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Abstract: The maintenance of industrial equipment extends its useful life, improves its efficiency,
reduces the number of failures, and increases the safety of its use. This study proposes a methodology
to develop a predictive maintenance tool based on infrared thermographic measures capable of
anticipating failures in industrial equipment. The thermal response of selected equipment in normal
operation and in controlled induced anomalous operation was analyzed. The characterization
of these situations enabled the development of a machine learning system capable of predicting
malfunctions. Different options within the available conventional machine learning techniques
were analyzed, assessed, and finally selected for electronic equipment maintenance activities. This
study provides advances towards the robust application of machine learning combined with infrared
thermography and augmented reality for maintenance applications of industrial equipment. The
predictive maintenance system finally selected enables automatic quick hand-held thermal inspections
using 3D object detection and a pose estimation algorithm, making predictions with an accuracy of
94% at an inference time of 0.006 s.

Keywords: infrared thermography; maintenance; industrial equipment; machine learning

1. Introduction

It is well known that the maintenance of industrial equipment, machines, or facilities
tends to extend their useful life, ensure correct performance for a longer amount of time,
improve efficiency, reduce the number of failures, and increase the safety of their use [1].
Maintenance management has evolved significantly over time. Progress has been made
in the way that maintenance is applied to industrial equipment [2]. Initially, corrective
maintenance was the common rule at the early beginning of factory use, where equipment
failures were solved as they occur. This type of maintenance was accepted at early stages
of the industry when downtime was not critical. However, after the second industrial revo-
lution, maintenance evolved to apply preventive maintenance, where the equipment was
periodically reviewed, and certain components were replaced based on statistical estimates,
often provided by the manufacturer. The drawback of this concept of maintenance was the
high associated costs due to strict replacement deadlines, which were often overestimated.

The maintenance evolved again up to the current tendency of applying a predictive
approach, which tries to predict the failure of a component such that the component is
replaced shortly before the failure occurs. Thus, equipment downtime is minimized, and
component life is maximized. By applying a predictive strategy, the useful life of an
asset can be extended up to five times more than if a preventive strategy is followed [3].
The predictive maintenance is based on the measurement of various key parameters of a
specific industrial process that are closely related to the life cycle of the component. Thus,
the remaining life of the component is reliably estimated by defining the history of the
relationship between the physical magnitude and the condition of the machine. This history
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is produced by monitoring and taking measurements of certain magnitudes at periodic
intervals until the component breaks or fails. Within predictive maintenance, there are
different disciplines or techniques, such as vibration analysis, oil analysis, and ultrasound
inspection, among others. Each of these techniques are based on the measurement of
different magnitudes and are most suitable for the specific diagnosis of failures [4].

A relatively novel predictive maintenance technique that is gradually spreading in the
industrial sector is an infrared thermography (IRT)-based technique [5]. IRT is a technology
that measures radiation within the infrared spectral range that an object emits and relates
it to the actual temperature of the object. Taking into account that the vast majority of
failures in industrial equipment and machinery are preceded by significant temperature
changes, it may be concluded that the thermal data collected with a thermal sensor is a
valuable source of information and can identify problems at an early stage so that they can
be corrected before becoming worse and more expensive to repair. Infrared thermography
has great potential as a predictive maintenance tool for equipment and facilities that can
optimize industrial maintenance costs [6–10]. Although the characteristics of the IRT make
it applicable to multiple areas and provide important advantages over other techniques, its
scope is still quite limited. Nowadays its use is mainly aimed at detecting existing faults,
rather than a true predictive strategy that anticipates the occurrence of failures.

Among the most promising technologies that are currently being applied in a wide
variety of applications with notable results is machine learning (ML). Machine learning is a
branch of artificial intelligence (AI) that enables accuracy in predicting outcomes without
explicit instructions to do so. Instead, machine learning algorithms use historical data as
input to predict new output values after a training process through which the ML model
captures the fundamental features of the process involved in the production of outputs.
ML is currently being applied widely in our lives, for example in search engines, virtual
assistants, online customer support [11], traffic predictions [12], video surveillance [13],
email spam and malware filtering, and online fraud detection [14].

Another emerging technology whose effectiveness in industrial maintenance has
already been proven is augmented reality (AR). Among the multiple advantages of this
technology in the field of equipment maintenance, the reduction of the costs associated with
the acquisition of operation and repair skills, as well as the reduction of risks associated
with technical personnel by guiding the execution of maintenance tasks more accurately,
is worth mentioning. AR has received a growing amount of attention by researchers
in the manufacturing technology community, because AR can be applied to address a
wide range of problems throughout the assembly phase in the lifecycle of a product, e.g.,
planning, design, ergonomics assessment, operation guidance, and training [15]. Numerous
studies show promising results in enhancing human performance using AR equipment
in this area [16,17]. Specifically, the use of AR reduces the number of mistakes, enhances
security, and accelerates the task. Additionally, AR-assisted maintenance tools also lead to
a reduction in the cognitive load of workers [18].

The application of ML in the field of maintenance is also being investigated with the
aim of producing more accurate predictions of failure and reducing downtime as much
as possible. Specifically, several studies have been conducted to apply ML with IRT to
automate the detection of malfunctions in different types of equipment. The results ob-
tained in these studies are promising, but certain limitations were encountered, so further
research is required to reach a robust application of ML with IRT in industrial environments.
In [6], the authors applied a Support Vector Machine (SVM) model to infer malfunctions in
electric connections, obtaining outstanding results compared to conventional thresholding
methods. Despite the high accuracy obtained, in this study, the classification was conducted
pixel-wise in the thermal image, so the procedure is expected to be quite time-consuming,
preventing its application in real-time conditions. The classification procedure is generally
carried out into two categories, correct and defective [6,8,19], in up to three cases, including
non-faulty hotspots [20]. Some authors use the values of temperature increment (∆T) as
input features, which is a common standard [21,22], while others use such features as
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maximum and minimum temperatures [23], RGB color scales [24], texture features [25], and
Zernike moments [26]. In [8], the authors used discriminant analysis to select optimal fea-
tures from a wide set of statistical parameters and finally selected 10 features. However, the
regions of interest used to compute values for training the model and making predictions
was conducted manually, precluding the automatic application of the methodology.

