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Abstract: Recent years have witnessed the proliferation of social robots in various domains including
special education. However, specialized tools to assess their effect on human behavior, as well as
to holistically design social robot applications, are often missing. In response, this work presents
novel tools for analysis of human behavior data regarding robot-assisted special education. The
objectives include, first, an understanding of human behavior in response to an array of robot actions
and, second, an improved intervention design based on suitable mathematical instruments. To
achieve these objectives, Lattice Computing (LC) models in conjunction with machine learning
techniques have been employed to construct a representation of a child’s behavioral state. Using
data collected during real-world robot-assisted interventions with children diagnosed with Autism
Spectrum Disorder (ASD) and the aforementioned behavioral state representation, time series of
behavioral states were constructed. The paper then investigates the causal relationship between
specific robot actions and the observed child behavioral states in order to determine how the different
interaction modalities of the social robot affected the child’s behavior.

Keywords: autism spectrum disorder (ASD); human–social robot interaction; machine learning;
special education

1. Introduction

One of the areas where social robots have been applied in recent years is education,
as well as special education for children. The main reasons behind the popularity of such
applications is the motivation and the guidance that social robots provide [1,2].

In special education, more specifically regarding Autism Spectrum Disorder (ASD)
interventions, the ability of robots to improve the social and communication skills of
children has been confirmed [3]. Numerous studies have demonstrated the use of social
robots toward improving social skills such as joint attention [4–6]. Safety issues have
also been considered [7]. The typical approach for an effective interaction with a human
is to ensure that, first, the robot attracts a child’s attention, followed by, second, a high
level of engagement throughout an educational session. Consequently, the robot pursues
an effective interaction by timely issuing visual (e.g., movements, blinking lights, facial
expressions) or auditory (e.g., speech, sounds, music) stimuli triggered by feedback sensory
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data techniques. The types of interaction engaged depend on factors such as a child’s
language skills [8].

Measuring a child’s engagement is critical for maintaining the interaction of a social
robot with a child. Various techniques have been proposed in the literature for measuring
engagement [9] including machine learning techniques [10]. In an early investigation of
child behavior triggered by robot actions, the average behavior times for contact and gaze
were used to evaluate the interaction duration [11]. In this work, it has been shown that
child actions generally last longer when the child interacts with a robot as opposed to a toy.
In Ref. [12] a simulation study was presented, where a learning framework was used to
train a robot according to a human supervisor’s corrective actions to a given child state. In
Ref. [13], the objective was to infer the engagement of one of the participants using cues from
other participants present, in a collaborative task with an NAO robot. Such cues include
head nods, visual focus of attention, utterances, gaze, etc. In Ref. [14], the engagement was
measured in terms of the time to task completion and/or the total duration of interaction;
furthermore, cameras are used to analyze the human–robot interaction sessions as well as to
calculate engagement measures. In Ref. [15] the comparative effect of pairs of visual, motion
and audio stimuli on a child’s attention was measured based on eye contact measurements
by the NAO robot in real-time during child–robot interaction. Software-based annotated
behaviors that indicate social attention, as well as social responsiveness, were used in [16]
to construct an engagement index in order to quantify the effectiveness of robot actions
based on coded video data. Video recordings were used in [8] to study spontaneous child
responses elicited from robot actions; in particular, child behaviors were annotated by
human coders; moreover, the frequency of the various observed interaction types was
both recorded and analyzed. In Ref. [17] fixation time as well as gaze transitions from
eye-tracking data were used to compare differences in elicited attention between typically
developing children and children with ASD. In another study [18], the data collected from
the sensory system were mapped onto the child’s identified behaviors based on training
and validation sets of child–robot interactions annotated by experts. In [19], a system
was presented which combines data from body pose, gaze and gestures to determine
whether a human intends to interact. The effect of robot feedback on children with ASD
in an imitation task was investigated in [20], where the authors measured the number of
prompts that need to be issued by the robot when an imitation is not executed correctly;
moreover, the accuracy of the imitation was automatically estimated by a Kinect motion
sensor. Furthermore, the work in [21] used a deep learning method to estimate engagement
based on the child’s pose as determined by recordings from four cameras. The effect of
visual stimuli on child attention was explored in [22]. The authors examined eye contact
occurrences in response to different types of LED activation patterns of a NAO robot.

In a recent study [23], a post-intervention analysis on multi-modal data collected
during learning activities involving a humanoid robot and two children was presented.
The authors extracted engagement-related features from video, audio and log data in order
to establish correspondences between clustered pairs of students and their corresponding
behavior patterns and learning labels. The objective of the work was to help the robot
to determine the time of effective intervention as well as the type of the most beneficial
behavior to be induced in the users. Ad hoc feature extraction has also been considered for
the estimation in children engagement [24]. With this method, machine learning techniques
are employed to determine from multi-modal data whether the child is engaged or not,
based on manual annotations by experts. Deep convolutional networks were used for
engagement estimations in [25]. In this study, strictly posed features were used for typically
developing children and children with ASD. The data in this work were also manually
annotated by humans according to a set of instructions provided by an expert psychologist.
Additionally, in [26] the authors examined how participants of a dance-based activity
responded to either positive or negative feedback by the robot, delivered in the form of
speech. The study presented in [27] investigated latencies in shifting attention in response
to robot-initiated stimuli in children with ASD. The study used two NAO robots to produce
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visual, speech, motion and social stimuli and used the child’s gaze to determine attention
shift and the difference between the time at which the stimulus was produced and the
time at which attention was established. In Ref. [28], attention assessment was achieved
by calculating an attention score using face attention and joint attention scores and sound
responses. Head pose and sound data were collected using an external mobile phone
camera attached to the body of a NAO robot. On the other hand, emotion detection
was performed using NAO’s head camera. Subsequent interactions were tuned based
on previous interaction results. The effectiveness of light color variation, auditory and
motion stimuli produced by a robot during robot-assisted ASD therapy was studied in [29].
Joint attention and eye contact duration were used to assess how robot stimuli affect
child behavior. The results indicate that the effectiveness of the stimulus depends on the
autism category.

