
����������
�������

Citation: Husnain, M.; Hayat, K.;

Cambiaso, E.; Fayyaz, U.U.;

Mongelli, M.; Akram, H.; Ghazanfar

Abbas, S.; Shah, G.A. Preventing

MQTT Vulnerabilities Using

IoT-Enabled Intrusion Detection

System. Sensors 2022, 22, 567.

https://doi.org/10.3390/s22020567

Academic Editor: Paolo Bellavista

Received: 13 December 2021

Accepted: 9 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Preventing MQTT Vulnerabilities Using IoT-Enabled Intrusion
Detection System
Muhammad Husnain 1 , Khizar Hayat 1 , Enrico Cambiaso 2,* , Ubaid U. Fayyaz 1 , Maurizio Mongelli 2 ,
Habiba Akram 1 , Syed Ghazanfar Abbas 1 and Ghalib A. Shah 1

1 Al-Khwarizmi Institute of Computer Science (KICS), University of Engineering and Technology (UET),
Lahore 39161, Pakistan; muhammad.husnain@kics.edu.pk (M.H.); khizar.hayat@kics.edu.pk (K.H.);
ubaid.fayyaz@kics.edu.pk (U.U.F.); habiba.akram@kics.edu.pk (H.A.);
ghazanfar.abbas@kics.edu.pk (S.G.A.); ghalib@kics.edu.pk (G.A.S.)

2 Consiglio Nazionale delle Ricerche (CNR), IEIIT Institute, 16149 Genoa, Italy; maurizio.mongelli@cnr.it
* Correspondence: enrico.cambiaso@cnr.it; Tel.: +39-010-6475-226

Abstract: The advancement in the domain of IoT accelerated the development of new communication
technologies such as the Message Queuing Telemetry Transport (MQTT) protocol. Although MQTT
servers/brokers are considered the main component of all MQTT-based IoT applications, their
openness makes them vulnerable to potential cyber-attacks such as DoS, DDoS, or buffer overflow.
As a result of this, an efficient intrusion detection system for MQTT-based applications is still a missing
piece of the IoT security context. Unfortunately, existing IDSs do not provide IoT communication
protocol support such as MQTT or CoAP to validate crafted or malformed packets for protecting
the protocol implementation vulnerabilities of IoT devices. In this paper, we have designed and
developed an MQTT parsing engine that can be integrated with network-based IDS as an initial
layer for extensive checking against IoT protocol vulnerabilities and improper usage through a
rigorous validation of packet fields during the packet-parsing stage. In addition, we evaluate the
performance of the proposed solution across different reported vulnerabilities. The experimental
results demonstrate the effectiveness of the proposed solution for detecting and preventing the
exploitation of vulnerabilities on IoT protocols.

Keywords: Internet of Things; intrusion detection system; MQTT protocol; network firewall; network
attacks; IoT vulnerabilities

1. Introduction

The Internet of Things (IoT) is a collection of smart objects connected to the Internet to
provide different services for the ease of human beings [1]. IoT introduced many innovative
concepts such as smart home, smart city, smart traffic system, smart parking, smart industry,
and smart wearable, all of which enhance human life. Although IoT contributes many novel
applications in our daily life, one of its main concerns refers to IoT devices security. Recent
cyber-security incidents exposed the security pitfalls and vulnerabilities in IoT devices [2–4].
Once an IoT device is connected to the Internet, it becomes an attractive target for attackers
seeking to access the device content and control for malicious activities [5].

Generally, IoT devices are equipped with limited storage and processing power [6].
IoT device manufacturers mostly focus on adding new attractive features/functionalities
in IoT devices, simplifying the design to make the devices smarter and more cost-effective
rather than making them secure [7]. Manufacturers are well aware of security hazards, but
they either ignore it or treat it as an afterthought feature due to the race to market [8]. Thus,
the end product comes with a wide set of attractive features but with inherited security
pitfalls, hence becoming an attractive target for cyber-criminals.

The resource constraint feature of IoT devices makes them vulnerable to different
attacks [9] such as spoofing attacks, denial of service (DoS) attacks, replay attacks, etc.

Sensors 2022, 22, 567. https://doi.org/10.3390/s22020567 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3253-0140
https://orcid.org/0000-0003-2620-109X
https://orcid.org/0000-0002-6932-1975
https://orcid.org/0000-0001-7833-6127
https://orcid.org/0000-0001-6201-6225
https://orcid.org/0000-0003-3305-215X
https://orcid.org/0000-0003-1835-5531
https://orcid.org/0000-0003-1841-5979
https://doi.org/10.3390/s22020567
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020567?type=check_update&version=1


Sensors 2022, 22, 567 1 of 26

In a recent work, it was reported that more than 25% of the compromised devices in a
botnet consist of smart home IoT devices such as smart TV, smart cameras, etc. [10]. The
famous Mirai attack gained control over thousands of IoT devices by exploiting the default
credentials and launched a distributed DoS (DDoS) attack on critical servers [11]. Hence,
there is an immense need to protect IoT device vulnerabilities By design, IoT devices are
not properly secured to counter vulnerability attacks [6]. A vulnerability is a loophole in a
system that provides a fertile ground for cyber-attacks. Standing to the Internet standards
body, i.e., Internet Engineering Task Force (IETF), a vulnerability (https://datatracker.ietf.
org/doc/html/rfc4949, accessed on 12 December 2021) is “a flaw or weakness in a system’s
design, implementation, or operation and management that could be exploited to violate
the system’s security policy”.

IoT vulnerabilities are mostly due to insufficient product testing, race to market, and
lack of proper legislation [7,12]. Not long ago, in a study, HP claimed that 70% of IoT
devices have vulnerabilities (https://www8.hp.com/us/en/hp-news/press-release.html?
id=1744676, accessed on 12 December 2021). Likewise, in the most recent report of the
World Economic Forum (WEF) (https://www3.weforum.org/docs/WEF_Global_Risks_
Report_2019.pdf, accessed on 12 December 2021), it is revealed that the cyber-attacks are
ranked among the top 10 global risks in terms of impact.

Over the past few years, a number of vulnerabilities have been revealed in IoT devices.
Recently, Zhen Ling [13] identified vulnerabilities in the communication protocol of a smart
plug (Edimax SP-2101W)—an extensively installed IoT device for home automation—that
could enable attacks such as brute force, scanning, spoofing, and firmware attacks. Similarly,
another study revealed that thousands of consumer IoT devices exposed over the Internet
are potentially vulnerable, and most of the devices had vulnerabilities due to the outdated
protocol versions [14]. Likewise, the authors in [15] identified that most of the protocol
exploits occur due to extraneous features in a protocol that are never used by an underlying
IoT device/application. The protocol implementation vulnerabilities may cause devastating
cyber-attacks on billions of IoT devices and IoT-driven production systems that can result in
information disclosure, ransomware installation [15], etc. According to a recent study [16],
it was disclosed that on average, an insecure IoT device contains 25 vulnerabilities.
Furthermore, 60% of the IoT devices contain vulnerable interfaces and firmware, while 70%
do not use any encryption technique for communications [16]. Hence, there is an immense
need to protect the vulnerabilities of IoT devices, especially those using unencrypted
protocols for communication.

Most of the IoT devices are vulnerable due to bugs on protocols implementation,
device management issues, or improper handling of communication messages [17]. In
order to fix such issues, the developers need to patch the IoT devices through firmware
updates. Unfortunately, most of the IoT devices are not capable of being updated as they
are not designed to receive updates over-the-air [18]. Thus, it puts billions of IoT devices at
risk, as they are incapable of receiving updates and hence remain unprotected, insecure,
and vulnerable.

One of the methods to protect an IoT device from known vulnerabilities is the use of a
network-based intrusion detection system (IDS). A network-based IDS can better protect the
IoT device protocol vulnerabilities provided that it supports the protocols that IoT devices
are using for communication. Moreover, it can protect the IoT devices from being exploited
during the parsing stage by matching the rules to protect the IoT device vulnerabilities. As
mentioned earlier, protocols such as MQTT or CoAP are frequently used by IoT devices.
Unfortunately, the existing network-based IDSs do not support many of such protocols.
Therefore, we propose a methodology for adding IoT protocols support in an open-source
IDS, i.e., Suricata, in order to protect the vulnerabilities of the IoT devices, network, and
protocols. The key focus of this work is to protect MQTT protocol vulnerabilities as it is the
most used IoT protocol [19,20]. The major contributions of this work are as follows:

• We first analyze the recently reported MQTT protocol vulnerabilities and disclosed
the major causes that are ignored while protocol implementation.