The maintenance cost can reach up to 60–70% of the total production cost during the
production lifecycle according to the research in [27], so it is an important cost to optimize.
It is reasonable to assume that the combination of AR, IRT, and ML would bring even
more benefits, as stated in the work of [28]. The present study tries to advance toward
the automation of infrared thermography inspections for industrial maintenance appli-
cations. Unlike other previous related studies, this study is focused on the development
of a methodology to produce accurate predictions in industrial maintenance activities
carried out with infrared thermography to be implemented in portable platforms, requiring
reduced computational cost, being able to classify numerous different states corresponding
to specific failures and malfunction situations, and easily scalable to other industrial equip-
ment. For this purpose, the recent AR system called MANTRA [28] has been enhanced
with a machine learning module for computing thermographic information automatically
and robustly and predicting possible failures before they occur. This functionality has been
added to the previous ones for automatic task guidance, component location, and specific
temperature measurement.

The results of this work provide advances towards the robust application of ML
combined with IRT to maintenance applications of industrial equipment. A new module
for the MANTRA system that informs of failures or abnormal behaviors of industrial
equipment analyzing thermal images is developed. Moreover, AR is also combined with
these technologies and implemented in a portable device making the MANTRA system,
which is, to our knowledge, the first AR system that has been used in combination with
IRT in the field of industrial maintenance. MANTRA enables quick hand-held thermal
inspections using 3D object detection and pose segmentation in order to segment IRT
information at the component level. Experimental data have been produced in this study
by monitoring electric industrial equipment and inducing malfunctions in a controlled
way. Finally, different ML strategies have been analyzed and assessed to finally define the
optimal procedure to be implemented in the MANTRA system.

The paper is organized as follows. In Section 2, the materials and methods used in
the study are described, including data processing techniques, predictive models, study
cases, and hardware and software equipment. The main results obtained are presented in
Section 3, describing the applied procedures and showing the outcomes in the precision
and performance evaluation. Section 4 is dedicated to further discussion of the results
and the proposal of a general approach for predictive maintenance system development.
Section 5 is devoted to the final conclusions and suggested future actions.

2. Materials and Methods
2.1. Thermographic Selected Features

Infrared thermography is a technology used in many applications with the main
objective of measuring temperature remotely and without contact. From the temperature it
is possible to determine the value of magnitudes related to heat exchange phenomena that
take place in different physical processes. Temperature measurement by IRT consists of the
measurement of the infrared radiation emitted by an object and its subsequent conversion
to temperature values [5]. Infrared thermography is a technology that is currently used in
numerous applications. The special non-invasive and non-contact measurement character-
istics, together with the harmless health effects, make the IRT a useful instrument in areas
such as medicine [29], agriculture and livestock [30] or surveillance [31], among others.

The high noise content in the data is one of the most important issues affecting IRT,
which can hide the thermal effects of existing defects, making them undetected. Although
this problem is being taken over by technological advances in the IR sensors, it is still
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a major limitation in the detection capability of the thermographic technique. Different
processing algorithms have been proposed to reduce the effect of the noise in thermographic
data [32–35]. These algorithms enhance the detection of defects and simultaneously reduce
the noise content of the image.

On the other hand, the machine learning models used in this study must be fed
with feature vectors that are representative of the operating condition of specific pieces of
equipment so that they capture their fundamental characteristics and make it possible to
infer the actual conditions for new vector inputs. In order to obtain features representative
of the operating conditions and avoid the limitations produced by the noise content of the
thermographic images, some of the most common processing algorithms used in the IRT
NDT field were analyzed in this study. The processing methods synthesize the thermal
behavior shown by the components of the equipment under inspection so that they contain
the information necessary for determining the malfunction operating conditions.

The processing algorithms used in this study are described below.

2.1.1. Thermographic Signal Reconstruction (TSR)

Thermographic signal reconstruction is a processing technique widely used in IRT
NDT for filtering noise, producing an increment in the signal-to-noise ratio and enhancing
the detection of defects [32,36]. The application procedure consists of several steps including
the polynomial fitting, through which the temperature–time history of each pixel is fitted to
an n-degree polynomial. In this study, TSR was not applied for data processing but only the
polynomial fitting stage. The other steps were discarded because of the lower effectiveness
when applying TSR in passive inspections.

Polynomial fitting was conducted by the expression (1), where T is the temperature
values, t is the time-independent variable, and αi are the fitting coefficients. The resulting
coefficients represent the thermal behavior of the region under analysis, so they can be
used as features in the training process of predictive models.

T(t) = αntn + αn−1tn−1 + · · ·+ α1t + α0 (1)

2.1.2. Spectral Analysis

This processing technique applies the Fourier transform (FT) to the raw thermographic
data sequence [37]. The initial thermographic sequence is transformed from the time to the
frequency domain by the relation (2), where Fn is the nth complex Fourier coefficient with
Ren and Imn as real and imaginary parts, respectively, T is the temperature value of each
pixel, and N is the total number of frames in the thermographic sequence.

Fn =
N−1

∑
k=1

T(k)e
(2πikn)

N = Ren + Imn (2)

2.1.3. Principal Component Analysis (PCA)

Principal component analysis is a processing technique based on the second-order
statistics of the initial data, usually used for data compression and the detection of linear
relationships [38]. PCA is performed with thermographic data by applying the singu-
lar value decomposition of the temperature–time history of each pixel according to the
following expression:

νp = UT
S A (3)

where U is the calculated eigenvector matrix, A is the initial temperature matrix, and νp is
the result considering the first s principal components, where the number of components
are selected to retain the desired amount of variance in the corresponding s eigenvalues.

2.1.4. Higher Order Statistics (HOS)

Higher-order statistical moments computed over the surface temperature distribution
in thermographic NDT is a processing technique that provides statistical information of
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the temperature evolution in a unique image [34]. The most informative moments for
thermographic applications were demonstrated to be the standardized central moments
calculated by

µn =
E[(X− E[X])n]

σn (4)

where E[X] is the mean value of the distribution, σ is the standard deviation, and n is the
order of the moment. The specific statistical moments used in this study to characterise the
different operating conditions are the third and fourth standardized statistical moments,
also known as skewness µ3 and kurtosis µ4, respectively.

