/apps/details?id=bazinac.aplikacenahouby
https://play.google.com/store/apps/details?id=my.tensorflow.lite.examples.classification
https://play.google.com/store/apps/details?id=my.tensorflow.lite.examples.classification
https://play.google.com/store/apps/details?id=com.glority.picturemushroom
https://play.google.com/store/apps/details?id=com.glority.picturemushroom
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3.1. Atlas of Danish Fungi

The Atlas of Danish Fungi [55–57] is supported by more than 4000 volunteers who
have contributed more than 1 million content-checked observations of approximately
8300 fungi species, many with expert-validated class labels. The project has resulted in
a vastly improved knowledge of fungi in Denmark [57]. More than 180 species belonging
to Basidiomycota — a group of fungi that produces their sexual spores (basidiospores) on
club-shaped spore-producing structures (basidia) supported by macroscopic fruit bodies
including toadstools, puffbals, polypores and other types — have been added to the list of
known Danish species in the first atlas period (2009–2013) alone [57]. In addition, several
species that were considered extinct were re-discovered [63]. In the second project period
(2015–2022) several improved search and assistance functions have been developed that
present features relating to the individual species and their identification [63], making it
much easier to include an understanding of endangered species in nature management and
decision-making.

Annotation Process

Since 2017, the Atlas of Danish Fungi has had interactive labelling procedure for all
submitted observations. When a user submits a fungal sighting (record) at species level,
a “reliability score” (1–100) is calculated based on following factors:

• Species rarity, that is, its relative frequency in the Atlas;
• The geographical distribution of the species;
• Phenology of the species, its seasonality;
• User’s historical species-level proposal precision;
• As above, within the proposal’s higher taxon rank.

Subsequently, other users may agree with the proposed species’ identity, increasing the
identification score following the same principles, or proposing alternative identification
for non-committal suggestions. Once the submission reaches a score of 80, the label (identifi-
cation) is considered approved by community validation. Simultaneously, a small group of
taxonomic experts (expert validators) monitor most of the observation on their own. Expert
validators have the power to approve or reject species identifications regardless of the score
in the interactive validation. Community-validated and expert-validated Svampeatlas
records are published in the GBIF, weekly, since 2016. As of the end of October 2021, the
data in GBIF included 955,392 occurrences with 504,165 images [64]. Since 2019, the Atlas
of Danish Fungi observation identification has been further streamlined thanks to an image
recognition system [29] — FungiVision.

3.2. The FGVCx Fungi Dataset

The FGVCx Fungi Classification Challenge provided an image dataset covering
1394 fungal species and is split into a training set with 85,578 images, a validation set
with 4182 images, and a competition test set of 9758 images without publicly available
labels. There is a substantial change of categorical priors p(k) between the training set and
the validation set: The distribution of images per class is highly unbalanced in the training
set, while the validation set distribution is uniform.

3.3. The Danish Fungi 2020 Dataset

The Danish Fungi 2020 (DF20) dataset contains image observations from the Atlas of
Danish Fungi belonging to species with more than 30 images. The data are observations
collected before the end of 2020. Note that this includes more than 15 months of data
collection using our automatic fungal identification service described later in Section 5. The
dataset consists of 295,938 images represent 1,604 species mainly from the Fungi kingdom
with a visually similar species. Unlike most computer vision datasets, DF20 include rich
metadata acquired by citizen-scientists in the field while recording the observations that
opens promising research direction in combining visual data with metadata like timestamp,
location at multiple scales, substrate, habitat, taxonomy labels and camera device settings.
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The DF20 datasets were randomly split — with respect to the class distribution — into
the provided training and (public) test sets, where the training set contains d90%e of images
of each species.

3.4. Test Observations from 2021

To independently compare models trained on the FGVCx Fungi dataset and the
DF20, we used all validated observations submitted to the Atlas of Danish Fungi between
1st January 2021 and 31st October 2021. Only submissions that used the FungiVision
system [29] were used; we choose only the first image for each observation. With this
approach, we ended up with a test set of 14,391 images belonging to 999 species. In the
following text, we will denote this dataset as DanishFungi 2021 or DF21 in short.

4. Methods

In this section, we describe the design of the first generation of our fungi recognition
system, FungiVision, which achieved the best results in the FGVCx Fungi’18 recognition
challenge. It was also applied to the Atlas of Danish Fungi, further described in Section 5.
Furthermore, the evaluation of state-of-the-art classifiers on fungi data is presented. Finally,
we describe a simple method for metadata integration that significantly improves the
recognition capability.

