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Abstract: This paper proposes an audio data augmentation method based on deep learning in order
to improve the performance of dereverberation. Conventionally, audio data are augmented using a
room impulse response, which is artificially generated by some methods, such as the image method.
The proposed method estimates a reverberation environment model based on a deep neural network
that is trained by using clean and recorded audio data as inputs and outputs, respectively. Then, a
large amount of a real augmented database is constructed by using the trained reverberation model,
and the dereverberation model is trained with the augmented database. The performance of the
augmentation model was verified by a log spectral distance and mean square error between the real
augmented data and the recorded data. In addition, according to dereverberation experiments, the
proposed method showed improved performance compared with the conventional method.

Keywords: audio data augmentation; dereverberation; deep learning; room impulse response

1. Introduction

Recently, as deep learning-based research progresses, the need for audio data augmen-
tation is increasing, especially in reverberant environments. Given that the performance of a
deep learning-based approach depends on how similar the training data are to the real data
and how sufficient the data are for training, research on data augmentation techniques is
ongoing. In the area of image processing, many methods have been developed to augment
data through scale, translation, and rotation [1–3]. Existing data augmentation methods for
acoustic data—virtual data generated through time stretching or pitch shifting—are used in
the training process [4–6]. These methods are for data augmentation through modulation
of sound data and not the sound transmission effect, according to specific spatial charac-
teristics. When modeling the transmission process of sound, the characteristics of sound
are used. The reverberation environment of a room is estimated by modeling the sound
transmission process. The conventional estimation methods use the room impulse response
(RIR) [7–9] or room transfer function (RTF) [10,11], and convolve RIR and clean sound to
create a virtual reverberant sound in a specific space. Among recent studies, there is a study
of learning an artificial neural network using the structure of a room and acoustic signals
acquired from the room, where RT60, which is an attenuation parameter of the sound
pressure level, was estimated and used to construct a reverberant signal [12]. In a similar
way, the methods for generating acoustic parameters using deep neural networks (DNNs)
have been studied. These methods estimate the RIR using generative adversarial networks
(GANs) [13] and DNN-based room acoustic parameter estimation methods [14,15]. These
recent methods obtain the output reverberation signal by using the original signal as an
input to the linear time-invariant system. On the other hand, in this study, considering that
the transmission of an actual acoustic signal has a non-linear characteristic, the non-linear
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system is modeled using a deep learning technique and the output reverberation signal is
obtained by using it.

This study is to obtain a clean signal from a reverberant signal as a preprocessing
process for speech applications, such as speech recognition or speech communication, in
a reverberant environment. To do this, a large database is required to utilize the deep
learning techniques, which are currently showing the best performance. In a real situation,
if only limited recorded data is used, the performance of the deep learning model cannot be
guaranteed. Therefore, there is a need for a data augmentation technique that uses limited
reverberant data to obtain more realistic data.

The sound generated through RIR, when a person hears it, is similar to the sound
actually recorded, but there is a problem in applying it as training data to a data-driven
model such as a deep neural network because the distance between the generated and
recorded sound can be considerable. To solve this problem, in this paper, we try to train a
deep neural network model that uses some of the recorded sounds to make the augmented
data more similar to the recorded data than the sounds generated by the RIR. The proposed
method estimates a reverberation environment model based on a deep neural network that
is trained by using clean and recorded audio data as inputs and outputs, respectively.

2. Conventional Reverberant Environment Estimation Method

Previously, an artificial RIR was used for the modeling and analysis of sound trans-
mission processes in a room, and the reverberant signal was generated by the convolution
of clean data with this RIR [7]. A direct sound reaches a specific location with the loudest
sound, and, after a delay time, the sound reflected from the wall, ceiling, or floor arrives
with a reduced sound pressure.

As shown in Figure 1, the direct sound arrives the fastest and loudest, and then the
reflected sounds arrive with a time difference. The RIR h(n) is generated through this

model, and artificial reverberant data
ˆ
y(n) are generated by convolving the RIR with the

clean sound x(n), as shown in the following equation,

ˆ
y(n)= ∑L−1

m=0 h(m)x(n−m) (1)
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If the clean sound is filtered through this RIR, it can have a similar effect as hearing
the sound in the room. Conventionally, the RIR is generated using a wave equation or
an image method, which is a knowledge-based method [7]. It can be used to give spatial
effects for human hearing in a room. However, it may be inappropriate because there can
be a large difference between the augmented data by the RIR and the actual recorded data
because the process of acoustic transmission is non-linear. Therefore, this research work
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aims to generate data that are more similar to the actual recorded data than that generated
by the existing method.