2.2. Machine Learning Models

Machine learning is currently a well developed science that has numerous application
possibilities based on different algorithms and processing techniques [39,40]. There are
simple models that produce acceptable results under certain simplicity conditions, and there
are complex models that capture the deep, non-linear properties, e.g., deep neural networks.
The application of interest in this work, that is, the maintenance of industrial equipment,
requires that the computational cost of machine learning models does not reduce the
performance of the calculations carried out or limit the correct inspection activities.

This study focuses on supervised predictive models, which are models configured
with known and labeled data at an initial stage known as training, which can subsequently
provide predictions for new data not seen before [41]. In this way, taking into account
previous information regarding the operating conditions of equipment, expected conditions
may be inferred with new data. Within the supervised ML models, two types of predictions
may be distinguished: predicting a label or predicting a continuous real value [40]. This
study deals with labels that correspond to specific discrete operating conditions.

Among the numerous classification models currently available within the machine
learning field that covers the aforementioned requirements, the following models are
assessed in this work.

2.2.1. Random Forest (RF)

Random forests consists of a large number of individual decision trees that operate
as an ensemble [40]. A decision tree is a supervised learning technique that can be used
for both classification and regression problems [42]. It is a classifier with a tree structure,
where internal nodes define the features of the dataset, branches define the decision rules,
and leaf nodes represent the outcomes.

A random forest model constructs a certain number of randomized decision trees
during the training stage and makes predictions by averaging their individual results [43].
Each tree in the random forest makes a prediction, and the class with the highest number
of predictions becomes the final result. Random forests can be applied to a wide range of
prediction problems and have few parameters to tune. Despite being a relatively simple
model, the method is generally recognized for its accuracy and its ability to deal with small
sample sizes, high-dimensional feature spaces, and complex data structures.

2.2.2. K-Nearest Neighbors (KNN)

The nearest neighbors method is non-parametric, and its principle of operation is to
find a previously defined number of training samples closest in distance to the new point
and to predict the corresponding new label according to them [44]. It does not construct a
general behavior model; it simply stores instances of the training data. Classification is then
performed from a simple majority of the nearest neighbors of each point, so the data class
with the most representatives within the nearest neighbors is assigned to the new point.

Nearest neighbors methods are known as non-generalizing ML methods, since they
simply compare the new data to the data already known. The number of samples can
be constant (k-nearest neighbor learning) or vary based on the local density of points
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(radius-based neighbor learning). Standard Euclidean distance is the most common choice
for the distance, but any metric measure can normally be used.

They are often accurate in classification situations where the decision boundary is very
irregular, and despite its simplicity, nearest neighbors have been successfully applied in a
large number of classification and regression problems, including handwriting recognition
and satellite imagery [45,46].

2.2.3. Support Vector Machines (SVM)

Support vector machines are supervised learning methods that can be used for classifi-
cation, regression, and outlier detection [47]. These methods construct a hyperplane or a
set of hyperplanes in a high or infinite dimensional space, which is used for computation.
Convenient separation is achieved by the hyperplane that has the largest distance to the
nearest training data point of any class, since in general the larger the margin, the lower
the generalization error of the classifier.

SVM is more effective in high-dimensional spaces and provides satisfactory perfor-
mance with a clear margin of separation between classes. An important quality of this
method is its high effectiveness in situations where the number of dimensions is greater
than the number of samples available. Applications where SVM has been successfully used
include the classification of genes and patients on the basis of genes and other biological
problems [48] as well as handwritten character recognition [49].

2.2.4. Artificial Neural Networks (ANN)

Artificial neural networks is a specific type of ML model that is composed of many
interconnected computational units, called neurons [50]. Although each individual neuron
provides limited learning capabilities, when many neurons work together interconnected,
their combined effect shows a significant learning performance.

ANNs are models inspired by the brain, where neurons are simple representations
of their biologic equivalents. The inputs to an artificial neuron correspond to raw data
or outputs from previous neurons. The transfer function sums all these inputs together,
and, if the result reaches a specific limit value, the activation function generates an output
signal. This output signal goes to a final output or other neurons depending on the ANN
architecture. There is a long list of neural network applications currently in use in different
industries, such as high-performance self-driving [51], the prediction of code sequences [52],
voice synthesis [53], and vision systems [54].

2.3. Study Cases

There is a wide variety of industrial equipment to which maintenance activities
are applied on a regular basis, such as engines, rotary systems, heat exchangers, and
refrigerators. To limit the scope of the study and define an affordable scope, this work is
focused on the maintenance of electronic equipment that works through cycles of transitory
operation. Equipment operating continuously, for which previous studies have reported
remarkable results, have not been analyzed. In this work, electronic systems that remain
in a paused state until they perform their operation after being activated either manually,
remotely, or even programmatically have been analyzed.

To carry out this study, an electronic board was used as an example of the type of
devices of interest. This board is a euro 230m2 model (VDS Automazioni srl, Spoltore, Italy)
and is normally used to control the automatic opening and closing of swing doors. This
device is directly connected to a 220 V voltage and is in charge of powering two direct
current electric motors, which produce the necessary force to make one or more actuators
move the elements that open and close the gate (Figure 1a).

In order to carry out the experimental study on this board in a controlled way, two
variable resistors of 200 Ω (Vishay Intertechnology, Inc., Malvern, PA, USA) have each
been connected to the output, instead of the actuation system consisting of a motor and
an actuator. (Figure 1b). By means of a clamp that can be adjusted in any position along
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the resistance, it is possible to control the effective value of resistance in the output of the
board. Based on this laboratory setup, which reproduces the actual operation of the board,
a series of failure cases was defined and analyzed to develop a predictive model capable of
accurately classifying them. Some of these failures disable the operation of the electronic
device, while other cases suppose abnormal operating conditions that will lead to the total
failure of the device in a short period of time. The failure cases that have been analyzed are
the following:

• Bad contact in the input connector. This malfunction was induced by releasing the
wires in the input connector. This type of malfunction produces local overheating that
eventually causes the break of the connector and a total service interruption.