As it can be seen from the above, typical studies dealing with engagement rely heavily
on detecting and interpreting human movements. However, not all human movements are
meaningful in human–robot interaction; therefore, a vision-based system must be able to
distinguish between movements that describe behavior from those that describe emotion or
intention, etc. In addition, it is not always clear whether a certain movement is in response
to a specific stimulus. Hence, for dependable analysis and design, a systematic study is nec-
essary regarding how a robot’s actions may trigger a child’s behavior. Moreover, effective
information representation techniques, including semantics, are promising. Research in
this field often considers cumulative measurements regarding engagement over the course
of a human–robot interaction session such as measuring the total duration of gaze with
the robot. However, few studies examine either the specific effect of combined interaction
modalities or the association of a robot action(s) to a child’s response. On the other hand,
they mostly assume human annotations of child behaviors rather than automatic (machine)
annotations. There is a shortage of mathematically sound tools for the analysis of human
behavior during interaction with a social robot toward a rigorous design of an effective
interaction with a human. Finally, it is common for studies that investigate the effect of
various stimuli to implement purpose-made scenarios to collect measurements and conduct
the analysis, instead of collecting data from existing therapeutic protocols.

This work addresses the aforementioned technical shortcomings. The two main con-
tributions of the present paper are summarized as follows: (1) the development of novel
computational instruments for the representation of behavioral states without the need
for manual behavior annotation, and (2) a novel data analysis methodology for providing
a better insight into induced child behavior in response to robot actions. As far as the
computational instruments are concerned, novel data representation structures and pro-
cessing tools have been developed so that non-numerical data that represent semantics in
human–robot interaction can be practically processed. In addition, these lattice computing-
based computational tools have been utilized in conjunction with an existing clustering
algorithm in order to induce data-driven behavioral states, instead of pursuing the classical
approach of classifying the observed data to pre-determined behaviors. On the other hand,
the data analysis conducted using the aforementioned computational instruments reveals
the relationship between robot events and child responses. The proposed methodology
allows psychologists to determine the significance and effectiveness of the various robotic
stimuli in a child’s engagement. Analyses can be conducted at various levels either per
activity or per child.

The proposed techniques have been developed collaboratively by computer scientists
and system engineers with the advice of medical doctors as well as of clinical psychologists.
Based on real-world data acquired in a clinical environment by sensors mounted on a hu-
manoid social robot, namely NAO, the idea here is to present a proof of concept regarding
novel tools toward (a) the quantitative evaluation of child–robot interactions during thera-
peutic interventions and (b) the more effective design of future intervention protocols. Only
human face data are considered in this work for behavioral state representation. However,
due to the inherently modular mathematical techniques considered here, enhancements
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toward including additional types of data are straightforward as well as sound. It is worth
noting that in this work, assessments of the causal relationship between stimuli and child
behavior were conducted by examining an existing robot-assisted therapeutic protocol in a
real-world therapeutic setting, as opposed to child–robot interaction activities specifically
designed for data collection purposes.

The approach proposed here is inspired from “structuralism” in general science [30]
including psychology [31], neurology [32] and biology [33]. In particular, human behavior
here is represented as a time series of “segments”. The latter are information granules,
interpreted as states (of a human), induced from recorded data by computer clustering
techniques. It is understood that the total number of clusters to be calculated by a computer
as well as the meaning of each cluster is subjective. However, such assumptions may result
in a computer-supported analysis of human behavior toward an effective human–robot
interaction design. In conclusion, a child’s behavior is represented here by a time series of
states. Note that human–robot interaction may involve more complex data than merely real
number measurements; for instance, it may involve structural data representing human
body posture and sets of features, among others. In the latter context, a novel mathematical
background for rigorous analysis is required that may accommodate disparate types of
data as explained next.

Lately, the Lattice Computing (LC) information processing paradigm has been pro-
posed for modeling in Cyber–Physical System (CPS) applications, including human–robot
interaction applications [34]. Recall that an LC has been defined as “an evolving collec-
tion of tools and methodologies that process lattice ordered data including logic values,
numbers, sets, symbols, graphs, etc.”. During its interaction with humans, a social robot
is driven by software; the latter implements a mathematical model. Note that, typically,
a model is developed in the Euclidean space, and it processes real numbers stemming
from electronic sensors measurements. However, when humans are interacting with social
robots, non-numerical data also emerge that represent semantics. An LC model has the
capacity to compute with semantics represented by a lattice partial order relation; moreover,
an LC model can compute with big numerical data as well as with non-numerical data
such as trees data structures, probability spaces, etc. A number of applications have demon-
strated the efficiency of LC models to represent various types of data in computational
intelligence applications efficiently as well as effectively [35–37].

The present paper is structured as follows. Section 2 describes useful data represen-
tations as well as mathematical instruments. Section 3 details both data acquisition and
pre-processing. Section 4 presents the proposed tools as well as their application results.
Finally, Section 5 concludes this paper by discussing the contribution of this work and
delineating potential future work extensions.

2. Data Representation and the Mathematical Instruments

This section outlines the data representation as well as novel mathematical instruments
used below.

2.1. Face Representation

The OpenFace library [38] was used to detect 68 key points called (facial) landmarks
on the human face, as shown in Figure 1, and return their coordinates. Given an image of
a human face, this widely used machine vision library is pre-trained to detect and track
specific keypoints in real time. The limitation is that the entire face has to be clearly visible
to the camera for the 68 landmarks to be detected. This means that detection can fail if the
face is turned above a certain threshold or if it is far from the camera.

In this work, a human face was represented as a tree data structure induced from the
facial landmarks, as presented in [39,40]. In this representation, selected landmarks were
utilized to consequently construct a tree hierarchy of features, which was then used as a
computational primitive in the context of lattice computing. More specifically, except for
the root node, every tree node corresponded to a vector, represented by polar coordinates,
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connecting its parent node to a point; hence, each node was characterized by two values,
namely the corresponding vector’s length r and orientation ϕ. The tree data structure is
illustrated in Figure 2, where, for concise visualization reasons, related nodes are grouped
together. Each tree node is a facial feature, computed using the original landmark data.
The facial features used to construct this tree representation were chosen because of their
significance in constituting the human face. The polar coordinates for each node constitute
the spatial arrangement of the nodes and their relation to each other.
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Figure 2. Facial features represented by a tree data structure.