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
https://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf
https://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf


Sensors 2022, 22, 567 2 of 26

• Based on the analysis, we propose a robust parsing engine and integrated it with an
existing open-source IDS in order to detect and prevent the IoT devices from MQTT
protocol implementation vulnerabilities. To our best knowledge, it is the first time
that protocol vulnerability attacks are prevented through a parsing engine at the IDS
level before they reach the end device.

• Finally, in order to prove the effectiveness of the proposed solution, we deploy the
proposed solution in a real-time network and tested it against multiple reported IoT
protocol vulnerabilities.

The rest of the paper is structured as follows: Section 2 presents the literature review of
a selection of recently exposed vulnerabilities in IoT devices along with existing solutions
proposed for detecting and protecting the vulnerabilities. Section 3 investigates in detail the
characteristics of known vulnerabilities targeting the MQTT protocol. Section 4 describes
the proposed methodology for protecting the vulnerabilities in IoT devices, network, and
protocols. Section 5 discusses the experimentation and demonstrates how the proposed
methodology can safeguard the IoT vulnerabilities and stop both the inbound and outbound
cyber-attacks. Finally, Section 6 concludes the paper and reports further work on the topic.

2. Literature Review

The rampant exploitation of vulnerabilities and security pitfalls in IoT devices are
alarming the devastating effects of cyber-attacks in human life due to the widespread
utilization of IoT devices in our daily life. Therefore, it is imperative to secure and protect
the IoT devices from devastating cyber-attacks. Conventionally, two strategies are adopted
to secure the IoT devices or networks from cyber-attacks. These include on-device security
and network-based security [21]. The on-device security means the security shields that the
manufacturer has included into the device by default. It includes the username, password,
hash keys, or certificates to protect the IoT device from malicious activities. Vendors forge the
on-device security mechanism with device firmware. On the other hand, the network-based
security solutions mainly focus on securing the network from inbound attacks. Moreover,
they also control the inbound and outbound communication of the devices. Despite the
mature network defence technologies such as firewall, intrusion detection system, etc.,
the computer systems are exposed with more and more vulnerabilities [22]. Furthermore,
the traditional network defence systems are inadequate for securing the IoT devices and
network [11,21,23–25] due to lack of support for widely used IoT application layer protocols
such as constrained application protocol (CoAP), message queuing telemetry transport
(MQTT), etc. However, these vulnerabilities can be protected by adding the support of IoT
protocols in existing security solutions. Therefore, the proactive discovery and protection
of vulnerabilities of IoT devices have become imperative to safeguard the IoT network or
device vulnerabilities before the attack.

Currently, firmware update is the most common approach to fix the discovered
vulnerabilities in IoT devices. However, this feature is not available in every IoT device [26].
Only a few IoT vendors support the automatic update of firmware such as Atmel, Texas,
etc. Moreover, the attackers may integrate some malware into the device firmware by
exploiting the vulnerabilities in the firmware update technique. Therefore, firmware
updates should also be secure from being exploited. The IoT devices retain poor support
for patching or updating the firmware [27]. Once a vulnerability is reported, the vendor
first verifies whether the reported vulnerability actually exists in their device or not. After
the verification of the reported vulnerability, the vendor takes time to prepare the patch
for the exploited vulnerability. Therefore, it takes a couple of months to patch a reported
vulnerability, and until then, all the stakeholders are at the risk of facing the cyber-attacks.
Hence, there is a need to provide such a system that is capable of protecting the vulnerable
IoT devices until the vendor develops a patch or updates the device firmware.

According to the IETF RFC4949 (https://tools.ietf.org/html/rfc4949, accessed on 12
December 2021), system vulnerabilities can be categorized into three types: vulnerabilities in
design, vulnerabilities in implementation, and vulnerabilities in operation and management.

https://tools.ietf.org/html/rfc4949


Sensors 2022, 22, 567 3 of 26

The design vulnerabilities occur due to issues in protocol design. These vulnerabilities
are inherent in both implementation and operation. The implementation vulnerabilities
occur due to the logical mistakes made by the developer while implementing the protocol
specifications. The operation vulnerabilities occur due to some incident or event that alters
the normal functionality of the system.

The rapid development of IoT devices and vendor’s race to market provoked the
recklessness of security threats to a large extent [28]. The recent trends reported on the
famous vulnerabilities reporting platforms, i.e., the National Vulnerability Database (NVD)
(https://nvd.nist.gov, accessed on 12 December 2021) and Common Vulnerabilities and
Exposures (CVE) (https://cve.mitre.org, accessed on 12 December 2021) databases, show
that most of the IoT devices are vulnerable due to vulnerabilities in protocol design or
vulnerabilities in protocol implementation. In a recent study [29], it is highlighted that the
inadequate protocol implementation could be vulnerable to crafted or malformed packets
and other types of attacks. The reason is that the inadequate implementation of protocol
causes errors, buffer overflow, DoS attacks, etc., while handling the irregular crafted or
malformed network traffic [29]. Likewise, in another study [14], the authors analyzed
the vulnerabilities of three type of consumer IoT devices, i.e., smart TVs, printers, and
webcams exposed over the Internet. The authors used a famous search engine, i.e., Shodan
(https://www.shodan.io, accessed on 12 December 2021), to identify the consumer IoT
devices and identified 156,680 consumer IoT devices exposed over the Internet. Afterwards,
they scanned the identified IoT devices to assess the existence of potential vulnerabilities in
identified devices by using a vulnerability assessment tool, i.e., Nessus. The study revealed
that 12.92% of the identified consumer IoT devices had potential vulnerabilities, and most
of them were due to outdated versions of communication protocols that can exploit the
user information and privacy [14].

Hong et al. [15] identified that the attackers exploit extraneous features (i.e., features
in a protocol that are never used by an underlying IoT device/application) to compromise
the underlying IoT devices/applications. To address this issue, the authors proposed
customizing a protocol by keeping the required protocol features and removing all the
extraneous features from the protocol implementation. Similarly, Ling et al. [13] highlighted
the severe vulnerabilities regarding the communication protocols and authentication
mechanism in some popular smart home plugs. They exploited the communication
protocols and gained authentication credentials by performing four type of attacks, i.e.,
device scanning attack, brute force attack, spoofing attack, and firmware attack. Finally, the
authors gained access to the smart plug due to the insecure communication protocol and
lack of device authentication. Likewise, in [30], the authors exploited the vulnerabilities
of an IP camera and gained full control of IP camera by launching three attacks, which
included a device-scanning attack, device-spoofing attack, and brute force attack. Their
experiments revealed that an attacker can obtain the user passwords through the device-
scanning attack with the probability of 98%.

The intelligent and connected vehicles such as Jeep or Tesla Model S were also found
to be vulnerable to cyber-attacks aimed to get control of the vehicle in both standby and
driving mode [7,31].

In another work (https://media.kasperskycontenthub.com/wp-content/uploads/
sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.pdf, accessed on
12 December 2021), the authors analyzed the hardware and software system of an electric
vehicle charger home station to discover the vulnerabilities in it. They found the
vulnerabilities in device firmware regarding OS command injection, stack overflow,
Bluetooth stack overflow, and log file stack buffer overflow, which led to full control
over the device. Likewise, the authors exposed vulnerabilities in KeyWe smart lock
(https://www.iottechtrends.com/security-flaws-keywe-smart-lock-hacks/, accessed on 12
December 2021). The vulnerability found in the poorly designed communication protocol
of smart lock allowed the attackers to intercept the secret pass code that is transferred
between the smart lock and Android application (https://labs.f-secure.com/advisories/

https://nvd.nist.gov
https://cve.mitre.org
https://www.shodan.io
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-research_final.pdf
https://www.iottechtrends.com/security-flaws-keywe-smart-lock-hacks/
https://labs.f-secure.com/advisories/keywe-smart-lock-unauthorized-access-traffic-interception/
https://labs.f-secure.com/advisories/keywe-smart-lock-unauthorized-access-traffic-interception/


Sensors 2022, 22, 567 4 of 26

keywe-smart-lock-unauthorized-access-traffic-interception/, accessed on 12 December
2021). Although the KeyWe smart lock was equipped with several security mechanisms
such as data encryption, the poor design of the communication protocol allowed the
attackers to eavesdrop the communication between the lock and application. Unfortunately,
the smart lock does not provide an option for the user to update firmware, which means
that this flaw cannot be fixed. Hence, the users have to either replace the lock or keep the
lock with risk.