4.1. The Baseline–FungiVision Post FGVCx Fungi’18 competition

Following the advances in deep learning for fine-grained image classification, we
decided to approach fungi recognition with Convolutional Neural Networks. For the
FGVCx Fungi Classification challenge, we trained an ensemble of six models (listed in
Table 2) based on Inception-v4 and Inception-ResNet-v2 architectures [65], and inspired by
our winning submission in the ExpertLifeCLEF plant identification challenge 2018 [41].

All models were fine-tuned from the publicly available ImageNet-1k checkpoints using
the Tensorflow Slim [66] deep learning framework. Hyper-parameters used during training
were set as follows: Optimizer: RMSprop, Batch Size: 32, Learning Rate: 0.01, Learning Rate
Decay: staircase with exponential decay factor 0.94, Weight Decay: 0.00004.

During training we used Polyak averaging [67] with Moving Average Decay of 0.999 to
keep shadow variables with exponential moving averages of the trained variables. The six
fine-tuned networks are publicly available at https://github.com/sulc/fungi-recognition.

4.1.1. Adjusting Predictions by Class Priors

Unlike in the benchmark datasets — with known class priors in both training and
test data — the applied machine-learning systems should be robust to different species
distributions, for example, depending on seasonality, location and altitude. We utilize the
following method for the adjustment of the class priors.

Let us assume that the classifier trained by cross-entropy minimization learned to
estimate the posterior probabilities, that is, fCNN(k|x) ≈ p(k|x). If the class prior probabil-
ities p(k) change, the posterior probabilities will in general change as well. The topic of
adjusting CNN predictions to new priors is discussed in [28,68,69]: in the case when the
new class priors pe(k) are known, the new posterior pe(k|x) can be computed as:

pe(k|xi) = p(k|xi)
pe(k)p(xi)

p(k)pe(xi)
=

=

p(k|xi)
pe(k)
p(k)

K
∑

j=1
p(j|xi)

pe(j)
p(j)

∝ p(k|xi)
pe(k)
p(k)

,
(1)

where we used
K
∑

k=1
pe(k|xi) = 1 to get rid of the unknown probabilities p(xi), pe(xi).

https://github.com/sulc/fungi-recognition
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While others [28,68,69] focus on estimating new unknown priors pe(k), we assume

that the uniform distribution pe(k) =
1
K

is given, as it is the case of the FGVCx Fungi’18
validation set (see Section 3.2). Then:

pe(k|xi) ∝
p(k|xi)

p(k)
. (2)

4.1.2. Test-Time Image Augmentation

Let us first validate the CNN architectures listed in Table 2 on the FGVCx Fungi’18
validation set. We compare six trained models — based on two architectures Inception-v4
and Inception-ResNet-v2 — before applying additional tricks, with one feed forward pass
(central crop, 80%) per image. We will continue the validation experiments with CNN 1,
that is, Inception-v4 fine-tuned from an ImageNet-1k checkpoint, which achieved the best
validation accuracy.

The test-time pre-processing of the image input makes a noticeable difference in
accuracy. Thus, we evaluate the performance dependence for various central crop areas of
the original image, various input sizes and pre-trained checkpoints. Dependence on the
central crop area in terms of Top1 and Top5 accuracy is listed in in Table 3. We include two
DNN architectures — Inception-v4 and ViT-Large/16 — and we provide validation on two
datasets, Danish Fungi 2021 and FGVCx Fungi’18.

For a final submission, we considered the following 14 image augmentations at test
time: the original image; additional six crops of the original image with 80% (central
crop) and 60% (central crop + 4 corner crops) of the original image width/height; and
the mirrored versions of the seven foregoing augmentations. All augmentations are then
resized to square inputs using bilinear interpolation. Predictions from all crops were
combined by averaging (sum) or by choosing the most common top1 prediction (mode).

The benefit of adjusting the predictions with the new categorical prior is shown in
Table 4. We show that after the training, the accuracy increases by 3.8%, from 48.8% to 52.6%.

Table 2. Performance of different models trained on the FGVCx Fungi’18 dataset — Top1 and Top5
accuracy on the FGVCx Fungi’18 validation set; 80% central crop.

ID Architecture Input Size Pretrained CKPT Top1 [%] Top5 [%]

1 Inception-v4 299 × 299 ImageNet-1k 48.8 77.0
2 Inception-v4 299 × 299 LifeCLEF 2018 48.5 75.8
3 Inception-v4 598 × 598 ImageNet-1k 48.6 76.6
4 Inception-v4 598 × 598 LifeCLEF 2018 48.6 76.6
5 Inception-ResNet-v2 299 × 299 ImageNet-1k 48.8 76.2
6 Inception-ResNet-v2 299 × 299 LifeCLEF 2018 47.4 75.8

[70] Inception-v4 299 × 299 – 44.7 73.5

Table 3. Dependence on the central crop area. Top1 and Top5 accuracy of Inception-v4 and ViT-
Large/16 on two datasets — FGVCx Fungi’18 (Validation) and Danish Fungi 2021, respectively.