3. Proposed Reverberant Data Augmentation Method

The proposed augmentation method is to generate reverberant data through a con-
volutional neural network (CNN) [16]. The difference between the proposed and existing
methods of data augmentation is shown in Figure 2. Conventionally, an artificial RIR is
estimated using the information of the room structure, and the reverberant signal is gener-
ated by the convolution of clean data with the RIR as in Figure 2a. However, the proposed
method first trains a CNN model using both a clean signal and recorded reverberant signal
at the environment estimation phase. Then, a large amount of real augmented data is
constructed with the trained CNN by using clean data as inputs. In Figure 2b, the data are
a feature vector of an audio signal, which is the short-time magnitude spectrum. When
composing input data, adjacent frames are input together to account for reverberation com-
ponents. The inputs for model training are both the magnitude spectra of the current and
adjacent frames, |X(i)| as in Equation (2), and the magnitude spectrum of the reverberant
signal, |Y(i)|.

|X(i)| =
{∣∣∣∣→X(i− l)

∣∣∣∣, . . . ,
∣∣∣∣→X(i)

∣∣∣∣, . . . ,
∣∣∣∣→X(i + l)

∣∣∣∣} (2)
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As well, the phase of the
∣∣∣∣ ˆ
Y(i)

∣∣∣∣, which is the output of CNN, uses the phase of the

clean sound.
The overall structure of the CNN model is shown in Figure 3, where Conv and Fc

represent a convolution layer and a fully connected layer, respectively.
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Figure 3. Block diagram of reverberant environment estimation using CNN model.

Furthermore, to verify that the proposed data augmentation method is helpful in con-
structing data for dereverberation, we trained a deep neural network for dereverberation
with the data generated by each method. The dereverberation method is learning the ideal
ratio mask (IRM) [17] of the clean spectrum compared to the reverberant spectrum. In the
IRM method, a spectrum of a clean signal is obtained by covering the reverberant input spec-
trum with a mask of an appropriate ratio. After that, the dereverberated signal is obtained
through an inverse short-time Fourier transform. As with the reverberant environment
estimation method, the phase of the output data uses that of the reverberant sound.

4. Experiments and Results

The proposed method needs acoustic data recorded in a reverberant environment. For
the CNN-based environment estimation, the training database is constructed by recording
the TIMIT speech database [18] played in an indoor space of 4250, 3300, and 2700 mm.
The microphone and speaker are positioned at 1700, 2000, and 800 mm and 1700, 400, and
600 mm. Both the conventional method and the proposed method played and recorded at
the same position. Figures 4 and 5 show the RIR and RTF obtained through the existing
method in this space. The TIMIT database consists of 4620 and 1680 sentences for training
and testing, respectively. 1000 sentences of the 4620 sentences are used for the training of
the reverberant environment estimation model and the rest of the 3620 sentences are later
used for the training of the dereverberation model.
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4.1. Result of the Proposed Data Augmentation Method

The speech signal is divided by a frame size of 20 ms and multiplied by the Hanning
window with a 50% overlap [19] to obtain the spectral magnitude. The CNN model in
Figure 3 generates the output of the single spectrum vector when seven consecutive frame
vectors of clean signals are the inputs. Therefore, with a sampling rate of 16 kHz, the
input and output sizes are 7257 and 1257, respectively. Each convolution layer extracts
features for a given input and generates an output through a fully connected layer. The
ReLU [20] was used for the activation function of each layer and the Adam [21] was used
as the optimization function. Furthermore, we stopped the training when the accuracy
and loss functions converge. Figures 6 and 7 show waveform and spectrogram examples
for the comparison. As shown in the figures, the ones obtained by the proposed method
are similar in that they have less distance to the recorded ones than those obtained by the
existing method. The comparison results are given in Table 1.
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Table 1. LSD and RMSE between recorded and generated signals.

Distance RMSE LSD [dB] PESQ

RIR 0.1625 14.08 1.44
Proposed 0.1562 11.15 1.92

For the verification of the augmentation performance, the root mean square error
(RMSE) and log spectral distance (LSD)—as in Equations (3) and (4)—between the data
augmented by each method and the actual recorded data are given in Table 1. The actual
recorded data consist of 1680 sentences. The proposed method showed a better performance
than the conventional methods in both the RMSE and LSD.