• Overload in the outputs to the actuators. This malfunction case corresponds to
irregular operating conditions caused by abnormal circumstances in the output loads.
At the laboratory level, this case was simulated by reducing the resistance connected
to the board, therefore increasing the operating current flow. In a real scene, these
circumstances could correspond to disconnections in a gate system, for instance.
Eventually, these malfunctions will cause the break of the electric motors commanded
by the board.

• Underload in the outputs to the actuators. This malfunction case is the situation
opposite to the previous overload case. At the laboratory level, this case was simulated
by increasing the resistance connected to the board, so mechanical misalignment or
excessive friction between moving elements in the real situation is simulated.

• Failure in the fuses. This case is produced by the break of a fuse and, contrary to the
previous cases, requires corrective rather than predictive actions. This failure prevents
the correct operation of the device and disables the output current. There are two
fuses in the board, so the failure is produced in a different output, depending on the
affected fuse.

• Failure in the relay. This case is produced by the malfunction of a relay, which was
induced at the laboratory level by avoiding the relay contacts to join correctly. This
case also requires corrective actions, and the apparent effect to the system operating
conditions is the same as in the fuse failure case, disabling the output current.

• Reference state. The case corresponding to the correct operation was considered as
the reference state. In this situation, the board outputs a direct current to two resistors
of 90 Ω for a period of 7 s after activation of the board.

(a) (b)

Figure 1. The study case used to develop and assess the predictive module: (a) configuration in real
conditions; (b) simulated configuration at the laboratory level.

2.4. Hardware and Software Equipment

The MANTRA system consists of two cameras (RGB-D and infrared) mounted and
aligned on a portable device that processes the information and displays it to the user. The
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infrared (IR) camera used in this analysis was a Xenics Gobi-640-GigE model (Xenics NV,
Leuven Belgium) with a spatial resolution of 640 × 480 pixels that works in the 8 µm to
14 µm spectral band. The low weight (263 g) and size (49 × 49 × 79 mm3) of the camera
make it ideal as a hand-held device for carrying out maintenance inspections of industrial
equipment. The second camera employed is an IntelRealSense d415 RGB-D camera (Intel
Corp., Santa Clara, CA, USA) with a color resolution of up to 1920 × 1080.

The inspections conducted by the thermographic camera were passive; i.e., no ad-
ditional thermal stimulation was applied to the inspected object. However, the normal
operating conditions of the board produced heat that was detected by the IR sensor. The
data captured by the thermographic camera was analyzed using the processing techniques
described in Section 2.1 to extract the features that enabled the classification of the cases un-
der study. Each operating cycle of the board was completed in 5 s, but the thermal process
was recorded over 7 s, so the temperature increase and decay were captured in the infrared
sequence. The infrared and RGB-D cameras recorded frames at a rate of 10 Hz (Figure 2)
from a distance of around 1 m from the board. At this inspection distance, the IR camera
produced 1.1 mm/pixel images and the RGB-D camera produced 0.46 mm/pixel images.
The dataset used to train the models and perform predictions consisted of 20 thermal
sequences per study case.

(a) (b)

Figure 2. Sensors included in the MANTRA system: (a) calibration of the sensors with the electronic
board; (b) IR and RGB-D cameras mounted in the MANTRA demonstrator.

The software used to process the infrared images as well as configure, train, and test
the different predictive models was coded in the Python programming language. The
image processing algorithms were implemented making use of the Numpy and Scipy
modules, while the predictive models were developed with the Scikit-Learn, Keras, and
Pandas modules.

The MANTRA system demonstrator was developed and tested on a Surface Book
2 platform (Microsoft Corp., Redmond, WA, USA) with an Intel core i7 processor, an
NVIDIA Geforce GTX 1050 2 GB GPU, 8 GB RAM, and 256 GB SSD. The machine learning
models, the 3D object detection and pose estimation algorithms, and the data processing
techniques and applications were developed in C++ and work on Windows 10. Specifically,
the main dependencies employed were OPENCV [55], Darknet [56], Open3D [57], and
CUDA [58].
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3. Results
3.1. Selection of Regions of Interest

The first stage in the development of the predictive model for electrical failures was
to determine the components of the electronic board, whose behavior will enable the
classification of the different operating conditions. Image classification technologies that
process the entire image and that do not require one to determine areas from which
features can be extracted are currently being developed. These technologies are part of the
science of deep learning, and, in addition to finding limitations in dealing with infrared
images, there is no public database of infrared images that can be employed for training in
the industrial maintenance field, nor are there pretrained networks that employ transfer
learning techniques. These factors, together with the necessity of powerful GPUs and long
training times, makes the use of deep learning techniques difficult to recommend for a
general IRT methodology in industrial maintenance.

In this study, a series of areas within the board that contain the most informative and
representative points of the different operating conditions analyzed were identified. Sets
of decision trees were used to identify these points. Specifically, the identification of the
regions of interest was carried out by analyzing the mean impurity reduction calculated on
a series of independent decision trees and by averaging the values produced by each one
to reduce the variance of the results (bagging) [41,59].

Each decision tree is a set of internal nodes and leaves. In the internal nodes, the feature
is selected to divide the dataset into two separate sets. In classification tasks, the features
for internal nodes are selected by means of the Gini impurity or information gain [43].
Gini impurity calculates the amount of probability of a specific feature that is classified
incorrectly when selected randomly, so we can measure how each feature decreases the
impurity of the split. A higher mean decrease in Gini indicates higher variable importance.
The average over the set of trees is the measure of the feature importance.

Each pixel in the thermal image was considered a different feature for the importance
analysis. The matrices of pixel values that represent the thermal images were converted
into row vectors. By repeating this process for all the images in the dataset, a matrix
of size M × N was constructed, where M is the number of images in the dataset, and
N is the number of pixels in each of the thermal images. Using this new matrix, the
previously described classification model was built, with a total number of 1000 estimators
and 128 maximum characteristics to be considered in each split, and the importance of
the different features was calculated, that is, the importance of each pixel in the image.
Figure 3a shows one of the results obtained from the importance analysis for the case of
data obtained from the coefficient α0 of the polynomial approximation processing technique.
This same analysis was carried out for all data processing techniques, obtaining similar
results regarding the level of importance of the different pixels in the thermal images.