Inception-v4 ViT-Large/16
Central Crop Top1 [%] Top5 [%] Top1 [%] Top5 [%]

100% 45.9 75.1 82.43 93.62
80% 48.8 77.0 82.99 93.77
60% 48.6 76.3 81.73 93.26
40% 43.1 69.3 75.03 89.24

Dataset FGVCx Fungi ’18 Danish Fungi 2021
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Table 4. Top1 recognition accuracy on the FGVCx Fungi validation set of a single CNN (ID 1) and
ensembles (ID 1-6) with either a single central (1) or multiple crops (14). Predictions from ensembles
and crops were combined by averaging (sum) or by choosing the most common top prediction
(mode). Results are shown both before and after adapting to known pe(k).

Baseline Known pe(k)
# of CNNs Crops Pool Top1 [%] Top1 [%]

1 1 – 48.8 52.6
1 14 sum 51.8 56.0
6 1 sum 54.1 58.5
6 14 sum 54.2 60.3
6 14 mode 54.2 59.1

4.2. State-of-the-Art NN Classifiers

We consider several state-of-the-art image classification architectures, which have
the potential to improve the accuracy over the first generation of the FungiVision sys-
tem described above. First, we choose a variety of state-of-the-art CNN architectures:
SE-ResNeXt-101-32x4d [71,72], EfficientNet-B3 [73], and EfficientNetV2-L [74]. Next, we
use the recently introduced Vision Transformers (ViT) [75], which showed excellent perfor-
mance in object classification compared to state-of-the-art convolutional networks. Unlike
CNNs, the ViT is not using convolutions, but interprets an image as a sequence of patches
and processes it by a standard Transformer encoder as used in natural language process-
ing [76] — the ViT architecture overview is described in Figure 2. Below, we describe the
setup of the methods used for experiments in Section 6.3.

Linear Projection of Flattened Patches

Transformer Encoder

Patch + Position
Embedding

* Extra learnable    
   [class] embedding

MLP 
HeadClass

Amanita Cae. 
Amanita Mus. 
Boletus Cal. 

...

Embedded 
Patches 

Norm 

Norm 

Multi-Head 
Attention 

MLP 

Transformer Encoder

+

+

0 1 2 3 4 5 6 7 8 9*

Figure 2. Vision Transformer architecture — main blocks. First, image is split into fixed-size patches
and flatten. Second, position embeddings is added, and resulting sequence of vectors is forwarded to
a standard Transformer encoder. The illustration inspired by [75].

4.2.1. Training Strategy

All architectures were initialized from publicly available ImageNet-1k pre-trained
checkpoints and were further fine-tuned with the same strategy for 100 epochs with the
PyTorch framework [77] within the 21.09 NGC deep learning framework Docker container.
All neural networks were optimized by Stochastic Gradient Descent with momentum set to
0.9. The start Learning Rate (LR) was set to 0.01 and was further decreased with a specific
adaptive learning rate schedule strategy — if the validation loss is not reduced for two
epochs in a row, reduce Learning Rate by 10%. To have the same effective mini-batch size
of 64 for all architectures, we accumulated gradients from smaller mini-batches accordingly,
where needed.

4.2.2. Augmentations

While training, we utilized several augmentations from the Albumentations library [78].
All methods, their description, and specified non-default parameters are as follow:
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• RandomResizedCrop: Creates random resized crop with a scale of 0.8–1.0.
• HorizontalFlip: Flips the image horizontally with 50% probability.
• VerticalFlip: Flips the image Vertically with 50% probability.
• RandomBrightnessContrast: Changes the contrast and brightness on a given image by a

random factor in a range −0.2–0.2 with 20% probability.

To match the input resolutions of the pre-trained models, all images were resized to
the required network input sizes of 224 × 224 and 384 × 384. Furthermore, we re-scaled
all image pixel values from 0–255 to 0–1, and we normalized it by mean (0.5) and std (0.5)
values in each channel.

4.3. Metadata Use

We propose a simple method for the use of metadata to improve the categorization
performance — similar to the spatio-temporal prior used in [79]. For a given type of
metadata (d) and image (i), we adopt the following assumption for the likelihood of an
image observation to get the probability of species (s):

p(i|s) = p(i|s, d), (3)

that is, that the visual appearance of a species (s) does not depend on the metadata. This
does not mean that the posterior probability of a species given an image is independent of
metadata d.