Several vulnerabilities have been disclosed in the firmware of the Samsung SmartThings
Hub (https://www.securityweek.com/samsung-patches-critical-vulnerabilities-smartthings-
hub, accessed on 12 December 2021). The Samsung SmartThings Hub was designed to
monitor, control, and manage the IoT devices in a smart home network. Talos Intelligence
reported (https://blog.talosintelligence.com/2018/07/samsung-smartthings-vulns.html,
accessed on 12 December 2021) 20 vulnerabilities in the SmartThings Hub through which
an attacker can take over smart home devices. Most of the reported vulnerabilities belong
to firmware or communication protocol.

Some researchers have also worked on protecting the IoT devices and networks from
cyber-attacks. Feng et al. [32] proposed an automatic rules generation engine, based on
vulnerability reports analysis that could be used in IDSs. However, it cannot be used to
secure IoT protocols vulnerabilities due to lack of support in both the rules generation engine
and existing IDSs. Similarly, in [33], the authors proposed a network filter for vulnerability
protection, but it lacks defense against IoT-specific protocols exploits. Likewise, in [34], the
authors proposed a solution to detect the DoS attacks in IoT 6LoWPAN networks. For this
purpose, they developed IEEE 802.15.4 (layer 2) and 6LoWPAN (adaptation layer 3) protocol
decoders and integrated them with an open-source intrusion detection and prevention
system (IDPS). Their proposed solution firstly identifies the link type; if it matches the
IEEE 802.15.4 link type, then it is decoded by their own developed decoder. Otherwise,
it is decoded by the IDPS's default layer two decoders. The authors in [35] proposed a
four-layered architecture of the IDS for IoT. At first, they generated the signatures of different
types of attacks by training their model on a dataset. Afterwards, they extracted the pattern
of the network traffic and identified the attack if the extracted traffic pattern matches with
the signatures stored in the repository.

Some researchers have also focused on MQTT protocol protection against vulnerabilities.
For example, in [36], the authors developed an open source publish/subscribe system
for IoT. According to the authors, MQTT is the most widely employed protocol in IoT
constrained devices. In this paper, the authors presented a secure publish/subscribe system
by extending MQTT using a key management framework and policy enforcement. The
purpose of this system is to control the flow of information in MQTT with the help of policy
enforcement. In [37], the authors presented attack scenarios and conducted security analysis
of MQTT protocol. In this paper, the authors discussed various reasons why many IoT
systems do not adequately implement security mechanisms. Furthermore, they discusses
how MQTT protocol could be attacked by presenting various attack scenarios. In the end,
they have analyzed the vulnerabilities of MQTT protocol to improve the security awareness.
Additionally in [38], the authors presented an efficient fuzzy logic-based approach to detect
a DoS attack in MQTT protocol for IoT called Secure MQTT. It is responsible for detecting
malicious activity during the communication between IoT devices. It utilizes a fuzzy
logic-based system in order to detect the malfunction behavior of the IoT nodes using a
fuzzy rule interpolation mechanism.

Although the existing studies made effort to protect the vulnerabilities of IoT devices,
most of them lack support for IoT-specific application layer protocols such as CoAP,
MQTT, etc. Similarly, none of the above discuss works focused on protecting protocol
implementation flaws. Therefore, in this study, we proposed a robust protocol parsing
engine and integrated it with an existing open-source IDS in order to protect the IoT
network and devices from malformed or crafted packets that may cause cyber-attacks.

https://labs.f-secure.com/advisories/keywe-smart-lock-unauthorized-access-traffic-interception/
https://labs.f-secure.com/advisories/keywe-smart-lock-unauthorized-access-traffic-interception/
https://www.securityweek.com/samsung-patches-critical-vulnerabilities-smartthings-hub
https://www.securityweek.com/samsung-patches-critical-vulnerabilities-smartthings-hub
https://blog.talosintelligence.com/2018/07/samsung-smartthings-vulns.html


Sensors 2022, 22, 567 5 of 26

3. Analysis of Recently Reported MQTT Protocols Vulnerabilities

In this section, we present our analysis on recently reported IoT protocol vulnerabilities
that are reported in the NVD (https://nvd.nist.gov, accessed on 12 December 2021),
and CVE (https://cve.mitre.org, accessed on 12 December 2021) databases. Both the
NVD and CVE are famous vulnerability reporting platforms for collecting, maintaining,
and disseminating detailed information regarding the latest reported vulnerabilities. As
mentioned earlier, MQTT is the most popular protocol used in IoT environments. Therefore,
we focused on analyzing its vulnerabilities. Particularly, in order to figure out the root
causes of recently reported MQTT protocol vulnerabilities, we analyzed MQTT-related
vulnerabilities reported at NVD and CVE during the 2014–2021 period.

We found that a total of 81 MQTT protocol-related vulnerabilities were reported in
NVD and CVE from April 2014 to December 2021. In general, if we consider the period
2014–2020, it is possible that the number of reported vulnerabilities increase year by year
(see Figure 1). The following is a description of some of the reported vulnerabilities. Upon a
careful observation, we figured out that most of the MQTT-reported vulnerabilities are due
to the three major issues, which include improper packet length checks, lack of required
fields checks, and lack of logical errors checks. There exist some vulnerabilities that do
not lie in any of these three categories: improper packet length checks, lack of required
fields checks, and lack of logical errors checks; we included them in the miscellaneous
category. Hence, in the overall analysis, we categorized the reported vulnerabilities into
four types. The detailed analysis of each category with respect to the reported MQTT CVEs
is done in the following subsections. Attackers could exploit such vulnerabilities in IoT
protocols and easily craft packets with eliminated or malformed fields in order to perform
different malicious activities ranging from shutting down a service to getting control over
an MQTT server or IoT end device [28]. Out of 81 MQTT vulnerabilities, the number of
vulnerabilities that lie in the category of improper packet length checks is 12. The number
of vulnerabilities that lie in the category of lack of required fields checks is 37, while the
number of vulnerabilities that lie in the lack of logical errors checks is 25.

Figure 1. MQTT vulnerabilities reported in NVD and CVE during the 2014–2020 period.

3.1. Improper Packet Length Checks (LC)

A network packet is a formatted unit of data that is transmitted and received over
the network. Figure 2 shows the formatting of a normal MQTT packet. There exist four
major fields in an MQTT packet, which are control header, packet length, variable length

https://nvd.nist.gov
https://cve.mitre.org


Sensors 2022, 22, 567 6 of 26

header, and payload. The first two fields are mandatory for every MQTT packet, while the
remaining ones are optional.

Figure 2. MQTT standard packet formatting.

The extraction and identification of packet fields is called packet parsing. Although
packet parsing may seem a simple activity, due to advancements in packet-crafting methods,
attackers can easily exploit protocol vulnerabilities that leads to improper parsing. In
particular, those that consider parsing as a sequential activity may exploit improper length
checks. A large number of IoT implementation vulnerabilities are also due to missing or
improper length checks before parsing. A number of improper packet length vulnerabilities
of MQTT are present. We have discussed the few that follow. In CVE-2021-41036, Eclipse
Paho MQTT C Client does not verify the rem_len size in readpacket. According to
CVE-2020-10071, the Zephyr MQTT parsing code does insufficient checking of the length
field on published messages. These situations allow a buffer overflow attack, which
ultimately causes remote code execution on Zephyr. In CVE-2020-10070, the Zephyr Project
MQTT code performs improper bound checking, which allows remote cute execution as
well as causes memory corruption. In CVE-2019-17210, an improper check for the length
and content of the MQTT topic name causes re-initialization of the main stack pointer.
This situation results in DoS. Recently, a vulnerability CVE-2020-10071 reported in NVD
identified the insufficient checking of packet length of published message in the Zephyr OS
MQTT parsing code, which allowed the attackers to perform remote code execution and
buffer overflow attack.

Some other vulnerabilities are also reported in same implementation due to improper
length checks, CVE-2020-10070 and CVE-2020-10063. Similarly, another vulnerability
CVE-2019-17210 was discovered in the MQTT library of Arm Mbed OS. According to
the reported vulnerability, MQTT implementation suffers from improper checking while
reading the topic length and content of an MQTT publish packet. Therefore, a denial of
service (DoS) attack was reported when an attacker sent a crafted packet with the wrong
value in topic length and content field.