Note that the tree in Figure 2 consists of three levels: The root of the tree, the Nose, is
defined by two points, namely the top and tip (of the Nose). The next tree level includes
nodes noted as primary features, which are computed as follows. The first two primary
node features are the vectors connecting the top of the Nose to the center of the left/right
eye, whose position is defined as the center of mass of the respective eye contours; the
next primary node feature is the vector connecting the tip of the Nose to the center of the
mouth calculated as the center of mass of the mouth’s outer contour; the last five primary
nodes features are vectors connecting the tip of the Nose to the five points defining the
bottom (i.e., the nostrils) of the Nose. Likewise, vectors were computed for secondary features
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that include points of the left/right eyes and brows, inner/outer mouth contours and the
jaw. In total, there were 8 primary and 51 secondary features. Scale/rotation/translation
invariance was achieved by defining the vector from the top to the tip of the Nose as
the unit vector. Furthermore, a vector orientation was measured in radians in the range
[−π, π]. An additional advantage of the proposed tree data structure is that it guarantees
the anonymity of the human face it represents.

2.2. Distance Metrics between Trees Data Structures

In all, 59 = 8+51 primary and secondary node features of the tree data structure in
Figure 2 were used, i.e., (ri,ϕi) pairs of polar vector coordinates, where i ∈ {1, . . . , 59}.
In particular, a pair ([ai,bi], [ci,di]) of intervals was used with the potential to represent
information granularity regarding the corresponding polar coordinates. In the special
case that ai = bi = ri as well as ci = di = ϕi, i ∈ {1, . . . , 59}, the corresponding tree data
structure is called trivial tree, and it represents a single face, whereas for ai < bi and/or ci < di,
i ∈ {1, . . . , 59}, the corresponding tree data structure is called interval tree, and it represents
an information granule, i.e., a neighborhood of faces. To facilitate implementation of various
algorithms below, the 59 tree nodes in Figure 2 were renumbered top-down and from left
to right by the numbers from 1 to 59, respectively; the tree root was given number 0.

Previous work has used the abovementioned tree data structure as an instrument for
vector feature extraction [39]. In contrast, the present paper considers a tree’s hierarchical
structure as follows. Since secondary features stem from primary ones, it was assumed that
any calculation that involves a primary feature must take into account the corresponding
children secondary features as well, albeit to a different degree. In the latter manner, the
hierarchical tree data structure was considered. Hence, the distance D(Ta,Tb) between two
corresponding branches Ta and Tb, in two different trees, was calculated, based on LC,
as follows:

(Ta, Tb) = dp
([

ap, b0
]
,
[
cp, dp

])
+ kc

[
D1

(
Ta1 , Tb1

)
+ · · ·+ DC

(
TaC , TbC

)]
, (1)

Equation (1) was applied on a tree data structure incrementally from the leaves to the
root. Specifically, for two whole tree data structures Ta and Tb of Figure 2 it follows

D(Ta, Tb) = D1
(
Ta1 , Tb1

)
+ D2

(
Ta2 , Tb2

)
+ D3

(
Ta3 , Tb3

)
+ D4

(
Ta4 , Tb4

)
+

D5
(
Ta5 , Tb5

)
+ D6

(
Ta6 , Tb6

)
+ D7

(
Ta7 , Tb7

)
+ D8

(
Ta8 , Tb8

)
,

(2)

because the distance dp
([

ap, b0
]
,
[
cp, dp

])
between the normalized roots (i.e., the Nose) of

two different trees Ta and Tb was zero; moreover, without loss of generality, it was assumed
that kc = 1. In particular, the terms D1(.,.) . . . D8(.,.) in Equation (2) were computed
as follows.

D1
(
Ta1 , Tb1

)
= d1([a1, b1], [c1, d1]) + k1[d9([a9, b9], [c9, d9]) + · · ·

+d19([a19, b19], [c19, d19])]

D2
(
Ta2 , Tb2

)
= d2([a2, b2], [c2, d2]) + k2[d20([a20, b20], [c20, d20]) + · · ·

+d30([a30, b30], [c30, d30])]

D3
(
Ta3 , Tb3

)
= d3([a3, b3], [c3, d3]) + k3[d31([a31, b31], [c31, d31]) + · · ·

+d59([a59, b59], [c59, d59])]

D4
(
Ta4 , Tb4

)
= d4([a4, b4], [c4, d4])

D5
(
Ta5 , Tb5

)
= d5([a5, b5], [c5, d5])

D6
(
Ta6 , Tb6

)
= d4([a6, b6], [c6, d6])

D7
(
Ta7 , Tb7

)
= d4([a7, b7], [c7, d7])

D8
(
Ta8 , Tb8

)
= d8([a8, b8], [c8, d8])
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Note that that Equations D4(.,.), . . . , D8(.,.) stem from Equation (1) based on the fact
that secondary feature nodes do not have children. Moreover, a distance di(.,.), i ∈ {1, . . . , 59}
is given by

di([a, b], [c, e]) = [vi(θi(a ∧ c))− vi(θi(α ∨ c))] + [vi(b ∨ e)− vi(b ∧ e)] (3)

The type of functions νi(.) and θi(.) for i ∈ {1, . . . , 59} is defined by the user. In previous
work, νi(.) and θi(.) were all assumed to be vi(x) = x and θi(x) = −x, i ∈ {1, . . . , 59} [39].
However, in this paper, non-linearities were introduced by inserting an additional parame-
ter λi in a νi(.) function as follows:

vi(x) = λix, (4)

θi(x) = θ(x) = 1− x, (5)

for i ∈ {1, . . . , 59}.
A distance D(Ta, Tb) was calculated separately for r and ϕ; then, the two partial results

were summed up scaled by parameters kr and kϕ, respectively.