A few lines of algebraic manipulation prove that, under assumption Equation (3), the
class posterior given the image I and metadata D is easily obtained:

p(s|i, d) = p(s|i) p(s|d)
p(s)

p(i)
p(i|d) ∝ p(s|i) p(s|d)

p(s)
, (4)

where p(s) is the class prior in the training set. The discrete conditional probability p(s|d)
is estimated as the relative frequency of species (s) with metadata (d) in the training set.

While we know this assumption is not always true in practice, since metadata, such
as substrate or time, in fact do impact the image background as well as the appearance of
the specimen, this is the only possible approach not requiring modelling the dependence
of visual appearance and the metadata. The model trained without metadata has no
information about the visual appearance changes of a species as a function of d. Moreover,
this assumption is applicable for situations where the classifier has to be treated as a black
box without the possibility of retraining the model. Even this simplistic model based on an
unrealistic assumption reduces error rates, as shown later in Section 6.4.

With multiple metadata at once, for example, substrate and habitat or substrate and
month, we combine the posteriors assuming statistical independence:

p(s|d1, d2) ∝
p(s|d1)p(s|d2)

p(s)
. (5)

This is a simple, baseline assumption, which again may not always be valid for related
metadata. Direct estimation of p(s|d1, d2), for example, as relative frequencies, is another
possibility. The D20 benchmark has thus the potential to be a fertile ground for evaluation
of intra-metadata, as well as visual-metadata, dependencies.

The approach of Equation (4) needs a probabilistic classifier to serve as an estimator of
p(s|i). In our experiments, we use the outputs of the softmax layer. Note that, for CNNs, the
estimates of max p(s|i) are typically overconfident, and the quality of the estimator can be
improved by calibration [80,81]. The proposed benchmark allows to study new techniques
for metadata integration and to domain transfer or classifier calibration.
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5. The Application

This section describes the two main blocks of the developed image recognition pipeline,
the mobile application (available for both, Android and iOS) and the classification service
via Representational State Transfer (REST) API.

5.1. Online Fungi Classification Service

In order to provide a flexible and scalable image-based fungi identification service
for the Atlas of Danish Fungi, we created a recognition server based on the open-source
TensorFlow Serving [82] framework. The server currently uses one of our pretrained mod-
els, the framework allows us to deploy several models at the same time. No test-time
augmentations are currently used in order to prevent server overload.

The pipeline is visualized in Figure 3: The web- and mobile apps query the recognition
server via REST API. The server feeds the query image into the Convolutional Network and
responds with the list of predicted species probabilities. The apps then display a shortlist of
the most likely species for the query. The observation might be uploaded into the database
of the Atlas of Danish Fungi. The user can manually inspect the proposed species and
select the best result for annotation of the fungus observation.

Observations uploaded into the Atlas of Danish Fungi database and the proposed
species identifications are then verified by the community. Images with verified species
labels will be used to further fine-tune the recognition system.

Figure 3. The fungi recognition serving pipeline.

5.2. Mobile App

The foundation of the Atlas of Danish Fungi lies in the user-generated observations of
Fungi and the possibility to validate their species proposals.In addition to the web-based
recognition app [83], we have developed a mobile applications [84,85] with easy access to
the essential functionalities of its web counterparts, including automatic fungi recognition.
This section includes a detailed breakthrough of the app and how its interface affords
communal contribution to the collection, identification and validation of fungi observations.
It is of interest to the validity of the recorded data that it captures as much metadata to the
observation as possible, which is what the application aims to simplify and automate for
the user.

5.2.1. Name Suggestions — Image-Based Recognition

The Name Suggestions feature is available regardless of whether the user is logged in
or not. It is equivalent to the web-based recognition app, although this mobile version has
a direct native implementation with the on-device camera.

As shown in Figure 4, the Name Suggestions section offers a simple page view with
their current camera viewfinder and a couple of overlays. In the upper overlay, the user can
either go back using the navigation button or press the information button, which provides
information about the system and how it works. For direct identification, a user can choose
any photo from the image library or press the centre button to capture an image.

Upon either capturing or selecting an image, the image is then sent to the identification
server (as described in Section 5.1) for processing. This requires that the user has access to
the internet, although in an unpublished version of the app, a lightweight version of the
model runs locally using Googles ML Kit [86].
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(i) (ii) (iii)
Figure 4. Screenshots from the iPhone app of the Atlas of Danish Fungi: (i) the application menu
with the Name suggestions feature, (ii) image selection, and (iii) the fungi species suggestions with
mushroom edibility info.