In another reported vulnerability, CVE-2016-10523, the MQTT broker crashes while
parsing the packet similar to <Buffer 16 03 01 01 01 01 00 00 fd ...>. According to
the MQTT protocol specifications, the second byte of an MQTT packet defines the remaining
packet length. In the CVE-2016-10523 vulnerability, the MQTT broker crashed due to a lack
of packet length validation when an attacker created a crafted packet of length 3 and tried
to fill the remaining packets bytes in that buffer with more than 3 bytes. Hence, the MQTT
server crashed, and a denial of service (DoS) status is reached.

The lack of packet length checks is not limited to DoS attacks, as it can also create
exposure to other threats such as remote code execution (RCE) or reading memory contents.
For example, in an MQTT implementation vulnerability for CVE-2017-2892, a specially
crafted packet allowed the attacker to read and write the restricted memory area. Similarly,



Sensors 2022, 22, 567 7 of 26

in CVE-2019-13120, due to a lack of length checks in the MQTT implementation, the attacker
can read the memory contents of a device. The other similar vulnerabilities reported in
MQTT implementation include CVE-2017-2894, CVE-2017-2895, CVE-2018-16528, CVE-2018
-17614, CVE-2018-18764, CVE-2018-18765, CVE-2018-19417, and CVE-2018-5879. However,
this issue can easily be fixed by implementing a proper length check mechanism in order to
prevent the devastating attacks such as DoS, RCE, etc.

3.2. Lack of Required Fields Check (RFC)

The lack of required fields check is the second major cause that is found in the recently
reported vulnerabilities. These vulnerabilities occur due to an ignorance of the required
fields validation during the protocol implementation. As previously discussed, in MQTT,
the packet length and packet fields vary with respect to the packet type. So, there should
be explicit implementation of the required fields check with respect to packet type. For
instance, if a packet contains a user name field, then the relative password field must
also be present, as an absence of such a password section will put the implementation
at a stake. We have discussed the lack of a few required fields check vulnerabilities as
follows. In CVE-2019-9749, the mishandling of a crafted packet in the MQTT input plugin
in Fluent Bit causes a server crash. In CVE-2018-11993, an improper check while accessing
the stack upon the MQTT connection request causes a buffer overflow attack. Additionally,
in CVE-2018-8531, an improper restriction of operation in the Azure IoT Hub device
for MQTT protocol memory access causes a remote code execution attack. Some of the
other vulnerabilities related to an improper required fields check implementation flaw
are CVE-2016-9877, where the MQTT broker authenticates a connection request with a
valid username but with an omitted password section, or CVE-2017-2893, where the MQTT
broker crashes while processing a subscribed packet with no subscription argument.

3.3. Missing Logical Errors Checks (LEC)

This issue arises due to the lack of logical errors check in the packet data and lack of
their identification in implementations.

We have discussed a few vulnerabilities related to a lack of logical error checks, which
follow. In CVE-2021-42386, a use-after-free in Busybox’s awk applet causes DoS and
possibly causes code execution when processing a crafted awk pattern. In CVE-2019-9749,
the mishandling of a crafted packet in the MQTT input plugin in Fluent Bit causes a server
crash. In CVE-2018-11998, a ace condition occurs while processing a crafted packet decode
request in MQTT, which causes a buffer overflow attack. For instance, in CVE-2020-13849,
the MQTT server implementation is vulnerable to a denial of service, and it is unable to
establish new connections due to a lack of logical check on the Keep-Alive value sent by the
client. The MQTT server extends a client connection timeout by 1.5 times the time asked
by the client. An attacker exploited this functionality by sending a larger timeout request,
keeping the server resources busy, which ultimately caused a DoS attack.

Similarly, in CVE-2019-11778, the MQTT server crashes while processing a packet
having the value of “will delay interval” greater than the value of “session expiry interval”.
According to the MQTT protocol specifications, the “will delay interval” should be less
than or equal to the “session expiry interval”. Nevertheless, due to the missing logical
errors check in the MQTT implementation, an attacker could crash the MQTT server by
sending a crafted packet having the value of “will delay interval” greater than the value of
“session expiry interval”.

3.4. Miscellaneous

While analyzing the MQTT vulnerabilities, i.e., CVEs reported at NVD and CVE, we
observed some CVEs that neither belong to improper packet length checks nor belong to
a lack of required fields check and missing logical errors checks. We categorized all such
CVEs into the miscellaneous category. The CVEs included in this category are exploited
due to an improper handling of content type, data type, authentication bypass, invalid



Sensors 2022, 22, 567 8 of 26

certificates, and invalid access. The content type-related vulnerabilities reported are due to
improper handling of the non-UTF-8 encoded character client ID or topic name.

For example, in CVE-2020-13932, the attacker exploited a vulnerability in Apache
ActiveMQ Artemis 2.5.0 to 2.13.0 (i.e., an MQTT server) which accepts the MQTT crafted
packets having non-UTF-8 encoded characters in the client ID and topic name. By exploiting
such vulnerability, the attacker can execute any vulnerable script or command to obtain
access over the MQTT server, hence allowing him the possibility to perform malicious
activities. Similarly, the data type related vulnerabilities were reported due to an improper
initialization of variables or unspecified vectors. For example, in CVE-2019-5917, a denial
of service attack was performed by exploiting the unspecified vector in Microsoft Azure’s
MQTT client service (i.e., azure-umqtt-c).

Instead, in case of authentication bypass-related vulnerabilities, the exploits occurred
due to the unencrypted and unencoded information transformation over the network. For
example, in CVE-2019-5635, due to not encrypting the data transmission between a smart
bridge device and MQTT broker, an attacker exploited the MQTT broker using the default
user name and password. Likewise, the invalid access-related vulnerabilities occurred due
to the wrong file and objects permission. For example, in CVE-2018-8531, a vulnerability
was reported that the Azure IoT Hub Device accesses objects in memory, which allowed an
attacker to perform memory corruption.

4. Methodology

The proposed methodology for detecting and preventing the MQTT protocol
implementation vulnerabilities in IoT end devices consists of five major steps, as shown
in Figure 3. These steps include protocol intuition, vulnerabilities assessment, protocol
identification, protocol parsing, strict protocol validations, and rules definition. In order to
safeguard the IoT end devices and network from the protocol implementation vulnerabilities
exploitation, the first step is the protocol intuition. In the protocol intuition step, we review
information about the working principle, operating commands, packet structure, packet
flows, and specifications of the MQTT protocol. After the protocol intuition, the next step is
the assessment of vulnerabilities regarding the MQTT protocol from online vulnerabilities
reporting platforms such as NVD and CVE. The information collected from the protocol
intuition and vulnerabilities assessment is used for designing the proposed parsing engine.
The proposed parsing engine is responsible for the next three major steps of the proposed
methodology, which include protocol identification, protocol parsing, and packet fields
validation. Finally, after the rigorous validation of incoming or outgoing packets done by
the parsing engine, the further protection of the IoT network from malicious packets or
attacks is performed by MQTT protocol-based rules definition. The detailed description of
all the aforementioned steps is given in the following subsections:

Figure 3. Proposed methodology for protecting the protocol-based vulnerabilities in an IoT network.

4.1. Protocol Intuition

Protocol intuition is the primary and vital step of the proposed methodology for
preventing MQTT protocol-based vulnerabilities. In this step, we first reviewed the working
principle, key functionalities, operating commands, packet structure, packet types, packet



Sensors 2022, 22, 567 9 of 26

flows, and specifications of the MQTT protocol. The MQTT is a standard, fast, light-weight,
open-source, simple, and easy to implement transport protocol that is specially designed
for machine-to-machine communication in an IoT environment.

The MQTT protocol works on the basis of the publish/subscribe model where the
communication undergoes among three network entities, i.e., publisher, subscriber, and
broker. The MQTT broker is basically a server through which publishers and subscribers
communicate with each other. Unlike the traditional client–server model, there is no direct
communication between publisher and subscriber, and all the communication between
them is held by the MQTT broker. The MQTT is connection-oriented protocol where all
the publishers and subscribers have to establish a connection with the broker to send or
receive the messages. The MQTT subscriber becomes connected with the broker to receive
the messages from the broker against a specific topic, as illustrated in Figure 4. On the
other hand, the MQTT publisher becomes connected with the broker to send (publish) the
messages for other clients to the broker against a specific topic, as displayed in Figure 4.
Based on the publish and subscribe topics, the MQTT broker filters all incoming packets
from publishers and distributes them correctly to subscribers. Both the MQTT publisher
and subscriber are not aware of each other in the MQTT communication model; they are
only aware of the MQTT broker.

Figure 4. MQTT publish packet flow when QoS is set to 0.