3. Data Acquisition and Pre-Processing

This work was carried out in the context of investigating the effectiveness of robot-
assisted special education delivery compared to traditional methods. The overall study
regards controlled studies involving children with either Level I ASD or specific types of
learning difficulties. This paper focuses exclusively on the ASD intervention part of the
project. Children participants were recruited based on a diagnosis of Level I ASD [41]
at the outpatient Pediatric Neurology clinic of the 4th Department of Pediatrics of the
Papageorgiou General Hospital (PGH) in Thessaloniki, Greece. The intervention protocol
has been reviewed and approved by the hospital’s ethics committee. All the required
informed consents and clearances have been obtained by the participants’ parents or legal
guardians, prior to the interventions. All legal requirements for data collection and storage
were fulfilled. Sensory data acquisition was carried out exclusively by the sensors on-board
the NAO robot. The recorded data were batch-processed later, using software developed
specifically for this work.

3.1. Data Acquisition

The protocol that was designed by clinical psychologists at PGH [42,43] includes
9 distinct steps, described in Appendix A. Each step concerns a thematic unit regarding the
development of specific social and/or communication skills and includes 1 or 2 activities, or
equivalently scenarios, such as symbolic games, imitation games, etc. In total, 12 activities
were included in the protocol. Note that the sets of activities of any two different steps are
mutually exclusive. Any therapeutic session was designed by clinical psychologist(s) as a
series of protocol steps, according to the needs of a specific child at any given day; during a
session, activities were selected “on the spot” by practitioner psychologist(s) and could be
executed one or more times (attempts).

Data were acquired during all sessions at the PGH as follows. During the robot-
assisted session, the robot was positioned in front of the child at a distance of approximately
1 m in order to perform the interactive activities, as shown in Figure 3.
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Figure 3. Positioning of child and robot in the therapy room during a session.

The robot used its own sensors to log both its environment and itself. To maximize
the detection capabilities of the OpenFace library, appropriate lighting conditions were
ensured in the therapy room, and the robot has been programmed to move its head to track
the child and maintain visual contact for as long as possible. In particular, the robot was
recording a variety of anonymous data regarding the child in real-time including facial
landmarks, body pose, hand gestures and eye contact as well as the volume and duration of
the child’s speech. For the duration of the robot-assisted activities, the robot’s camera was
continuously capturing images of the child, which were then fed to the OpenFace library in
order to perform the detection of the 68 landmarks and return their (x,y) coordinates. At
the same time, the robot kept track of its own actions including its body motions, posture,
animations, audio playback, speech, eye LED activity, whether eye tracking was active and
whether its sonar sensors detect objects in close proximity. The outset of a robot action is
called an event. All the recorded data values (robot actions and child data) at a sampling
time constitute a frame. Frames were acquired in this work at a sampling rate of 3 Hz, i.e.,
3 frames per second. A frame is called complete if and only if it includes values for both
the child’s face and the robot’s actions. The present work considers exclusively the frame
values in Table 1, where the state of a child was defined by the 68 human face landmarks
points. Frames where the child’s face was not recognized were discarded.

Table 1. A frame with values recorded by NAO robot during a session.

Robot Actions per Modality Child State

(a) Animation modality actions: None, Disappointed,
Default (movements while speaking), Stand.

Points in child’s face
(68 facial landmarks)

(b) Sound modality actions: no/yes

(c) LEDS modality actions: no/yes

(d) Speaking modality actions: no/yes

Frame sampling time: Date and time

The values of each frame, which include the landmarks coordinates as well as the
recorded robot actions, were stored in text files. This work considers data from seven
children (aged 7 to 11 years old, six male and one female) in 82 sessions. There were
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194 attempts of various activities. Only attempts including complete frames were consid-
ered; hence, 90 attempts were considered, namely eligible attempts. In conclusion, from the
41,911 frames recorded in 90 eligible attempts, a face was detected in 6846 complete frames
due to the fact that, in many cases, a child turned away to look at either surrounding objects
or the therapist or the child moved away from the robot.

3.2. Structured Head Pose Recognition

Head pose recognition is also important when estimating a child’s engagement. Our
assumption here was that a child is engaged if and only if it orients its head directly at the
robot. Therefore, head pose recognition was treated as a pattern classification problem as
detailed in the following.

Training data were generated by recording stills of a head in nine head poses (classes),
namely Front, Upper Left, Up, Upper Right, Right, Lower Right, Down, Lower Left, Left
denoted by the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively (Figure 4). In particular, for
the class Front, three sub-classes were assumed, namely Front Left, Front Proper and
Front Right. Every individual image was represented by a trivial tree as was explained in
Section 2.
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One hundred labeled image stills were recorded for every head pose in order to
compute a total of 11 interval tree prototypes as follows. The minimum and the maximum
values of r and ϕ for every feature at a tree node were used to calculate a pair (∆ri, ∆ϕi) of
intervals, i ∈ {1, . . . , 59} per head pose. In addition, one hundred images for each of the nine
basic head poses were recorded, that is, a total of 900 images were gathered for testing. More
specifically, to test the robustness of the proposed method under environmental conditions
encountered during ASD interventions, 900 data were collected for all combinations of the
following two conditions: (1) the distance between the subject and the camera was either
40 cm or 1 m and (2) the lighting was either normal or dim.

After the generation of the head pose prototypes, classification experiments were
carried out. The objective of the classification experiments was to determine the ability
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of this representation in the recognition of each head pose, i.e., to correctly classify each
testing image to the correct head pose class. In other words, a test image (a tree with trivial
intervals) is classified to the class whose prototype (interval tree) is closest (i.e., has greater
similarity). A standard 10-fold cross-validation classification was carried out on the testing
data. Furthermore, parameter optimization was pursued by a genetic algorithm, in order
to determine the parameters that result in greater classification rates. More specifically, a
chromosome encoded the λi, i ∈ {1, . . . , 59} parameters for r and the λi, i ∈ {60, . . . , 118}
parameters for ϕ; moreover, it encoded k1, k2 and k3 for r as well as for ϕ; finally, it encoded
the kr and kϕ parameters as shown in Figure 5. The Genetic Algorithm (GA) included a
population of 500 individual chromosomes, each representing a specific set of parameters
(Figure 5) for 50 generations with the ranges of all parameters λi, i ∈ {1, . . . , 118}, ki,
i ∈ {1, . . . , 6}, kr and kϕ in the interval [0, 10].
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The results for classification experiments regarding head pose estimation after param-
eter optimization are shown in the second column of Table 2.