Once the online fungi classification service processes the image, the user is presented
with the ten most likely predictions. As this app is publicly available and could potentially
end up in the hands of users more interested in the recognition functionality to classify
edible species from non-edible species, a disclaimer is always shown advising users not to
rely on the results for that use-case. Likewise, the app does not show probability scores
because of fears that high probability scores could mislead users to mistakenly trust the
system too much and potentially end up eating a toxic mushroom. Furthermore, if the
suggested species list has all probabilities lower than 0.5, we notify the user about the
prediction uncertainty that refers to unknown species or missing mushrooms on the picture.

Upon selecting one of the predictions, the app navigates to a page with details about
the species, including multiple images (if available), allowing users to confirm the proposed
species prediction. This page is described in Section Species Details.

5.2.2. Species Details

The details about the previously selected species are shown on the Species Details
page. We include: a variety of photographs, localized names in four languages (Latin,
Danish, English and Czech), species descriptions, national Danish red list status (https:
//www.redlist.au.dk/), other observations of the same species, near observations through
the map, and the possibility of submitting new fungi observations (sightings).

If the database contains more than one image, the images are shown in a carousel-like
view, automatically advancing to the next image after a fixed amount of time. Moreover,
we provide Latin and localized names and Danish red list status.

Following is a section containing 0–3 separate descriptive details about the species. As
seen in Figure 5 a general textual description belongs to that specific species; other species
might also contain information about the ecology and gastronomical features. Statistics
regarding the number of observations recorded in the database and their last observed
date are also shown. Additionally, we present a map showing all nearby observations as a
heat-map, with a list of all recent observations below.

https://www.redlist.au.dk/
https://www.redlist.au.dk/
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(i) (ii) (iii)
Figure 5. Screenshots from the iPhone app showing the Species details page. Including, (i) details
about the species with multiple images, (ii) nearby observations of the same species on a map, and
(iii) latest observations of the same species.

5.2.3. New Sighting

The New sighting functionality is the main feature of the mobile application. It provides
an easy and approachable method for reporting and collecting observations of Fungi to the
logged-in users. We provide two ways how to submit the fungi observation. First, selecting
it from the menu launches a native implementation of the mobile device’s rear-facing
camera. Second, choosing to report an identification based on the Name Suggestion feature
and transferring both the images and user based species identification.

The top section of the view contains observation images, along with a "call-to-action"
button that, when pressed, validates if the user has entered sufficient data about the sighting
and then uploads it if it passes. The bottom part of the page contains a tabbed view, which
stores three separate views that group the requested metadata — See Figure 6.

Details: Allows the entering of specific metadata about the observation. Namely,
the observation date, vegetation type, substrate, hosts selections and textual information.
Information about the vegetation type and the substrate is required; thus, an error pops up
if a sighting is submitted without it.

Species selection: This sub-view allows users to search, view and select the species
that is believed to be the one corresponding with what has been found. There are multiple
ways in which the app aids the user in selecting. Firstly, the user can mark specific species
as a favourite, thus becoming easily selectable on subsequent observations. Secondly, it
automatically sends added images to the online fungi classification service for processing.
The results of the processing are then shown directly in the species selection view. Every
time a species is selected, either by using the results from the identification service or not,
the user can select how confident they feel about the selection. If the user chooses a species
from the identification suggestions, that information is embedded into the data uploaded
to the server when the user is ready.
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(i) (ii) (iii)
Figure 6. Screenshots from the iPhone app showing the process for new sighting submission.
Including, (i) Species selection based on AI proposal, (ii) Observation Details selection, and
(iii) Sighting Location Selection.

Location: Lastly, the location view allows the specification of the location of the
observation. Upon entering the New sighting feature, the user’s location is automatically
located by using the phone’s in-built GPS, ensuring that it is not required by the user to
find the location on a map manually. Suppose an image is added with a different location
included in its EXIF than the user’s current location; the user is asked if they want to use
that location instead. This serves to aid the user in situations where they have captured
images of sightings on either external cameras or just using the in-built camera instead of
the application.

Once the user is ready to submit their sighting, they press the Upload button as
explained above. Once the upload is successful, any user can validate or reject the proposed
species identification for that observation.

6. Results
6.1. Machine Learning for Fungi Recognition in 2018

The FGVCx Fungi ’18 competition test dataset on Kaggle was divided into two parts —
public and private. Public results were calculated with approximately 70% of the test data,
which were visible to all participants. The rest of the data were used for final competition
evaluation to avoid bias towards the test images’ performance.

We chose our best performing system, that is, the ensemble of the six fine-tuned CNNs
with 14 crops per test image and with predictions adjusted to new class priors, for the final
submission to Kaggle. The accumulation of predictions was done by the mode from Top1
species per prediction as it had better preliminary scores on the public part of the FGVCx
Fungi ’18 test set.