Generally, the MQTT packet fields are classified into four major fields, which include
the control header, packet length, variable length header, and payload, as previously shown
in Figure 2 and described in Section 3. If we specifically consider the MQTT publish
message, it generally consists of six attributes. These attributes include the packet ID, topic
name, retain flag, quality of service (QoS), payload, and duplicate flag. The topic name is a
simple string that may contain forward slashes for better contextual understanding. The
QoS has three levels, i.e., 0, 1, 2, which determine whether the publisher needs notifications
about the delivery of the publish packet to the subscribers. The retain flag defines whether
the broker should save the last publish message or not. Whenever a new subscriber connects



Sensors 2022, 22, 567 10 of 26

with the broker, it sends the last retained (if it exists) to the subscriber first. The payload is
the actual message that a publisher sends across a topic. The message can be in the form
of plain text, encrypted text, image, etc. The packet ID is for the unique identification of
packets as it flows over the network. The duplicate flag is useful when QoS is set to 1 or
2. In that case, the duplicate flag is set to 1 when the publisher resends a message whose
acknowledgement is not received.

In case of the MQTT subscribe message, it is composed of two packet fields, i.e., packet
ID and subscription list. The packet ID is for the unique identification of a packet when it
goes from client to broker or broker to client. The MQTT protocol has 16 types of packets,
which are released based on the QoS value and flags set in publish or subscribe packets.
All these packet types along with their decimal value and the purpose for which they
are released are presented in Table 1. Similarly, we overviewed the packet flows for both
publish and subscribe packets. Figure 4 illustrates the packet flows when an MQTT publish
client sends the publish packet with QoS 0. Likewise, Figure 5 shows the packet flows
of subscribe packets when a publish packet is sent with RET 1 and QoS 2. Finally, we
overviewed the MQTT protocol specifications given at (http://docs.oasis-open.org/mqtt/
mqtt/v5.0/mqtt-v5.0.html, accessed on 12 December 2021) to proceed with further steps of
the proposed methodology for preventing MQTT protocol-based vulnerabilities.

Figure 5. MQTT subscribe packet flow when RET flag is True and QoS is set to 2.

4.2. Vulnerabilities Assessment

After the protocol intuition phase is accomplished, the next step is to assess the
protocol vulnerabilities in IoT devices that exist within the network. In this step, our focus
is to perform an in-depth analysis of MQTT protocol vulnerabilities. For this purpose,
we adopted two approaches: by surveying popular online vulnerabilities databases and
by using attacking tools. For the online vulnerabilities database survey, we explored two
famous online vulnerabilities reporting platforms, NVD and CVE, to investigate the online
vulnerabilities reported regarding the MQTT protocol. We found a total of 81 vulnerabilities
of MQTT reported from 2014 to 2021. We analyzed the major causes and the resultant

http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html


Sensors 2022, 22, 567 11 of 26

devastating effects of these reported vulnerabilities. Furthermore, based on the root cause
of these reported vulnerabilities, we categorized them into four types. The detailed analysis
of these MQTT vulnerabilities is discussed earlier in Section 3.

Similarly, we also used two stress testing tools to send flooding traffic on port 1883
that the MQTT protocol uses for communication. These tools include MQTTSA [19] and
hping3 (https://linux.die.net/man/8/hping3, accessed on 12 December 2021). We used
these tools in order to check the behavior of MQTT clients (i.e., publishers and subscribers)
upon receiving the flooding attack.

4.3. The Parsing Engine

After the protocol intuition and vulnerabilities assessment, we designed a parsing
engine to detect and prevent the protocol implementation vulnerabilities. The parsing
engine is the master module of the proposed methodology. It has three key functions,
which include protocol identification, packet parsing, and packet fields validation. At first,
the parsing engine identifies the protocol of an incoming or outgoing packet. After the
protocol identification, the next step is to parse the packet with respect to the format of
the identified protocol. Finally, when a packet is parsed, then it validates the packet fields.
Details on such steps are reported in the following sections.

4.3.1. Protocol Identification

As discussed earlier, the IoT application layer protocol-based vulnerabilities inspected
during the vulnerability assessment stage can be protected using an network-based IDS.
In addition, packet crafting attacks can be stopped during the packet parsing, while the
flooding attacks can be protected by defining the protocol-based rules inside IDS. In order
to stop IoT application layer-based packet crafting and flooding attacks, an IDS must be able
to support such IoT protocols. Instead of developing an IDS from scratch, we decided to
extend an existing IDS with the support of the MQTT protocol. For this purpose, we selected
Suricata (version 4.1.8, released on (https://suricata-ids.org/2020/04/28/suricata-4-1-8-
released/, accessed on 12 December 2021) 28 April 2020), which is a popular open-source
IDS with excellent performance compared to other open-source IDSs. In order to add
MQTT protocol support into Suricata, we studied its available documentation (https:
//suricata-ids.org/docs/, accessed on 12 December 2021) and reviewed its source code
as well to understand its working principle. We found that the protocol identification in
Suricata is done based on the default port number of an underlying protocol. So, at first,
we performed MQTT protocol identification through a port-filtering method, i.e., detect
every incoming packet at default MQTT port 1883 as an MQTT packet. Such a conventional
system might get exploited if an attacker attempts a server crash attack on the MQTT
broker by sending malformed packets (e.g., FTP, SMTP, HTTP, etc.) or another application
layer protocol’s packets at the MQTT default port, i.e., 1883. In such a case, it is necessary
to validate if the incoming packet is really an MQTT packet. Therefore, besides using
the port-filtering technique, we also analyzed the sequence and features of packet flows
exchanged among MQTT clients (i.e., publisher, subscriber) and the broker in order to
determine the signatures of the MQTT protocol. When a publisher or subscriber wants to
communicate with the broker, he needs to first get connected with the MQTT broker to
send further packets on the network. Whenever an MQTT broker receives a connect request
from MQTT clients, it sends a MQTT connect acknowledgement as a response. Therefore,
to discover the signatures of the MQTT packet, we observed three unique characteristics in
the MQTT connect acknowledgement packet. Such characteristics include the TCP length,
total packet length, and flags in the response packet from the MQTT broker. We discovered
that in the MQTT response acknowledgement packet, the TCP length is set to 4 bytes, the
total packet length 56 bytes, and the flags value is set to 0x018 (i.e., with the Push (PSH)
and Acknowledge (ACK) flag set to 1), as shown in Figure 6. So, based on these three
characteristics, we determine whether the flow packets passing through the unknown ports
are MQTT protocol-related packets or not.

https://linux.die.net/man/8/hping3
https://suricata-ids.org/2020/04/28/suricata-4-1-8-released/
https://suricata-ids.org/2020/04/28/suricata-4-1-8-released/
https://suricata-ids.org/docs/
https://suricata-ids.org/docs/


Sensors 2022, 22, 567 12 of 26

Figure 6. MQTT acknowledgement packet fields (highlighted in red-lined rectangle) used to identify
MQTT protocol in signature-based approach.

4.3.2. Packet Parsing

As previously discussed, IoT application layer protocol-based packet crafting attacks
can be stopped during packet-parsing activities. Instead, flooding attacks have to be
stopped by defining a protocol-based ruleset inside the IDS. A parser breaks down the
incoming packets into meaningful chunks with respect to the identified protocol and packet
type. Since the protocol-based rules filter network traffic across the given conditional
values of keywords, therefore, a packet parser is mandatory to fire a rule for preventing
an attack. In order to add MQTT protocol parsing support into Suricata, we developed an
MQTT packet parser module and integrated it into Suricata source code. The packet parser
checks every incoming and outgoing packet to identify whether the underlying packet is
an MQTT packet or not. If the underlying packet is recognized as a MQTT packet based
on the relative port number, then the packet-parsing module analyzes the MQTT packet
and splits it into different fragments based on the packet type and packet length defined
in the first two bytes of an MQTT packet (see Figure 2). Each MQTT packet consists of a
fixed 1 byte control header in which the four most significant bits (MSBs) tell about the
MQTT packet type, while the four least significant bits (LSBs) specify the flags values with
respect to the packet type. The MQTT protocol has 16 types of packets. All these types
are presented in Table 1 with its decimal value by which the MQTT parser recognizes the
packet type.