Table 2. Classification results for four environmental conditions.

Distance/Lighting Condition Classification Results (%)

Tree Vector

40 cm/Normal 97.8 86.8

40 cm/Dim 78.4 66.7

1 m/Normal 97.0 84.2

1 m/Dim 74.6 46.7

These results are significant improvements compared to the results obtained in a
previous work [39] shown in the third column of Table 2. In particular, previous results
were obtained using the same tree structure as an instrument for feature extraction in a
vector form. Table 2 demonstrates that the employment of a tree data structure improves
head pose recognition. The improvement was confirmed by a paired two-sample t-test.
There was a significant difference between the classification performance achieved by using
the tree representation (M = 83; SD = 0.13) and that achieved by the vector form (M = 86;
SD = 0.12); t(7) = −3.72, p = 0.003. This indicates that the chosen representation is a reliable
instrument in determining head pose and can therefore be used for this purpose in the
following analysis.
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3.3. States Induction by Clustering

A clustering procedure was carried out in order to induce clusters of frames, i.e., child
states, from data compiled in all real-world application sessions. In particular, the k-means
algorithm was employed using the distance of Equation (2). This distance was used instead
of the Euclidean distance commonly used in the k-means algorithm because Equation (2)
considers the hierarchical tree data structure. More specifically, the k-means algorithm was
initialized using 11 trivial trees computed as the centroids (i.e., mean values) of the 11 initial
interval trees prototypes described as training data above; furthermore, the parameter
values used for the calculation of distances were those estimated by the genetic algorithm
above. The coordinates of all complete frames of the intervention recorded text files were
transformed to the tree representation described in the previous section. Therefore, a total
of the 6846 trivial trees, corresponding to complete frames, were clustered. The Front Left,
Front Proper and Front Right clusters were treated as one class, namely Front. Hence, nine
states were computed, namely (within parentheses is shown the original number of trivial
trees): Upper left (452), Up (23), Upper right (93), Left (1560), Front (2434 = 517 (Front Left)
+ 1750 (Front Proper) + 167 (Front Right)), Right (472), Lower left (263), Down (1004) and
Lower right (545). The distribution of 6846 complete frames per class is shown in Figure 6.
The shows that most frames were clustered around the cluster with the Front centroid,
which is expected given that most of the time the child was facing the robot. It can also
be observed that quite a few frames were centered around the Left centroid, which can be
explained by the fact that during the sessions the therapist was sitting on the left side of the
child, frequently attracting the child’s attention by giving instructions or asking questions.
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The significance of employing clustering of the trivial trees that correspond to com-
plete frames is that it allows data-driven creation of behavioral states, instead of merely
classifying each frame as one of the training prototypes. Although clusters are centered
around the mean values of the prototypes, they can contain frames that are farther away but
have significant commonalities compared to other frames. This allows clusters (i.e., states)
to be determined by the entirety of the available data. Clusters are also more versatile
since they could allow automatic behavioral state creation in future application where
more sensory stimuli are considered, and so complex behavioral units can emerge from the
available data.
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Figure 7 illustrates the overall process of creating the child states from the raw data
collected by the robot during the sessions.
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4. Tools for Behavioral Data Analysis

Using the instruments above, four tools were developed, presented one per sub-
section below. In addition, note that four different robot modalities were considered, namely
(a) Animation, (b) Sound, (c) LEDs and (d) Speaking. In particular, “Animation” typically
involves dancing as well as various gestures; “Sound” typically involves music as well
as various sound effects; “LEDs” typically involves photo-rhythmic eye patterns; and
“Speaking” typically involves animated speech or speaking with robot movements in tune.
Each modality was implemented by one or more robot actions. The corresponding child
responses were recorded.

4.1. Relationship between Robot Actions and Child States

A numerical analysis was carried out on the set of complete frames. In addition to
understanding child behavior, the objective, given a specific robot modality, was to calculate
a probability distribution function over the set of child states toward designing a session
that attracts a child’s attention and implements props to maintain engagement and develop
social attention profiles.

Figure 8 displays the four different normalized histograms of complete frames over
the nine child states. Each histogram can be interpreted as a probability mass function
induced from experimental data. Table 3 displays the corresponding probability mass
function values.

Table 3. Probability masses over the states for four different robot modalities.

Robot
Modalities Front (0) Upper

Left (1) Up (2) Upper
Right (3) Right (4) Lower

Right (5) Down (6) Lower
Left (7) Left (8)

Animation 0.335 0.081 0.007 0.017 0.064 0.071 0.152 0.034 0.239

Sound 0.330 0.079 0.003 0.005 0.080 0.057 0.198 0.059 0.189

LEDs 0.438 0.052 0 0.005 0.032 0.082 0.125 0.062 0.204

Speaking 0.346 0.067 0.005 0.013 0.071 0.061 0.149 0.046 0.242



Sensors 2022, 22, 621 13 of 22
Sensors 2022, 22, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 8. Four normalized distributions of the set of complete frames over the set of nine child states 
for four different robot modalities, namely Animation, Sound, LEDS and Speaking. 

It is clear from Figure 8 that the majority of frames belong in the Front state, 
regardless of the robot modality. The latter is a confirmation of the fact that the robot 
attracted the child’s attention when it was producing some audio or visual stimulus. In 
particular, the aforementioned effect appears to be more pronounced when the robot was 
performing an animation or speaking. It must be noted that robot speech was configured 
to also be accompanied by random hand gestures, and therefore, for this robot modality, 
both audio and visual stimuli were present. 

Table 3. Probability masses over the states for four different robot modalities. 