LSD =
1
M ∑M

i=1

√√√√ 1
K ∑K

k=1 10 log

(
|Y(i, k)|2

|X(i, k)|2

)2

(3)

RMSE =

√
1
N ∑N

n=1(x(n)− y(n))2 (4)

where i and k are frame index and frequency bin index, respectively. Moreover, for the
performance evaluation of dereverberation, we used the perceptual evaluation of speech
quality (PESQ) [22], which is the most widely known metric for measuring the quality of
the speech signal [23]. In Table 1, the proposed method presents a 2.93 dB LSD and 0.48
PESQ improvement.

4.2. Result of Dereverberation

The speech data to be tested were 1680 sentences, and 3620 sentences were used
as the training data. These 3620 sentences were not used to estimate the reverberation
environment and were generated by the proposed method rather than the actual recorded
speech. Figure 8 is the structure of the IRM model for dereverberation, and Figure 9 is
the spectrogram examples of the dereverberated signal from each method. As shown in
the figure, the proposed method obtains a cleaner signal than the existing method. The
results of comparing the dereverberation performances are shown in Table 2. As a result,
the proposed data augmentation method performed better than that from the RIR.
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Table 2. Performance of dereverberation.

Distance RMSE LSD [dB] PESQ

RIR 0.1409 12.27 1.89
Proposed 0.1361 11.71 1.92

5. Discussion

Conventional methods, such as the RIR method, assume that the acoustic reverberation
signal is the output of a linear system. However, the actual transmission of the acoustic
signal has a non-linear characteristic. This proposed method has novelty in modeling non-
linear characteristics by deep learning techniques. Through this study and the experiments,
it was found that the proposed method can generate augmented audio data that are more
realistic than the existing data augmentation technique. Moreover, the large amount of
augmented data was successfully used to train the deep learning model for dereverberation.
The proposed method can be adopted as a preprocessing tool for speech recognition or
speech communication, especially in a heavy reverberant environment such as a cafe or
restaurant. In addition, this method has the advantage that a developer without expertise
in acoustics and architecture can effectively augment large amounts of data. For future
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research, theoretical and experimental studies are needed to model the entire acoustic
environment by considering not only the reverberant signal of the target signal but also the
background noise.

6. Conclusions

In this paper, we presented a novel audio data augmentation method based on deep
learning in order to improve the performance of dereverberation. The reverberation
environment is estimated by training a convolutional neural network using clean and
recorded data. In this way, it was possible to generate data more similar to the actual
recorded sound than the conventional RIR method, and it was verified through RMSE
and LSD. In addition, we tested the effectiveness of the proposed augmentation method
for dereverberation by using the large amount of augmented data. As a result of the
experiment, the proposed method showed an improved performance compared with the
conventional method. Therefore, the proposed method can be adopted in a preprocessing
step in order to enhance the performance of speech applications, such as speech recognition
or speech communication.
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15. Szöke, I.; Skácel, M.; Mošner, L.; Paliesek, J.; Černocký, J. Building and Evaluation of a Real Room Impulse Response Dataset.
IEEE J. Sel. Top. Signal Process. 2019, 13, 863–876. [CrossRef]

16. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.

17. Narayanan, A.; Wang, D. Ideal Ratio Mask Estimation Using Deep Neural Networks for Robust Speech Recognition. In
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 7092–7096.

18. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S. DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus
CD-ROM. NIST Speech Disc 1-1.1. NASA STI/Recon Technical Report N. NASA STI/Recon. Tech. Rep. 1993, 93, 27403.

19. Barros, J.; Diego, R.I. On the Use of the Hanning Window for Harmonic Analysis in the Standard Framework. IEEE Trans. Power
Deliv. 2006, 21, 538–539. [CrossRef]

20. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the ICML, Haifa, Israel,
21–24 June 2010.

21. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
22. Rix, A.W.; Beerends, J.G.; Hollier, M.P.; Hekstra, A.P. Perceptual Evaluation of Speech Quality (PESQ)—A New Method for

Speech Quality Assessment of Telephone Networks and Codecs. In Proceedings of the Acoustics, Speech, and Signal Processing,
Salt Lake City, UT, USA, 7–11 May 2001; pp. 749–752.

23. Kim, J.; El-Kharmy, M.; Lee, J. End-to-End Multi-Task Denoising for Joint SDR and PESQ Optimization. arXiv 2019, arXiv:1901.09146.

http://doi.org/10.1109/JSTSP.2019.2917582
http://doi.org/10.1109/TPWRD.2005.852339

	Introduction 
	Conventional Reverberant Environment Estimation Method 
	Proposed Reverberant Data Augmentation Method 
	Experiments and Results 
	Result of the Proposed Data Augmentation Method 
	Result of Dereverberation 

	Discussion 
	Conclusions 
	References