4.3.3. Strict Protocol Validations

In Suricata, we have integrated and developed a MQTT parsing engine. This engine is
responsible for extensive checking against IoT protocol vulnerabilities and improper usage
of MQTT protocol packet fields during the parsing stage. According to our observations,
MQTT vulnerabilities are due to three major issues: improper packet length checks, lack of
required fields checks, and lack of logical errors checks. These issues are due to the fact that
the Suricata’s MQTT parsing engine does not perform rigorous checking against improper
length checks, required fields, or logical errors. However, our developed parsing engine
performs protocol validation against improper length checks, required fields, and logical
errors. For example, consider the case if an MQTT packet contains a user name field; then,
the relative password field must also be present, as an absence of such a password section
will put the implementation at a stake. Therefore, in our developed MQTT protocol parsing
engine, the engine is responsible for checking such protocol validations. The key function
of our proposed parsing engine is strict protocol validations at the gateway level. It will
secure devices from attackers who want to exploit protocol implementation vulnerabilities.



Sensors 2022, 22, 567 13 of 26

In existing security solutions such as firewalls or IDS, the protocol implementation is only
confined to the security policies or rules. For instance, an HTTP protocol parser extracts
the URL from the packet to look for a specific pattern in the HTTP URL. Strict protocol
implementation is different from the traditional methods. It is responsible for ensuring the
guidelines provided in the protocols specification before allowing the packet to reach the
target devices. Any packet that violates the protocol specifications will be stopped at the
gateway level to avoid attacking the device. For instance, according to the MQTT protocol
specification, only one CONNECT packet is allowed in a communication flow. Therefore, strict
validation could ensure that if more than one CONNECT packet is found, the connection will
be blocked. Without a strict validation, IoT devices can easily drain out their constrained
resources and suffer from vulnerabilities exploitation. For development of the MQTT
protocol parser, we have analyzed its specifications in detail, as mentioned in Table 1.

Table 1. MQTT packet types and their values defined in four MSBs.

Packet Type Description Value

Reserved Reserved 0
CONNECT Connection request 1
CONNACK Connection acknowledgment 2
PUBLISH Publish message 3
PUBACK Publish acknowledgment 4
PUBREC Publish received 5
PUBREL Publish released 6
PUBCOMP Publish complete 7
SUBSCRIBE Subscribe request 8
SUBACK Subscribe acknowledgment 9
UNSUBSCRIBE Unsubscribe request 10
UNSUBACK Unsubscribe acknowledgment 11
PINGREQ Ping request 12
PINGRESP Ping response 13
DISCONNECT Disconnect notification 14
Reserved Reserved 15

4.4. Rules Definition

As discussed earlier, several IoT devices are vulnerable to attacks due to flaws in the
MQTT protocol implementation. The proposed parsing engine will protect most of the
MQTT protocol implementation vulnerabilities. However, there is a need for extra security
in order to safeguard the IoT network and defend against the cyber-attacks that do not
belong to MQTT protocol implementation flaws, e.g., flooding attacks. For such attacks,
we defined a set of rules that can be used by an intrusion detection system. The IDS will
check every MQTT packet that is declared as normal by the parsing engine and block all
the packets that match with the defined IDS rules. In this work, we only defined some
rules for detecting and preventing the MQTT flooding attacks affecting IoT networks. For
this purpose, we first reviewed the rule writing syntax of Suricata, which is based upon
the protocol specific keywords whose value is extracted from an MQTT packet during the
parsing stage.

So, in our case, we also defined some MQTT keywords for IDS rules writing. We further
added these keywords into both the proposed parsing engine and Suricata’s rule-matching
engine. The proposed parsing engine will extract the values across these keywords from
every MQTT incoming or outgoing packet and perform strict protocol validations, while
the Suricata’s rule engine will match the keywords’ values with the MQTT rules. If there is
a rule match, then it will block that packet to safeguard the IoT network and defend against
MQTT flooding attacks.

Figure 7 shows two sample rules that are added into the Suricata ruleset for protecting
the IoT devices and networks from flooding attacks. In the figure, rule 1 is written for
detecting and stopping the multiple connection requests to MQTT broker from a single



Sensors 2022, 22, 567 14 of 26

source IP address. Similarly, rule 2 detects and prevents the MQTT publish packet flood.
The keywords reported in rule 1 and rule 2 are highlighted. When an MQTT packet is
received by Suricata, after the strict protocol validation, the Suricata rule engine will match
the values of extracted protocol keywords with its existing ruleset. When an adversary tries
to send multiple connection requests to an MQTT broker, then rule 1 will be triggered, and
the Suricata rule engine will drop these malicious packets if incoming connection requests
from a single source exceed the limit of 10 connection requests per minute. Likewise, when
an adversary attempts to flood publish packets to an MQTT broker, the Suricata rule engine
will detect and drop this malicious attempt if the incoming traffic from a single source
exceeds the limit of 100 publish packets per minute.

Figure 7. Sample rules defined in Suricata to detect and prevent MQTT flooding attacks.

5. Results and Discussion

We performed a set of experiments to validate the effectiveness of the proposed
solution for protecting MQTT vulnerabilities in IoT devices. We divided our evaluation
into three parts. At first, we evaluated the performance of the proposed parsing engine
for MQTT protocol identification over known and unknown ports traffic. Afterwards, we
evaluated the performance of the proposed parsing engine for strict protocol validation.
Finally, we evaluated the performance of the proposed solution for MQTT rule-based
attack detection.

The experimental setup is represented in Figure 8. Our experimental setup consists of
three machines, which include one Raspberry Pi4 host equipped with 1 GB RAM, one core
i5 machine equipped with 8 GB RAM and running Ubuntu 18 OS, and one core i3 machine
equipped with 4 GB RAM and running CentOS. We first installed the MQTT broker on
the Raspberry Pi4 host. Then, we set up a normal network of six MQTT publisher nodes
and two MQTT subscriber nodes running on the core i5 machine. The two subscribers
were subscribed on the MQTT broker on two different topics. Referring to the publishers,
we set up three publishers, publishing data across one topic and another three publishers
publishing data across the other topic. Similarly, we set up an attack network of two attacker
nodes running on CentOS machine and launching three different types of attacks against
the MQTT broker. The initial experimental setup was created for testing the behavior of
the MQTT broker on both normal and attack network traffic when the IDS (i.e., Suricata
IDS) is not connected. We first performed all experiments without deploying the proposed
solution (IDS) to observe the behavior of the MQTT broker. Afterwards, we deployed
our proposed IDS into the network and then performed all the experiments to test and
validate the effectiveness of the proposed solution (IDS). The following sections describe
all experiments done along with their results with and without IDS.



Sensors 2022, 22, 567 15 of 26

Figure 8. Experimental setup.

5.1. Protocol Identification Testing

As previously discussed in Section 4, the proposed parsing engine first identifies the
protocol of an incoming packet based on which it breaks down the incoming packets into
meaningful chunks with respect to the identified protocol and packet type for protocol-based
vulnerabilities prevention or rule-based attacks detection.

In order to validate the efficiency of the proposed protocol identification module,
we tested it for the identification of both inbound or outbound MQTT packets traveling
over the network via known or unknown ports. Thereby, we performed two experiments
(in multiple attempts) with different network traffic to validate the performance of the
proposed protocol identification method. While measuring the memory/CPU usage of the
broker process in the following experiments, we have killed the other irrelevant processes
by command. The effect of other by default running processes is negligible.

Experiment 1: Protocol Identification Testing over Normal MQTT and Malformed Packets

In this experiment, we first test the protocol identification module by sending normal
MQTT publish and subscribe packets to the MQTT broker on its default port (i.e., 1883).
For this purpose, we first connected two subscribers with the MQTT broker and subscribed
them on two different topics by using the mosquitto_sub client. Afterwards, we developed
a Python script to initialize six publishers, out of which three publishers started publishing
messages across the first topic and three publishers started publishing messages across
the other topic at a packet publish rate equal to one packet per second. The whole packets
flow was passed to the protocol identification module. The protocol identification first
verified the default port and then forwarded these packets to a signature-matching module.
The performance comparison of results of the signature matching module over the normal
MQTT packets are displayed in Table 2. Similarly, we attempted to test non-MQTT
packets sent to the MQTT default port (i.e., 1883) to test the behavior of the proposed



Sensors 2022, 22, 567 16 of 26

protocol identification module. For this purpose, we used the hping3 tool and sent UDP
packets over destination port 1883. We also tested some publicly available non-MQTT
packet capture (PCAP) files from (http://kb.boltlabs.net/knowledgebase/, accessed on
12 December 2021) to test the signature-based MQTT protocol identification. The results
of the signature-based protocol identification over the malformed packets are listed in
Table 2. It can be observed that the proposed protocol identification module detected
MQTT packets with 100% accuracy, while it detected non-MQTT packets as non-MQTT
with 100% accuracy.