Robot Modalities Front (0) Upper Left (1) Up (2) Upper Right (3) Right (4) Lower Right (5) Down (6) Lower Left (7) Left (8) 
Animation 0.335 0.081 0.007 0.017 0.064 0.071 0.152 0.034 0.239 

Sound 0.330 0.079 0.003 0.005 0.080 0.057 0.198 0.059 0.189 
LEDs 0.438 0.052 0 0.005 0.032 0.082 0.125 0.062 0.204 

Speaking 0.346 0.067 0.005 0.013 0.071 0.061 0.149 0.046 0.242 

The comparison between different robot modalities, for the specific 7 children that 
participated in the study, reveals that the LEDs tend to result in the child facing the robot 
more than any other robot stimuli and especially other robot-generated visual stimuli 
such as animations. This can be explained by two facts: (1) The LEDs are located in the 
eyes of the robots; therefore, this particular stimulus requires more direct eye contact, as 
opposed to alternative robot movements, which can be perceived even if the head is 
turned, and (2) LED stimuli occurred rather rarely during the sessions; therefore, they are 
more interesting when they happen. Note that the total number of frames in which active 
LEDs are involved is small (n = 609) compared to frames regarding Animation (n = 2866), 
Sound (n = 2290) or Speaking (n = 3609). For Sound and Speaking robot modalities head 
orientations other than Front seemed to be prevalent. This can be explained by 
considering that these two categories are based on audio stimuli, and so they do not 
require direct eye contact. Similar analyses can be conducted to study the effect of 
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It is clear from Figure 8 that the majority of frames belong in the Front state, regardless
of the robot modality. The latter is a confirmation of the fact that the robot attracted the
child’s attention when it was producing some audio or visual stimulus. In particular, the
aforementioned effect appears to be more pronounced when the robot was performing
an animation or speaking. It must be noted that robot speech was configured to also be
accompanied by random hand gestures, and therefore, for this robot modality, both audio
and visual stimuli were present.

The comparison between different robot modalities, for the specific 7 children that
participated in the study, reveals that the LEDs tend to result in the child facing the robot
more than any other robot stimuli and especially other robot-generated visual stimuli
such as animations. This can be explained by two facts: (1) The LEDs are located in the
eyes of the robots; therefore, this particular stimulus requires more direct eye contact,
as opposed to alternative robot movements, which can be perceived even if the head is
turned, and (2) LED stimuli occurred rather rarely during the sessions; therefore, they are
more interesting when they happen. Note that the total number of frames in which active
LEDs are involved is small (n = 609) compared to frames regarding Animation (n = 2866),
Sound (n = 2290) or Speaking (n = 3609). For Sound and Speaking robot modalities head
orientations other than Front seemed to be prevalent. This can be explained by considering
that these two categories are based on audio stimuli, and so they do not require direct eye
contact. Similar analyses can be conducted to study the effect of alternative robot modalities
such as specific animations or sounds or the recitation of specific stories or instructions.
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In the context of this work, LC emerges naturally in two different manners. First, a
probability space constitutes a mathematical lattice equipped with a positive valuation
function; the latter is the corresponding probability measure. Second, in the lattice of
interval trees, a positive valuation function is also available. Recall that LC computes with
semantics represented by the partial order relation.

Robot actions may be interpreted as “causes”, whereas behavioral data may be inter-
preted as the corresponding “effects” to the causes. By identifying, conditionally, a reliable
functional relation from robot actions to human behaviors, actions of a social robot can
be designed toward assisting a human expert in ASD interventions. Nevertheless, due
to nature of human–robot interaction, the quest for a deterministic functional mapping
from robot actions child states is not expected to be fruitful. Hence, a different functional
mapping is sought as discussed below.

4.2. Events and Child’s State Transitions

Additional data of interest to clinical psychologists regard child response to an event;
recall that the latter has been defined above as “the outset of a robot action”. More
specifically, observation over multiple sessions may identify factors influencing endogenous
attention versus exogenous attention.

The recorded time series of complete frames in all sessions were scanned in order to
identify every instance where an event had occurred. A state transition, by definition, occurs
when the child state previous to an event state is different than the one following the event.
Symbolically, let si, i ∈ {1, . . . , N} be a time series of states in a session; furthermore, let an
event occur at time k ∈ {1, . . . , N}. Then, a state transition, by definition, occurs at time k if
and only if sk−1 6= sk+1.

Figure 9 displays all the recorded transitions that correspond to all four different
robot modalities: Animation, Sound, LEDs and Speaking. More specifically, a two-digit
number “ab”, where a,b ∈ {0, . . . , 8}, represents a transition from state “a” to state “b”.
Each subplot therefore shows which specific state changes have occurred when some robot
action was initiated, as well as the number of state change occurrences. For example, in
Figure 9a, the change from state “6” to state “0” occurred 11 times when animation had
been initiated. Note that only frames where there was a transition from one state to another
were plotted, whereas frames where there was no state change were ignored. To account
for a possible “time lag”, alternative definitions for a state transition were considered, in
particular sk−1 6= sk+2 and sk−1 6= sk+3.

Table 4 displays the results in detail. It can be observed that cumulatively, for all four
modalities, the majority of transitions involved state “0” (Front). This is a further indication
that robot actions attract the child’s attention and are more likely to motivate the child to
establish visual contact.

Table 4. Number of “state transitions” for three different definitions of a “state transition”.

No. of State Transitions at

Robot sk+1 sk+2 sk+3

Actions Yes No Yes No Yes No

Animation 52 109 64 93 73 83

Sound 6 5 3 7 4 5

LEDs 14 19 10 22 12 21

Speaking 37 87 44 78 51 71

TOTAL 109 220 121 200 140 180
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4.3. Visualization of States

Figure 10 displays a time series of a child’s states during a session.
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These were states that were detected during this sample session and were arranged
in the order they appear, so that the progression of, and transitions between states during
the scenario can be seen. Frames with no face detection, i.e., non-complete frames, are also
shown. The visualization of the sequence of states during the execution of an activity can
provide the researcher with clues regarding the predominant trends in child behaviors.
For instance, the graph in Figure 10 may suggest the visual focus of attention and draw
conclusions on sustained attention and the engagement level of the child.