Our submission to the challenge achieved the best scores in Top3 accuracy for both
public and private leaderboards. The results of the top five teams are listed in Table 5.
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Table 5. Results of the top five teams in the FGVCx Fungi Classification Challenge.

Private Test Set Public Test Set
Rank Team Name Top3 [%] Top3 [%]

1 our method described in Section 4.1 78.80 79.23
2 digitalspecialists 76.81 76.53
3 Val An 74.91 74.79
4 DL Analytics 71.66 73.15
5 Invincibles 71.25 71.51

6.2. Online Classification Service

The experts behind the Atlas of Danish Fungi have been highly impressed by the
performance of the system; in the application, the results of the system are referred to as
an AI suggested species. A data evaluation on the DanishFungi 2021 — data that have
been submitted for automatic recognition — has shown that only 7.18% were not approved
by the community or expert validation, thus revealing a far better performance than
most non-expert users in the system. Almost two thirds (69.28%) of the approved species
identifications were based on the highest-ranking AI suggesting species ID. In contrast,
another 12.28% were based on the second-highest-ranking AI suggested species ID and
another 10.54% were based on the top 3–5 suggestions. In other words, the AI system
achieved the Top1 accuracy of 69.28% and the Top1 accuracy of 92.82% in combination with
citizen scientists.

So far, the automatic recognition system has been tested by 1769 users — each submit-
ting between one and 1277 records — who contributed 35,018 fungi sightings over the past
2 years. For users submitting more than ten records, the accuracy in terms of correct identi-
fications guided by the system varied from 30% to 100%, pointing to quite considerable
differences in how well different users have been able to identify the correct species using
the system. Hence, the tool is not fully reliable but helps non-expert users to gain better
identification skills. The accuracy was variable among the fungal morphogroups defined
in the fungal atlas, varying from 24% to 100% for groups with more than ten records. The
accuracy was tightly correlated with the obtained morphogroup user score based on the
algorithms deployed in the Atlas of Danish Fungi to support community validation. Within
the first month the server ran, more than 20,000 images were submitted for recognition.
The dependence of human in the loop performance on the number of submissions, for
example, recognition experience, is shown in Figure 7.
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Figure 7. Dependence of human in the loop performance on the number of submissions. The 651
users with one submission only were filtered out.

6.3. Convolutional Neural Networks vs. Vision Transformers

In this section, we compare the performance of the well known CNN based models
and ViT models in terms of Top1 and Top3 accuracy on the DF20 and the FGVCx Fungi’18
datasets and two different resolutions — 224 × 224 and 384 × 384.
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Comparing well known CNN architectures on the DF20 dataset, we can see a sim-
ilar behaviour to that on other datasets [11,17,18]. The best performing model on the
DF20 and input resolution of 384 × 384 was SE-ResNeXt-101 with a Top1 score of 78.72%.
EfficientNetV2-L achieved a slightly lower accuracy of 77.83%. On a smaller input resolu-
tion (224 × 224), the best performing model was the EfficientNetV2-L, while achieving a
better performance by 1.22% than SE-ResNeXt-101.

Comparing two ViT architectures — ViT-Base/16 and ViT-Large/16 — against the
well-performing CNN models — EfficientNetV2-L and SE-ResNeXt-101 — on a DF20
dataset, we see a difference from the performance evaluation on ImageNet [74,75]. In our
experiments, ViTs outperform state-of-the-art CNNs by a large margin in a 384 × 384
scenario. The best performing ViT model achieved an impressive Top1 accuracy of 80.45%
while outperforming the SE-ResNeXt-101 by a significant margin of 1.73% on the images
with 384× 384 input size. In a 224× 224 scenario, netiher CNNs nor ViT showed a superior
performance. A wider performance comparison is shown in Table 6.

Table 6. Top1 and Top3 accuracy of selected CNN and ViT architectures on the DF20 dataset for two
resolutions. For 384 × 384, ViT is superior to CNNs achieving 80.45% Top1, reducing the error of the
best CNN by 9%. On 224 × 224, the ViT and EfficientNetV2-L differ insignificantly.