(a) (b) (c)

Figure 3. Identification of the regions of interest: (a) results of importance analysis; (b) location of the
most informative regions; (c) identification of the corresponding electronic elements.
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As a result of the importance analysis, eight areas of highly informative content were
identified within the electronic board (Figure 3b,c). These zones were labeled from left
to right and from top to bottom, and corresponded to different components and set of
components. Specifically, the region A had a circular shape with a diameter of 9 mm and cor-
responded to a rectifier bridge; the regions B and C had rectangular shapes of 24.5 × 9 mm
and corresponded to fuses; the region D had a rectangular shape of 3.5 × 1.5 mm and
corresponded to an SMD resistor; the region E had a rectangular shape of 14 × 12 mm
and corresponded to the power input connection; the region F had a rectangular shape
of 18 × 12 mm and corresponded to the output connection to loads; and the regions G
and H had rectangular shapes of 12 × 14 mm and corresponded each one to a set of two
through hole resistors and a triac. From this analysis, it can be deduced that the identified
components must be monitored in order to determine and classify the operating conditions
of the board. Once the components were identified, the predictive models were built,
and their inference capacity was analyzed. However, although the key components had
been identified in a previous stage, after the final model definition, the positioning of the
analysis and data extraction areas was carried out automatically through the use of 3D
object detection and pose estimation techniques.

6D Object Pose Estimation and IRT Image Segmentation

The 6D object pose estimation employed in the MANTRA system is LINEYOLO [28].
This algorithm employs the deep learning objection detection algorithm Yolov4 [56] for
detecting the object in the image and later employs a modified LINEMOD algorithm [60]
to estimate the 6D pose. Although this algorithm is quite fast, obtaining a stable, ro-
bust, and real-time 6D pose requires the employment of a 6DOF pose tracking algorithm.
MANTRA employed the algorithm proposed by Tjaden et al. [61] to achieve these ob-
jectives. Essentially, this tracking method iteratively resolves a non-linear optimization
problem of the parameters that define the rigid transformation of an object between two
consecutive frames.

One of the main features of the MANTRA system is that it can augment the color infor-
mation integrating the IRT information. In this way, it is possible to show the temperature
of an isolated 3D object, as well as that of its various components, on top of the color image
with associated virtual information, both precisely and in real time. To achieve this IRT
fusion, it is necessary to calibrate each of the sensors, place them in the same coordinate
system (extrinsic parameters) employing a stereo calibration, and overlap the registered
images using the information of the previously calculated 3D object pose. The details of
the IRT fusion can be found in [28].

The procedure can be seen in the schematic in Figure 4. The IRT fusion allows for
a temperature segmentation and a segmentation based on the 6DOF object pose. The
temperature segmentation function is employed to select a range of temperatures to show
on top of the color image. This could be employed, for example, to find hot spots or trigger
alarms when the temperature overpasses a certain level. Moreover, the segmentation based
on the 6DOF object pose function uses this information to project the 3D model into the
image and employs that mask to segment the IRT information robustly and independently
of the point of view. As a result, the IRT information can be processed at the component level
automatically in order to detect malfunctions or errors in a hand-held mode, overpassing
the traditional problem of performing inspections with the thermal camera at a specific
position and orientation. Figure 5 depicts four different points of view of the electronic
board acquired with the MANTRA system, where the triac component controlling the
power source is being monitored (only the IRT information of this component is shown in
the image).



Sensors 2022, 22, 613 11 of 22

3.2. Performance Assessment

To evaluate the predictive models that have been defined throughout the study, a series
of metrics commonly used in supervised machine learning applications were used [41,59].
The metrics used are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2× Precision× Recall
Precision + Recall

(8)

where TP, FP, TN, and FN are the true positive, false positive, true negative, and false
negative cases, respectively. Accuracy is the ratio of the number of correct predictions to the
total number of input samples, precision is the number of correct positive results divided
by the number of positive results predicted by the classifier, recall is the true positive rate,
and F1 indicates the precision of the classifier (how many instances it classifies correctly) as
well as its robustness (whether it misses a significant number of instances).

Once the areas with the most informative content were identified, the different ROIs
were evaluated to select the exclusively necessary ones. The use of a greater number of
analysis areas for the development of predictive models does not imply better results but
can lead to data overfitting if the data are interdependent. On the contrary, it may happen
that the number of ROIs used to develop the model is too small and that the model then
fails to capture the general characteristics of the behavior under study [40]. The greater the
number of features, the more noise and possible overfitting there may be to the data. The
least number of features that manage to generalize the desired behavior should be selected
for a correct performance.

The capacity of the identified ROIs for predictive models must be analyzed to deter-
mine those that best collect the behavior of the studied cases and generalize with new data.
Different combinations of ROIs were analyzed. The process followed to define the ROIs
considered in the final solution consisted of building different models of the proposed types,
using the data from the dataset, and considering different ROIs in each case. According to
the criteria and objectives set for this study to limit the computational cost of the algorithms
developed, a reduced number of ROIs was initially considered. Specifically, only ROIs G
and H, those with the greatest importance, were initially considered, and additional ROIs
were progressively included in the ROI group, e.g., FGH, EFGH, DEFGH, and so on.

The results obtained in the analysis of the different possible combinations of ROIs
are summarized in Figure 6. The assessment of each individual model was carried out by
cross-validation with 10 stratified partitions [41,59]. This figure includes the average values
obtained for different combinations of analysis ROIs, considering all types of models and
all investigated features. Figure 6 shows that the average prediction capacity of the models
increases if a greater number of regions is used. This is because, with a small number of
ROIs, it is not possible to correctly predict all failure cases. As more features are considered,
the models have more information to classify the cases. It may also be observed that not all
areas provide the same information quality. Specifically, the combination DEFGH produces
worse results than BCFGH. Moreover, there is a point in the process of adding ROIs to the
training of the models where a higher number of ROIs hardly improves the results or even
worsens them.
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Figure 4. Schematic of the MANTRA system for IRT segmentation based on a temperature range or
on a 6DOF object pose of an industrial computer.