Table 2. CPU and memory utilization by MQTT broker in five experiments when performed with
and without the proposed IDS.

without IDS with IDS

Use Case Avg. CPU
(%)

Avg. Memory
(%)

Avg. CPU
(%)

Avg. Memory
(%)

Normal 15.15 0.54 15.15 0.54
RFC 17.70 0.54 15.15 0.54
LEC 17.21 0.54 15.15 0.54
LC 29.59 0.54 15.15 0.54
Misc. 16.78 0.54 15.15 0.54

5.2. Strict Protocol Validation Testing

In Section 3, we analyzed the MQTT protocol vulnerabilities reported on the NVD
database and categorized them into four types. Later, in Section 4, we proposed a parsing
engine that performs the strict protocol validation to protect the protocol implementation
vulnerabilities. Thereby, in this section, we test the performance of the proposed parsing
engine by performing five different experiments. The detailed description of these
experiments along with results is given in the following subsections:

5.2.1. Experiment 2: Testing MQTT Normal Use Case

In this experiment, we set up a normal traffic use case in which we considered six
publisher nodes, two subscriber nodes, and one MQTT broker. The MQTT broker was
running on a Raspberry Pi host. For running the publisher and subscriber nodes, we write a
Python script for initializing and running the publisher nodes using the mosquitto-client
library and a Python script for initializing and running subscriber nodes.

Afterwards, we run two MQTT subscriber nodes in order to send requests to the
broker to subscribe them against two topics. Similarly, we run six publisher nodes to send
publish data to the MQTT broker across two different platforms. As the MQTT broker
receives a message against a topic, it forwards that message to the subscribers who have
subscribed to that topic.

In order to monitor the CPU and memory usage on the MQTT broker, we used
the psutil Python library, providing the functionality to monitor the CPU and memory
usage across a given process ID. So, we get the process ID of MQTT broker service and
start monitoring the CPU and memory usage for 120 s. Figure 9 shows the CPU used by
the MQTT broker during the normal traffic flow. During our tests, memory usage was
measured to be almost constant, around 4–5%. Instead, the CPU usage is fluctuating during
the normal traffic flow from publisher nodes to the MQTT broker and MQTT broker to
the subscriber. Particularly, the CPU usage graph is fluctuating in accordance with the
processing load of MQTT packets on the MQTT broker.

http://kb.boltlabs.net/knowledgebase/


Sensors 2022, 22, 567 17 of 26

Figure 9. CPU usage captured while testing the normal use case.

5.2.2. Experiment 3: Testing MQTT Improper Length Check Vulnerability

In this experiment, we generated a vulnerability of an MQTT packet in which we first
defined a packet length and then intentionally sent fewer payload bytes than the defined
packet length in order to observe the response of the MQTT broker for handling the packets
with improper length. For this reason, in this scenario, we sent a malformed MQTT publish
packet with the payload length less than the defined packet length. As the MQTT broker
received the malware packet and it started waiting for the rest of the bytes, we flooded
the malformed packet, and the overall CPU usage of MQTT broker increased, as shown in
Figure 10.

Figure 10. CPU usage captured while testing the improper length check vulnerability.

In order to check the efficiency of the proposed solution, we deployed the IDS into the
network and repeated the same experiment. The proposed IDS successfully detected and
blocked the malformed MQTT packets. Moreover, it also reduced the CPU usage as well as
legitimate traffic delay.



Sensors 2022, 22, 567 18 of 26

5.2.3. Experiment 4: Testing MQTT Required Field Check Vulnerability

In this experiment, we generated a vulnerability in which a required field in the MQTT
packet was missing. While sending a connect request packet to the MQTT broker, the
ClientID field is mandatory, and it must be the first field in the CONNECT packet payload. For
generating this vulnerability, we wrote a Python script in which we skipped the ClientID
field from the MQTT CONNECT packet and started flooding MQTT CONNECT packets to the
MQTT broker in order to check the whether the required field check is validated or not.
Although, in our MQTT version, the ClientID (required) field check was implemented, the
MQTT had to process these malformed packets due to which we observed an increase
in CPU usage, as shown in Figure 11. Moreover, the legitimate MQTT packets started
delaying after some time. However, if these malformed packets are blocked by the IDS,
then the increase in CPU utilization by the MQTT broker and delay in legitimate MQTT
traffic can be prevented. Therefore, in order to check the performance of the proposed
solution, we repeated this experiment with IDS deployed in the network. The proposed
IDS successfully detected and blocked the malformed packets due to which there was an
increase in the processing load at the MQTT broker, and the delay in MQTT legitimate
traffic was prevented.

Figure 11. CPU usage captured while testing the required field check vulnerability.

5.2.4. Experiment 5: Testing MQTT Logical Error Check Vulnerability

In this experiment, we generated a malformed packet by violating an MQTT protocol
specification. In the MQTT CONNECT request, the ’Reserved’ flag bit must be zero;
otherwise, the MQTT broker should disconnect the client sending such invalid request. In
order to check whether the MQTT broker is validating this logical error check or not, we
generated a Python script for sending a malformed MQTT CONNECT packet with the
’Reserved’ flag bit set to 1. The MQTT broker did not disconnect the client. On the other
hand, when we flooded such malformed packets to the MQTT broker, the broker processed
these packets to allow an invalid connection, which as a result caused an increase in CPU
usage and also started delaying the legitimate MQTT traffic, as shown in Figure 12.

We also performed this experiment, after deploying the proposed IDS, the IDS easily
detected and blocked all these malformed packets. Thus, the extra CPU usage of the MQTT
broker and delay in legitimate traffic was averted.



Sensors 2022, 22, 567 19 of 26

Figure 12. CPU usage captured while testing the logical error check vulnerability.

5.2.5. Experiment 6: Testing MQTT Miscellaneous Vulnerability

In this experiment, we generated a vulnerability from the miscellaneous category. In
the MQTT packet, ClientID must be a UTF-8 encoded string, and it should only contain the
characters from “0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU
VWXYZ”. In order to check the MQTT broker, we sent a UTF-8 encoded string having
a null character (i.e., ’\0’). By protocol specification, the MQTT broker should discard
the non-UTF-8 encoded string, but in our case, MQTT accepted this packet. Figure 13
depicts the CPU utilization during the attack. Although this vulnerability did not cause
a significant increase in CPU utilization, it did cause a delay in legitimate MQTT traffic.
Moreover, this vulnerability can allow attackers to execute catastrophic commands that can
severely harm all of the MQTT network.

Figure 13. CPU usage captured while testing the miscellaneous vulnerability.

In order to test the effectiveness of the proposed solution, we deployed the IDS into the
network and repeated this experiment. The proposed IDS efficiently detected and blocked
the malicious packet successfully; thus, it prevented the MQTT broker’s extra CPU usage
as well as delay in legitimate traffic.



Sensors 2022, 22, 567 20 of 26

The experimental results show that the performance of the MQTT broker is affected
when the malformed packets are sent by an attacker network. Overall, the CPU usage
increased as the malformed packets were transmitted to the MQTT broker when there is
no IDS deployed in the network. Moreover, the normal traffic delay also increased. In
the current experiments, we considered only two attacking nodes, which also affected the
performance of the MQTT broker. However, if the same attack scenario is replicated at very
large scale, it can chop down the MQTT broker.

On the other hand, when the proposed IDS is deployed in the network, it detected
and blocked the malicious packets from going to the MQTT broker. Table 2 validates the
effectiveness of the proposed IDS. It clearly shows that the MQTT broker’s CPU usage
did not increase due to malformed packets transmission when the IDS is deployed in the
network. Furthermore, the normal traffic delay was also averted. Thus, the MQTT broker
kept functioning normally, and all the malformed traffic is stopped at IDS.

5.3. Rule-Based Testing

In addition to preventing the MQTT protocol implementation vulnerabilities, we
proposed rule-based MQTT attack detection for preventing the IoT devices from known
attacks. As discussed earlier (in the Methodology and Introduction sections), DoS and
DDoS attacks are the most common attacks in IoT environment in which the attacker first
infects insecure IoT devices by installing malware on them and then instructs these infected
IoT devices to perform DDoS attacks. Thus, in this section, we performed two experiments
to test the performance of the proposed solution for detecting DoS and DDoS cyber-attacks
through predefined signatures. The detailed description of these experiments along with
results is given in the following subsections:

5.3.1. Experiment 7: MQTT DoS Attack Testing

In this experiment, we developed a Python script to send multiple MQTT connection
requests from a single MQTT client to the MQTT broker at a packet rate of 1000 packets per
second. Figure 14 illustrates the memory and CPU usage of the MQTT broker recorded
during the DoS attack when no rule (signature) was enabled in IDS.