Top1 [%] Top3 [%] Top1 [%] Top3 [%]

Inception-ResNet-V2 69.53 84.30 75.43 88.58
EfficientNet-B3 72.51 86.77 77.59 90.07
EfficientNetV2-L 75.48 88.38 77.83 89.59
SE-ResNeXt-101 74.26 87.78 78.72 90.54
ViT-Base/16 73.51 87.55 79.48 90.95
ViT-Large/16 75.29 88.34 80.45 91.68

Image Resolution —> 224 × 224 384 × 384

6.4. Importance of the Metadata

Inspired by the common practice in mycology, we set up an experiment to show the
importance of metadata for Fungus species identification. Using the approach described in
Section 4.3, we improved performance in all measured metrics by a significant margin. We
measured the performance improvement with all metadata types and their combinations.
Overall, the habitat was most efficient in improving the performance. With the combination
of habitat, substrate and month, we improved the ViT-Large/16 model’s performance
on DF20 by 2.95% and 1.92% in Top1 and Top3, respectively, and the performance of the
ViT-Base/16 model by 3.81% and 2.84% in Top1 and Top3. A detailed evaluation of the
performance gain using different observation metadata and their combinations is shown in
Table 7.

Table 7. Performance gains based on three observation metadata and their combination. Tested on
the Danish Fungi 2020 dataset with different ViT architectures. H — Habitat, S — Substrate, M —
Month.

ViT-Large/16—384 × 384 ViT-Base/16—224 × 224
H M S Top1 [%] Top3 [%] Top1 [%] Top3 [%]

× × × 80.45 91.68 73.51 87.55
Ë × × +1.50 +1.00 +1.94 +1.50
× Ë × +0.95 +0.62 +1.23 +0.95
× × Ë +1.13 +0.69 +1.39 +1.17
× Ë Ë +1.93 +1.27 +2.47 +1.98
Ë × Ë +2.48 +1.66 +3.23 +2.47
Ë Ë × +2.31 +1.48 +3.11 +2.30

Ë Ë Ë +2.95 +1.92 +3.81 +2.84
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6.5. Impact on Mycology–Atlas of Danish Fungi

In October 2019, we launched the mobile application empowering Atlas of Danish
Fungi with users with an image-based recognition tool for fungi species identification. The
launch received good press coverage, including an appearance in the evening news on
Danish National television — TV2. The launch led to an immediate increase in the user
base, increasing the number of weekly contributors from 150 to 400. Besides, the number of
yearly contributors quadrupled from 2018 to 2020, resulting in a 79% increase in submitted
records (Figure 8 (i) — the number of active contributors, (iii) yearly records). In parallel,
the average number of records submitted per contributor dropped by 49% (from 117 to 51),
indicating a substantial increase in less dedicated fungal recorders but with much broader
geographical coverage. However, even the most active user groups with more than 100,
200, 500, and 1000 records a year also increased their size by 55%, 44%, 66%, and 92%,
respectively (Figure 8 (ii) — number of contributors with a various number of min records).
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Figure 8. Impact on the Atlas of Danish Fungi community: the number of (i) active contributors, (ii)
their distribution according to number of observations submitted, the number of (iii) observations,
and (iv) observations of species from the Redlist.

Over a longer period, including the first very active recording period from 2009–2013,
the shift from a relatively small but dedicated user group to a much larger group including
more and less active contributors is even more evident.

Table 8 shows the comparison of our original FungiVision system and a newly pro-
posed system, comprising a Vision Transformer trained on DF20 and utilizing the available
metadata. With the new system, the Top-1 error in was reduced by 48.2%.
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Table 8. Comparison of DNN models and the AI + Human approach on Danish Fungi 2021.

Approach Training Data Metadata Top1 [%] Top5 [%]

Inception-ResNet-v2 Fungi ’18 × 69.28 92.10

ViT/Base-16 DF20 × 82.11 93.79
ViT/Large-16 DF20 × 82.99 93.77
ViT/Base-16 DF20 Ë 82.85 94.03

ViT/Large-16 DF20 Ë 83.64 94.05

Acc mean Acc

Human in the Loop with Inception-ResNet-v2 (Fungi ’18) 92.82 87.1

Building on the terminology suggested by Ceccaroni et al. [87], the application of AI
in the Atlas of Danish Fungi has mainly contributed to influencing human behaviour, that
is, attracting many new contributors, who earlier tended to find fungi too challenging to
identify. Anyway, based on our yearly evaluation — see Table 9 — both the higher number
of users and submissions containing more challenging species for identification did not
affect the overall user performance. So far, we have not explored the educational and social
benefits for new contributors in detail, but from casual oral and written responses from
new contributors, the effects seem to be considerable. The large influx of new contributors
has been a challenge for already associated expert users and professional experts associated
with the project. The system is designed to be interactive and involving, requiring new
users to be trained to submit high-quality records and contribute actively to the validation
process. The development of automatic response options, for example, addressing common
issues related to the poor quality of submitted photos or inadequate meta-data, could solve
some of these issues in the future, potentially using AI to replace the time-consuming
human evaluation of records.

Table 9. Comparison of Fungi species recognition ability for different Atlas of Danish Fungi users.