Figure 5. Automatic IRT thermal segmentation of the triac component controlling the power source
of the electronic board from different points of view.

In addition to determining the areas of the board that are most representative of
the operation mode, it is also necessary to determine which of the analyzed features
certainly contain the information necessary to classify the different operating conditions.
Table 1 includes the mean values of the analyzed metrics obtained for the different features,
considering all combinations of ROIs and all predictive models analyzed in the study. The
background color of each cell represents the scale of the particular value relative to all the
values in the table. Higher values tend towards a greenish tone, lower values towards
a reddish tone, and intermediate values are represented by yellowish tones between
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red and green depending on their value. The table clearly shows that the values of the
approximation coefficients α for Grades 4 to 7 do not contain representative information, in
the same way as the first component of PCA ν1, skewness µ3, and kurtosis µ4. The third
approximation coefficient α2 and the third principal component ν3 are the features that
provide the optimal classification results. On the other hand, the values calculated from the
Fourier transform, both for phase analysis Fp and for module Fm, achieve poor results.

Figure 6. Mean values of the selected metrics for different ROI groups.

Table 1. Values of the selected metrics obtained for the analyzed features.

α0 α1 α2 α3 α4 α5 α6 α7

accuracy 0.742 0.767 0.794 0.663 0.605 0.608 0.588 0.612

precision 0.725 0.778 0.791 0.650 0.566 0.583 0.559 0.588

recall 0.749 0.766 0.796 0.667 0.607 0.612 0.594 0.619

F1 0.714 0.745 0.770 0.632 0.556 0.575 0.548 0.578
Fm Fp ν1 ν2 ν3 ν4 µ3 µ4

accuracy 0.679 0.667 0.589 0.730 0.749 0.719 0.557 0.593

precision 0.646 0.673 0.518 0.711 0.756 0.698 0.536 0.567

recall 0.687 0.672 0.587 0.733 0.753 0.719 0.560 0.594

F1 0.642 0.641 0.528 0.706 0.736 0.689 0.512 0.546

Lastly, in order to correctly classify the different operating modes of the board, the par-
ticular capabilities offered by the different predictive models were analyzed. Table 2 shows
the average metric results obtained for the different models analyzed and the combinations
of ROIs considered. The values shown are average values obtained considering all features,
and the criterion used for the background color of the cells is the same as in Table 1.

The predictive models were trained with the previously shown features and were
experimentally configured in a heuristic way. The RF model was configured with 1000 esti-
mators, with Gini criteria and with splits until the leafs contain two samples or less. The
KNN was configured to group 15 neighbors and consider the Minkowski metric, and the
ball-tree algorithm was used to perform the classification. The SVM model was configured
with radial-basis kernel and one-vs-rest (ovr) decision function. The architecture used
to configure the ANN was a sequential scheme with three hidden layers of 50, 300, and
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40 neurons, each one with a ReLu activation function and a dropout of 0.4. The output
layer contained nine neurons with softmax activation. The training was carried out for
80 epochs with a categorical cross-entropy loss function and an Adam optimizer with a
learning rate of 0.01 (Figure 7a).

OUTPUT LAYERINPUT LAYER HIDDEN LAYERS

7 neurons
50 neurons
Droput 0.4

300 neurons
Droput 0.4

40 neurons
Droput 0.4

9 neurons
SoftMax

(a) (b)

Figure 7. Predictive model implemented in the MANTRA system: (a) architecture of the ANN;
(b) confusion matrix obtained with a fold of the training dataset.

In most cases, the results were improved by providing more information to the model.
The best results, from a global point of view, were obtained for the RF and ANN models.
There is a range of ROIs for which the results are optimized for both of these models. In the
case of RF, the best results were produced considering all ROIs identified. However, in the
case of ANN, the best results were obtained by discarding ROI A from the total regions.
This difference can be important to limit the computational cost and time required. The
model that obtained the worst results was the SVM, probably because a suitable kernel had
not been used, despite having tried the most common ones, such as linear, polynomial, and
sigmoid kernels.

3.3. Inference Time Performance

According to the objectives of this study, while the prediction capacity is of vital
importance, so are the computational cost, model development, and inference times. In
the case of maintenance inspections, the time required to carry out an operation is a
crucial factor.

The system proposed in this study is based on the analysis of preprocessed thermo-
graphic images, so the time consumption that must be taken into account first is that
required to process the data collected by the IR sensor. These data processing techniques
manage to extract the most relevant information from the complete data sequences, and
the time involved in their application is in general short (less than 5 s). However, the
time required for each process depends on its computational complexity and should be
taken into account when assessing the suitability of a specific predictive system. In cases
where time is not a limiting parameter, the precision of the predictions will be more highly
weighted; on the other hand, in inspections with a short inspection time available, a balance
must be reached between precision and execution times.
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Table 2. Values of the selected metrics obtained for the analyzed models.

GH F-H E-H D-H CF-H BCF-H B-H A-H

KNN

accuracy 0.638 0.679 0.684 0.674 0.683 0.696 0.686 0.684

precision 0.627 0.673 0.686 0.669 0.674 0.689 0.674 0.672

recall 0.642 0.684 0.689 0.678 0.688 0.701 0.690 0.688

F1 0.608 0.652 0.661 0.648 0.656 0.672 0.658 0.656

RF

accuracy 0.632 0.693 0.713 0.725 0.715 0.733 0.736 0.737

precision 0.631 0.699 0.726 0.732 0.722 0.738 0.736 0.739

recall 0.633 0.696 0.716 0.728 0.717 0.736 0.738 0.741

F1 0.611 0.678 0.697 0.707 0.696 0.717 0.711 0.722

SVM

accuracy 0.580 0.624 0.629 0.639 0.641 0.663 0.656 0.656

precision 0.517 0.588 0.596 0.609 0.606 0.629 0.620 0.619

recall 0.584 0.627 0.632 0.642 0.644 0.665 0.658 0.658

F1 0.520 0.577 0.584 0.596 0.597 0.621 0.614 0.614

ANN

accuracy 0.621 0.694 0.718 0.728 0.727 0.753 0.768 0.766

precision 0.571 0.667 0.695 0.709 0.704 0.731 0.754 0.749

recall 0.626 0.699 0.722 0.732 0.732 0.757 0.771 0.770

F1 0.568 0.655 0.681 0.694 0.691 0.721 0.738 0.736

Table 3 shows the average times required to process the initial infrared data with the
proposed algorithms. The criterion used for the background color of the cells in this table is
the opposite to that in Table 1, since a better performance corresponds to lower time values.
Thereby, greenish colors correspond to lower time values and represent better performance,
while reddish colors correspond to higher time values and represent worse performance. It
is observed that the slowest processing technique is TSR, and the fastest is the modulus of
the Fourier transform.