4.4. Patterns of States

A child’s behavior can be considered to be a sequence of states. Frequent state se-
quences can reveal repeating patterns that, if they are observed to appear consistently after
specific stimuli, can provide valuable clues to a clinical psychologist regarding the process.
For example, does a child’s attention shift to the robot cue immediately or is the clinical
psychologist’s involvement or aid needed? In addition, it can be studied whether similar
robot actions (causes) trigger similar behaviors (effects).

To perform this type of analysis, the 90 attempts have been treated as 90 strings, each
string containing of the successive states expressed as characters 0–8 as described above.
With this notation, a pattern-matching algorithm was applied in order to identify any
repeating patterns by assembling all the substrings contained at least 3 different states
(which means that the substrings were at least of 3 characters in length). In addition, due to
the sampling rate of 3 Hz, it was decided empirically that strings with up to 3 successive
state repetitions are equivalent, and are therefore the same behavior executed at different
speeds. For instance, the strings “806”, “8066”, “8806” and “80006” are equivalent. A set of
equivalent patterns here is called equivalence class.

The set of all strings with the aforementioned criteria were computed in all the
90 eligible attempts, and it was found that state sequence (string) “806” and its equiv-
alent patterns occurred most frequently. More specifically, the aforementioned strings
(and their frequencies within parentheses) include “806” (16), “8066” (11), “8806” (11),
“8006” (11), “88806” (7), “80666” (7), “88066” (7), “80066” (7), “88006” (7), “888006” (6),
“800666” (6), “880666” (5), “888066” (4), “880066” (3), “80006” (3), “8880066” (2), “880006” (2),
“8800666” (2), “8880666” (2), “88800666” (1), “800066” (1), “8800066” (1), “8880006” (1),
“88800066” (1). Figure 11 displays 20 attempts, randomly selected out of the 90 eligible
attempts, that include complete frames. It also indicates the occurrences of equivalent to
“806” strings in red color.
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In all, 124 occurrences of string “806”, as well as its equivalent strings, appear, includ-
ing a total number of 604 complete frames distributed per robot modality values as follows:
(a) Animation (None (279), Disappointed (22), Default (213), Stand (90)), (b) Sound (NO
(377), YES (227)), (c) LEDs (NO (589), YES (15)), and (d) Speaking (NO (276), YES (328)) as
shown in Figure 12, which displays the results in all 90 attempts. In particular, Figure 12
displays how the possible values of each modality are distributed, for the frames where the
pattern “806” and equivalent patterns occur (i.e., for the particular equivalence class). It
can be noted that the most frequent pattern “806” rarely appears with LEDs robot modality.
The latter is explained by the fact that LEDs fully absorb a child’s attention. Furthermore,
Figure 12 shows that the pattern “806” rather appears with either Speaking or Sound. The
latter can suggest a pattern of interest to clinical psychologists for further study.
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It has been observed that the most frequent equivalent patterns are similar, except
for two major differences: first, the order of appearance of the states, and second, the
number of repetitions of a state before the transition to a new state. The first difference
indicates that certain state transitions are more common than others, regardless of the order
of their appearance. By knowing what the states represent—in this case a head pose—the
expert can identify the meaning of repeated state changes in behavioral terms. The second
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difference indicates that a pattern of states can have a variable duration because a child
may remain in a particular state for some time as was explained above.

The developed software allows for the correlation of a particular pattern of states
with the robot actions, i.e., to identify which robot actions were active for the duration of
the state sequence in question. In this way, the expert can make assumptions on whether
specific robot actions cause certain repeated behaviors. For example, the histograms of
Figure 12 reveal the active robot actions when pattern ‘806′ occurred. In particular, it can
be seen that the particular pattern of states occurred more frequently when the robot was
speaking and the animation was set to the default mode, i.e., when there were random
hand gestures while the robot was speaking.

Taken together, the above four tools are valuable to clinicians because they can provide
information on the different visual attentional processes and the sub-components of atten-
tion: alerting, orienting and inhibition, making the design of individualized robot-assisted
interventions easier and more productive. They could also facilitate the comparison of
ASD children with typically developed children against various tasks of joint attention.
In addition, cluster analysis could be valuable as an objective marker of the intervention
progress. This preliminary work has exclusively considered clusters defined in the space
of tree data structures representing facial points. However, due to the LC applicability,
additional data types can be accommodated modularly in order to induce enhanced clusters
for sophisticated decision making as discussed in the following section.

5. Discussion and Conclusions

This work has reported on an ongoing project, which studies the effectiveness of
social robots as tools in non-invasive psycho-educational interventions including Autism
Spectrum Disorder (ASD). The shorter-term objective is to develop missing tools for clinical
psychologists to carry out behavioral data analysis. The longer-term objective is to develop
a dependable robot assistant to clinical psychologists. In the aforementioned context, an
analysis of human behavioral data is necessary toward enhancing, first, the understanding
of human responses to robot actions and, second, both social skills and emotional regulation
by improving the robot-assisted intervention. Data were acquired during real-world ASD
interventions at Papageorgiou General Hospital (PGH) in Thessaloniki, Greece where
a social robot was interacting with children and, at the same time, recording both the
children’s state and its own. It must be noted that additional data have been recorded
manually by clinical psychologists for future statistical hypothesis testing regarding the
effectiveness of social robots as assistants. However, this work has used exclusively data
acquired by sensors mounted on the robot. In particular, 6846 complete frames were
recorded out of a total number of 41,911 recorded frames.

Human behavior was represented structurally as a time series of states, where a state
was a cluster induced from all available data regarding seven children. By employing
novel data representation methods based on the lattice computing paradigm, the collected
data were transformed into a form suitable for further processing in order to establish a
basic behavioral model. At this stage, the model considers only the child’s head pose as an
indication of the child’s attention but can be extended to include other cues. Data repre-
sentation and modeling allowed a series of analyses and visualizations that can provide
useful insights on the relationship between robot actions and child behavior, with the aim
of improving the therapeutic protocols by incorporating the social robot in the most bene-
ficial manner. More specifically, four computational tools were developed for behavioral
data analysis including (1) histograms of states per robot modality, (2) histograms of state
transitions per robot modality, (3) a visualization of time series of states and (4) histograms
of robot actions per robot modality. The proposed four computational tools provide clinical
psychologists with useful cues as explained per case in Section 4.