User Recognition Ability [%]
Year # of Observations # of Users Citizen Scientists Experts

2018 49,826 377 94.65 92.62 97.20 95.84
2019 67,009 913 94.31 88.15 96.49 95.92
2020 76,812 1,293 94.42 88.03 97.55 93.97
2021 72,965 1,326 95.33 88.46 97.63 96.99

Performance metric —> ACC mean ACC ACC mean ACC

6.6. Impact on AI–Fungi Recognition in 2021

We introduce a novel fine-grained dataset and benchmark based on the symbiotic
relationship between Machine Learning and Mycology, the Danish Fungi 2020 (DF20). The
dataset, constructed from observations submitted to the Atlas of Danish Fungi, is unique in
its taxonomy-accurate class labels, small number of errors, highly unbalanced long-tailed
class distribution, rich observation metadata, and well-defined class hierarchy. DF20 has
zero overlap with ImageNet, allowing unbiased comparison of models fine-tuned from
publicly available ImageNet checkpoints. The proposed evaluation protocol enables testing
the ability to improve classification using metadata — for example, location, habitat, and
substrate, facilitates classifier calibration testing and finally allows us to study the impact
of the device settings on the classification performance.

Experimental comparison of selected CNN and ViT architectures shows that DF20
presents a challenging task. Interestingly, ViT achieves results superior to CNN baselines
with 80.45% accuracy, reducing the CNN error by 9%.

A simple procedure for including metadata into the decision process improves the
classification accuracy by more than 2.95 and 0.65 percentage points, reducing the error
rate by 15% and 6.5% on Danish Fungi 2020 and Danish Fungi 2021, respectively.

In Table 10, we present the comparison on the FGVCx Fungi’18 test set between our
novel approach where we utilize the ViT architecture and metadata, and the single model
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developed back in 2018. We can see a significant increase in performance by 6.59% in terms
of Top1 Accuracy. Evaluated via Kaggle using 80% central crop.

To allow further research in areas of Deep Learning mentioned above, we made
the source code for all methods and experiments is available at https://sites.google.com/v
iew/danish-fungi-dataset.

Table 10. Top3 accuracy for two DNN architectures on the FGVCx Fungi’18 test set.

Architecture Training Data Input Size Private Public

Inception-ResNet-v2 FGVCx Fungi ’18 299 × 299 70.69 71.37
ViT/Large-16 DF20 384 × 384 77.28 76.60

7. Conclusions

A machine learning system for automatic fungi recognition, a winner of a computer
vision Kaggle challenge, was deployed as an online recognition service to help a community
of citizen scientists identify the species of an observed specimen.

The development of the machine learning system for the Kaggle competition in
Section 4.1 showed the effect of calibrating outputs to new a priori probabilities, test-
time data augmentation and ensembles: together, these “tricks” increased the recognition
accuracy by almost 12% and helped us to score 1st in the FGVCx Fungi Classification
competition hosted on Kaggle, achieving a Top3 Accuracy of 73%. The availability of the
identification service helped to increase the activity and contributions of citizen scientists
to the Atlas of Danish Fungi. Integration of the image recognition system into the Atlas of
Danish Fungi has made community-based fungi observation identification easier: 92.82%
of submissions labeled by users with the help of the FungiVision system were identified
correctly.

The collected data allowed the creation of a novel fine-grained classification dataset —
the Danish Fungi 2020 (DF20) — which has zero overlap with ImageNet, allowing unbiased
comparison of models fine-tuned from publicly available ImageNet checkpoints. With
the precise annotation and rich metadata coming with the DF20 dataset, we would like
to encourage research in other areas of computer vision and machine learning, beyond
fine-grained visual categorization. The datasets may serve as a benchmark for classifier
calibration, loss functions, validation metrics, taxonomy and hierarchical learning, device
dependency or time series based species prediction. For example, the standard loss function
focusing on recognition accuracy ignores the practically important cost of predicting a
species with high toxicity. The quantitative and qualitative analysis of CNNs and ViTs
showed superior performance of the ViT in fine-grained classification. We present the
baselines for processing the habitat, substrate and time (month) metadata. We show that
— even with the simple method from Section 4.3 — utilizing the metadata increases the
classification performance significantly. A new Vision Transformer architecture, trained on
DF20 and exploiting available metadata, with a recognition error 46.75% lower than that of
the current system.

Cross science efforts, such as the collaboration described here, can develop tools for
citizen-scientists that improve their skills and the quality of the data they generate. Along
with data generated by DNA sequencing, this may help by lowering the taxonomic bias in
the biodiversity information data available in the future. By providing a stream of labeled
data in one direction and an accuracy increase in the other, the collaboration creates a
virtuous cycle, helping both communities.
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