It must be mentioned that the processing algorithms used in this assessment were
configured in standard, similar conditions to have comparable results, but the times in-
cluded in Table 3 can be reduced by using specific configurations with optimized parameter
values. Only the processing algorithms were evaluated, ignoring the data loading and
saving processes. The whole IR sequence was processed in every algorithm and all the
PCA components and Fourier coefficients were calculated.

Table 3. Values expressed in seconds of the time spent by the thermal data processing techniques.

N◦ ROIs α Fp Fm ν µ3 µ4

2 0.0283 0.0016 0.0013 0.0017 0.0147 0.0143

3 0.0430 0.0023 0.0018 0.0021 0.0218 0.0208

4 0.0576 0.0031 0.0025 0.0025 0.0286 0.0286

5 0.0719 0.0037 0.0031 0.0027 0.0361 0.0355

6 0.0854 0.0045 0.0036 0.0028 0.0427 0.0423

7 0.1007 0.0052 0.0042 0.0030 0.0499 0.0495

8 0.1154 0.0062 0.0051 0.0031 0.0568 0.0563
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There are two other operations during the application of the predictive maintenance
system that must be assessed in terms of computational cost. The first is the time required
to train the predictive model, that is, the time it takes to configure the parameters of the
model from the available data, in such a way that it is capable of making predictions with
new unlabeled data. The other is the time that the model spends carrying out estimations
or inferences on new data. In general, the inference time is less than the training time,
although, as can be seen in Table 4, the KNN model performs the opposite effect. This
table shows the average times required by the different models during their training and
prediction stages. These times were estimated as the average amount of time needed
to run the corresponding computations 20 times sequentially. The criterion used for the
background color of the cells is the same as in Table 3. The Surface Book 2 platform
(Microsoft Corp., Redmond, WA, USA) described in Section 2.4 was used to carried out
these computations.

Table 4. Values of the time spent by the analyzed predictive models during the training and prediction
stages, and considering different number of ROIs, expressed in seconds.

TRAINING PREDICTION

N◦ ROIs KNN RF SVM ANN KNN RF SVM ANN

2 0.00093 1.2034 0.00211 1.6104 0.1188 0.1341 0.00065 0.00635

3 0.00094 1.2043 0.00246 1.5987 0.1108 0.1392 0.00067 0.00620

4 0.00096 1.1942 0.00236 1.6531 0.1191 0.1455 0.00068 0.00602

5 0.00099 1.1979 0.00265 1.6506 0.1210 0.1459 0.00069 0.00620

6 0.00101 1.1974 0.00261 1.6168 0.1191 0.1435 0.00068 0.00601

7 0.00102 1.1999 0.00259 1.6083 0.1191 0.1497 0.00069 0.00605

8 0.00103 1.1822 0.00261 1.6057 0.1197 0.1535 0.00073 0.00622

4. Discussion

In this section, a general procedure to define the optimal model for each specific mainte-
nance application is proposed. This procedure considers the available dataset and the admis-
sible operating times to justify the configuration accordingly through metric assessment.

According to the results presented in the previous section, the different proposed
models produce different results. The optimal solution most likely depends on the final ap-
plication for which the predictive system is intended. It is necessary to evaluate the results
appropriately in order to obtain the most suitable predictive model for the maintenance of
a particular piece of industrial equipment. The procedure followed to define the MANTRA
predictive system, which can be generalized to any other predictive maintenance system
based on thermographic measurements, is detailed in the following lines, schematically
synthesized in Algorithm 1 and schematically represented in Figure 8.

First of all, a series of thermographic measurements of the device’s operation must be
acquired. Conventional predictive machine learning systems require a relatively reduced
dataset to be correctly configured compared to current deep learning models. Experience
has demonstrated that a number of measures 10 times greater than the number of features
used to train the model is usually necessary. In this study, this premise was fulfilled,
analyzing a total of 180 cases for a maximum of eight features. In practice, the required
number of measurements can be achieved quickly by performing regular inspections of
the device of interest, so that the predictive model is successively readjusted over time
and adapts to new anomalous operating conditions while increasing the accuracy of the
predictions at the same time.
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Figure 8. Flowchart of the proposed procedure to develop a robust and fast predictive maintenance
system based on thermographic images.

Once a minimum dataset is available, the regions or components of the device that
provide the key information must be determined to classify the different operational
situations correctly. For this, the thermal sequences acquired by the infrared camera
must be processed with the appropriate techniques. In this study, several of the most
commonly used algorithms in thermographic NDT applications were applied, and several
of them demonstrated a high capacity to extract representative information of the actual
operating modes from the sequences. However, this fact does not limit the application of
other available processing techniques that can provide suitable results. The regions of the
device to be monitored are determined in a preparatory stage by applying an analysis of
importance with the processed thermal data. In this study, it is proposed to determine these
informative regions using data analysis techniques based on decision trees and the Gini
parameter. After identifying these regions, their location in maintenance inspections in
real conditions is determined by automatically estimating the pose of the device by means
of an RGB-D camera calibrated with an infrared sensor, enabling a determination of the
component pose and its thermal evolution.