In this context, robot actions may be interpreted as “causes”, whereas behavioral data
may be interpreted as the ensuing “effects”. Therefore, the proposed behavioral analysis
can allow psychologists to design robot-assisted interventions to induce the intended
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human behavior, with a maximal likelihood of occurrence, always with respect to the
established ethics; for instance, a human behavior to be pursued might be characterized
by an increased attention. Consequently, an interaction between a human and a robot can
be pursued. Another contribution of the present work is the modeling of behavior which,
although only facial data were considered in this work, has the potential of including more
behavioral cues such as body pose, voice volume, contextual speech, etc. Integration of
these other cues can be achieved uniformly using the existing LC-based mathematical
instruments and still be used in the same behavioral analysis tools described in this paper.
The analysis methodology followed is generic and not designed to apply exclusively to the
specific activities examined in this paper and does not require human behavior annotation
as is common in other works. The fact that the behavioral states are induced from the
data and not directly measured or observed is the main reason why a direct numerical
comparison with other engagement measurement methods (gaze tracking, facial expression
recognition, etc.) is difficult, and only a qualitative comparison was made in the paper.
Behavioral states’ computation is data-driven, and behavioral patterns emerge from what
the robot perceives. This means that the analytical tools presented in this paper can give
psychologists studying the data the opportunity to make observations regarding behaviors
either at the individual or the scenario level.

In practice, the results presented in the current paper give clues as to the robot stimuli
that attract the child’s attention most. From the analysis presented here, which involves
all cumulatively gathered data for all children across all activities, animations and the use
of LEDs appear to prompt children to turn their heads toward the robot more frequently
than other modalities, which suggests an increase in engagement. This finding can lead to
the modification of activities in subsequent sessions to include more animations and use of
LEDs. Furthermore, the expert is able to isolate the data collected from specific children
to perform similar analyses and determine the stimuli to which particular children are
most responsive to, and therefore provide the capability of designing individualized inter-
ventions, focused on the needs of specific individuals, thereby improving the therapeutic
sessions over time. Similarly, data from specific therapeutic activities can reveal whether
the effectiveness of stimuli vary depending on the context of each activity, based on the
analysis of behaviors that manifest during the selected activity.

Potential future work could pursue the following objectives: (1) “On-robot” data
processing toward real-time modification of robot actions toward improving interaction
with a human over time; (2) computation of clusters considering not only the number of
clusters but also the cluster size [44]; (3) consideration of more data from more children
and therapeutic sessions in order to increase confidence in the results. Moreover, it is the
authors’ intention to increase the number of variables that define a child state since, apart
from the recorded 68 facial landmarks points, additional human behavioral data have been
recorded including eye contact, gaze, body pose, hand gestures, speech, voice volume and
others. The inclusion of these other variables will result in a more complete and accurate
description of the child’s state, and consequently will produce more meaningful emergent
behaviors. Similarly, the robot actions can also be examined in a more analytical fashion;
for example, the effects of robot speech with specific content or the differences between
individual types of animation can be studied. Finally, because of the non-specificity of the
approach, the behavioral analysis can be applied in other areas of special education, such
as learning difficulties.
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Appendix A

In this section, the activities considered for behavioral analysis are described. The first
of the relaxation activities in Table A1 is described in more detail in order to give a better
understanding of a scenario flow and interaction style.

Table A1. Activities considered in the behavioral analysis.

Free Play The robot welcomes the child and invites him/her to start playing in the provided area. During the play the robot
motivates the child.

Role Playing—Symbolic
Games

The robot asks the child a series of questions, involving storytelling, role playing and creation of stories
The robot describes and demonstrates using gestures appropriate behaviors in various everyday scenarios such as
how to approach friends, in a birthday party or a restaurant

Theory of Mind Mimics: the children perform gross motor imitation tasks managed by the robot exclusively, with different levels
of difficulty

Targeted Behavior or
Emotion

(a) Shared attention scenario: The robot asks the child to identify objects in the room
(b) Memory game with cards. The robot gives instructions of how the game is played
(c) “I spy” game, guided by the robot

Relaxation

1. Robot: “Now I want to show you the relaxation corner; there, we will listen to music and learn various tricks you
can do when you are not feeling well. Help me find the relaxation corner. Find the green circle on the wall. When you
find it, tell me: green circle”.
2. Expected child response: “green circle or circle”.
2a. If yes, then the robot says: “Very nice. Let’s go to the relaxation corner now.” (Accompanied by the therapist and
continues the robot to 3).
2b. If not:
After 1st failure of child to answer, the robot says: “I’m not sure I understood well. Find the green circle and tell me a
green circle”.
After 2nd failure of child to answer, the robot says “We have not yet found the relaxation corner. Let’s try again. Look
for the green circle and say “green circle”. If there is success, then go to 2a.
After 3rd child failure to answer, the robot says “It is not easy to find the relaxation corner. Let’s try next time.”
(therapist intervenes)
3. Robot: “Slow breaths help us to be calm. Listen to the sound we make when we take breaths, something like this:”
(robot plays back a normal breathing sound). “We can take quick breaths like this:” (robot plays back a fast-breathing
sound) “and very slow breaths like this:” (robot plays back a slow-breathing sound). “But only slow breaths help us to
calm down. To start the game with the breaths, say: “now”.
4. Expected child response: “now”.
4a. If yes, then the robot says: “Very nice. Let’s start the game with the breaths.”
4b. If not:
- After 1st child failure to answer, the robot says: “I’m not sure I understood well. Say the word “now” to start the

game with the breaths”. If there is success then 4a.
- After 2nd child failure to answer, the robot says: “It seems that you are not sure that you want us to play the

game with the breaths. We can try next time” (therapist intervention).

The therapist gives the child a pinwheel, and the robot explains the exercise, which is that, at the instruction of the
robot, the child must blow on the pinwheel in order to make it spin.

Muscle relaxation scenario where the robot instructs the child in various exercises involving breathing and
muscle relaxation.
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