Subsequently, those regions that can distinguish different operating conditions must
be selected to avoid overfitting. For this, the candidate models were built initially using a
small number of the ROIs with the greatest importance, and the evaluation metrics were
calculated for assessment. The feature employed in this assessment was the one used in the
importance analysis to determine the candidate ROIs. The models were then rebuilt with
the next-most informative ROI added to the previous set, and the metrics were recalculated.
This process was repeated until the metrics did not improve the results when new ROIs
were added, resulting in a final number of ROIs that obtained the highest metric values.
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Next, the feature that best characterized the behavior of the inspected device was
selected. For this purpose, the metrics of the candidate models were calculated for final
ROI selection and for each of the features. Comparing the values obtained with the metrics,
the feature that provided the best results was selected. Finally, to choose a predictive model
that best meets the needs of the study case, the required training and prediction times of
the different candidate models must be calculated. The final model was selected based on a
multi-objective optimization problem, where prediction accuracy as well as data processing,
training, and prediction times were assessed appropriately for the needs of real inspection.

In this study, as a result of the application of the proposed procedure, a predictive
system based on an ANN model and using the third component ν3 of the principal compo-
nent analysis measured on the BCFGH regions as the representative feature (ROIs defined
in Figure 3b) was defined. The predictive model thus defined achieved an accuracy of
0.945, a precision of 0.951, a recall of 0.946, and an F1 of 0.942, in cross-validation analysis.
The average training time required by this model was approximately 1.6 s, considering
processing and fitting, and the mean inference time after training was approximately 0.006 s.
This option was selected because its accuracy is the highest, and the inference time is short.
The time required for training is quite long compared to other models, but it is short enough
to be carried out between maintenance tasks without affecting inspections.

Figure 7 shows the schematic architecture of the developed model and a confusion
matrix obtained during the training stage. The model was evaluated with a 10-fold cross-
validation strategy, so the confusion matrix shown in Figure 7b corresponds to a single
specific fold. This case is one of the most unfavorable situations generated by the model,
where it confused failures in Fuse 2 with an underload condition and confused a correct
state with a failure in relay. These mispredictions can be justified by taking into account
that the thermal responses of these conditions were very similar. The failure of the fuses
caused their corresponding load to be zero, and the opposite load also experienced a
decrease. Regarding the case of relay failure, it was a malfunction situation anticipating
future failure, where the contact was reduced, but a current flow occurred; therefore, it
resembled the reference state. The aforementioned values were reached after averaging the
results obtained with all of the folds in the cross-validation process.

The model that obtained the lowest accuracy values was a SVM model using the
kurtosis µ4 feature and the combination of ROIs BCFGH. It produced values of accuracy
of 0.269, precision of 0.224, recall of 0.272, and F1 of 0.203. This specific SVM model was
not capable of identifying the existing non-linearity in the behavior of the board and failed
in generalizing. However, all the SVM models required very short times for training and
inference, around 0.003 s and 0.0007 s, respectively, and obtained an accuracy of up to 0.795
using the third polynomial coefficient α2 feature applied on the ROIs DEFGH. The model
with the second highest accuracy was the RF model with an accuracy of 0.897, a precision
and recall of 0.904, and an F1 of 0.881. The main drawback of the RF models was the time
required for inference, which was around 1.5 s in all cases, that could limit the inspection
capability in real industrial conditions. The optimum predictions obtained with the KNN
model produced an accuracy of 0.795, a precision of 0.797, a recall of 0.798, and an F1 of 0.776.
This KNN model was applied on the regions DEFGH using the third polynomial coefficient
α2 feature. The KNN models required the shortest time for training, around 0.001 s in all
the analyzed cases, but the second maximum time for inference, around 0.12 s.
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Algorithm 1 An algorithm proposed to develop a robust and fast predictive maintenance
system based on thermographic images

1: Select industrial equipment
2: Generate thermographic labeled dataset (reference + abnormal

conditions)
3: process_time← thermographic data processing
4: ROI candidates ← importance analysis

Ensure: Sort ROIs in descending order of importance
5: while metric((N+1)ROIs) < metric(NROIs) do
6: NROIs ← (N+1)ROIs
7: end while
8: for feature in features do
9: metric(feature)

10: end for
11: f eature← max(metric(feature))
12: for model in models do
13: train_time(model)
14: prediction_time(model)
15: metric(model)
16: end for
17: model ← optimize(process_time, train_time, prediction_time, metric)

5. Conclusions

The maintenance of industrial equipment, machines, or facilities tends to extend its
useful life, to obtain correct performance for a longer time, to improve its efficiency, to re-
duce the number of failures, and to increase the safety of its use. Maintenance management
has evolved significantly over time. Progress has been made in the way maintenance is
applied to industrial equipment.

This study provides advances towards the robust application of the ML combined with
IRT to maintenance applications of industrial equipment. A new module for the MANTRA
system [28] that informs about failures or abnormal behaviors of industrial equipment
analyzing thermal images was developed. Moreover, AR was also combined with the latter
technologies and implemented in a portable device making the MANTRA system, which
is, to our knowledge, the first AR system that has been used in combination with IRT in the
field of industrial maintenance. This MANTRA system enabled quick hand-held thermal
inspections using information of the previously calculated object pose. Experimental data
were produced in this study by monitoring electric industrial equipment and inducing
malfunctions in a controlled way. Different machine learning strategies were analyzed
and assessed to finally define the optimal procedure to be implemented in the MANTRA
system. The accuracy obtained by the optimal algorithm was up to 94% at an inference
time of 0.006 s.

Future studies will try to validate the methodology developed to define the predictive
inspection system by applying it to other industrial equipment, not only electrical but
also mechanical.
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Abbreviations
The following abbreviations are used in this manuscript:

IRT Infrared Thermography
NDT Non-Destructive Testing
ML Machine Learning
AI Artificial Intelligence
AR Augmented Reality
T Temperature
DL Deep Learning
6DOF 6 Degrees Of Freedom
TSR Thermographic Signal Reconstruction
FT Fourier Transform
PCA Principal Component Analysis
HOS Higher Order Statistics
RF Random Forest
KNN K-Nearest Neighbors
SVM Support Vector Machines
ANN Artificial Neural Networks
ROI Region Of Interest

References
1. Van Horenbeek, A.; Pintelon, L.; Muchiri, P. Maintenance optimization models and criteria. Int. J. Syst. Assur. Eng. Manag. 2010,

1, 189–200. [CrossRef]
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