Figure 14. CPU usage captured while performing MQTT DoS attacks when IDS rules are disabled.

We performed a similar attack again, but this time, we enabled attack detection
signatures developed to detect and stop the DoS attack. Figure 15 shows that at the start,
the CPU and memory usage of the MQTT broker was high, but as the rule-based engine
detected the DoS attack based on the signature matching, it stopped further communication



Sensors 2022, 22, 567 21 of 26

from the attacking device. Hence, the CPU and memory usage became normalized as
the rule-based engine detected and stopped the DoS attack packets coming toward the
MQTT broker.

Figure 15. CPU Usage captured while performing MQTT DoS attack when IDS Rules are enabled.

5.3.2. Experiment 8: MQTT DDoS Attack Testing

In order to test the effectiveness of the rule-based engine for detecting and stopping the
DDoS attacks, we used an MQTT DDoS attacking tool, i.e., MQTTSA [19]. The MQTTSA [19]
tool is capable of generating MQTT protocol-based DDoS attack by sending the MQTT
connection requests, and MQTT publishes messages through port switching, i.e., sending
flooding packets through multiple source ports of an underlying attacking device to disturb
the normal working of the target device (i.e., the MQTT broker).

In this experiment, we sent multiple MQTT connection requests and MQTT publish
packets at a packet rate of 3000 packets per second to the MQTT broker. We first performed
the DDoS attack using the MQTT-SA [19] tool without enabling the rule engine of IDS
and monitored the CPU and memory consumption by the MQTT broker. The obtained
observations are visualized in Figure 16.

In the next attempt, we enabled IDS rules and performed a similar DDoS attack to test
whether the DDoS attack is detected or not. According to our DDoS detection signatures,
the rule engine detected the DDoS attack as a flow—a flow is a combination of five tuples,
i.e., source IP, source port, destination IP, destination port, and protocol—that crosses the
limit of sending an MQTT connection request or MQTT publish packets. In our scenario, we
set the packet rate limit up to 500 packets per second. As an attacking flow crosses this limit,
the DDoS detection rule is fired, and that flow is blocked by IDS for further communication.
Figure 17 displays the CPU and memory usage of the MQTT broker during the DDoS
attack when the IDS signatures were enabled. It can be observed that at the start, the CPU
and memory usage increased, but after some time, the attacking flow crossed the defined
packet limit, i.e., 500 packets per second, and the DDoS attack detection signature detected
and blocked the attacking flow. Thus, the CPU and memory usage of the MQTT broker
came back to its normal condition as the attack was stopped by the IDS rule engine.



Sensors 2022, 22, 567 22 of 26

Figure 16. CPU usage captured while performing MQTT DDoS attack when IDS rules are disabled.

Figure 17. CPU usage captured while performing MQTT DDoS attack when IDS rules are enabled.

In the following, we report a brief summary of the obtained results. Table 3 also
provides a brief overview of the results and experimentation. In this, we have listed
the experiments performed and have summarized their results. The detected column
shows that the particular experiment has successfully detected the packet of MQTT under
consideration. Similarly, the blocked column in the table indicates that the particular
experiment has successfully blocked the malformed packet under consideration. Meanwhile,
the CPU usage column shows the CPU usage during the detection of malformed or normal
MQTT packets.

In the experimental results figures above (Figures 9–17), the CPU usage is varying in
accordance with the load on the CPU (MQTT broker). When the load is high, the value
of the usage is high and vice versa. Here, the CPU usage of the MQTT broker varies in
accordance with the processing load of the MQTT packets on it. Much processing power is
required by the CPU when packets are malformed. When the load increases, CPU usage
increases, and when the load decreases, CPU usage decreases.



Sensors 2022, 22, 567 23 of 26

Table 3. Experimentation and results summary.

No. Experiment Detected Blocked CPU Usage

1
Protocol Identification Testing
Over Normal MQTT and
Malformed Packets

Yes -
Fluctuating as
normal, High
with malformed

2 Testing MQTT Normal Use Case Yes - Fluctuating

3 Testing MQTT Improper Length
Check Vulnerability Yes Yes High

4 Testing MQTT Required Field
Check Vulnerability Yes Yes High

5 Testing MQTT Logical Error
Check Vulnerability Yes Yes High

6 Testing MQTT Miscellaneous
Vulnerability Yes Yes High

7 MQTT DoS Attack Testing Yes Yes High

Particularly, in order to validate the effectiveness of the proposed solution for protecting
MQTT vulnerabilities in IoT devices, we have performed a set of experiments as mentioned
above. By doing this, we have evaluated the performance of the proposed parsing protocol
engine.

Firstly, we have evaluated the protocol identification module of the protocol parsing
engine, in which we have done protocol identification testing over normal MQTT and
malformed MQTT packets. According to the results, the proposed protocol identification
module detected MQTT packets with 100% accuracy.

Next, we have evaluated the performance of the protocol parsing engine by performing
different experiments. In the first experiment, we have evaluated the protocol parsing
engine by testing it with an MQTT normal traffic use case. The experiment shows the
CPU and memory consumption used by the MQTT broker during the normal traffic flow.
According to the experimental results, the memory usage is constant, while CPU usage
values are fluctuating in accordance with the workload of MQTT packets on the MQTT
broker CPU.

Then, the protocol parser engine is tested over MQTT improper length vulnerability.
According to the results, the overall CPU usage of the MQTT broker increased because of
extra CPU processing caused by malformed MQTT improper length packets. The protocol
parser engine detected these improper length packets with 100% accuracy.

Hence, the protocol parser engine is tested over MQTT malformed packets in which a
required field in the MQTT packet was missing. According to the results, an increase in the
CPU usage of the MQTT broker has been observed due to the extra processing caused by
malformed packets. The proposed protocol parser engine attached with IDS successfully
detected and blocked the malformed packets. In virtue of this, the increased processing
load on the MQTT broker and delay in MQTT legitimate traffic has been prevented.

As an additional experiment, the protocol parser engine has been tested over MQTT
malformed packets which have been crafted by violating an MQTT protocol specification.
According to the results, the CPU usage of the MQTT broker has been increased due to
these malformed packets as the broker processed these packets to allow invalid connection,
which as a result caused an increase in CPU usage and also a delay of legitimate packets
processing. We measured that the proposed protocol parser engine, connected with the
IDS, successfully detected and blocked malformed packets, and therefore, extra CPU usage
has been prevented.

Furthermore, as another experiment, we tested miscellaneous MQTT vulnerabilities
exploited over the proposed protocol parser engine. According to the results, the vulnerabilities
do not cause any significant increase in the CPU usage of the MQTT broker. However, they
caused delays in legitimate MQTT traffic processing. The proposed protocol parser engine
successfully detected and blocked such vulnerabilities attacks.



Sensors 2022, 22, 567 24 of 26

Additionally, we have executed rule-based testing of the proposed protocol parser
engine by MQTT DoS attack testing and MQTT DDoS attack testing. For both attacks, the
CPU usage and memory usage of the MQTT broker came back to its normal condition as
the attack is stopped by the protocol parser-enabled MQTT IDS rule engine.

6. Conclusions and Future Work

In this paper, we analyzed the recently reported vulnerabilities of MQTT, a popular
IoT application layer protocol. In our analysis, we categorized the reported vulnerabilities
into four types.

Based on the four major causes reported in these vulnerabilities, we proposed a
methodology to protect the IoT network and end devices from these vulnerabilities. The
proposed solution consists of a parsing engine, which is integrated with an existing
open-source IDS, Suricata. The proposed parsing engine analyzes every incoming and
outgoing packet based upon the strict protocol specifications validation. If an invalid/
malformed packet is detected, then it blocks that packet, thus protecting the IoT devices
and network vulnerabilities.

In order to test the effectiveness of the proposed solution, we performed a set of
experiments by generating both the normal and malformed traffic. The experimental
results prove how the proposed solution efficiently detects all the malformed packets and
blocks them at the network level before they can reach and exploit IoT devices.

The existing work is limited to the MQTT protocol. Therefore, in the future, a similar
analysis could be done for other IoT application layer protocols to analyze the major causes
of the vulnerabilities reported in those protocols. The second limitation of this work is
that the proposed parsing engine cannot handle every reported vulnerability of MQTT.
Currently, it can handle the vulnerabilities that violate MQTT protocol specifications by
which many of the recently reported and zero-day vulnerability exploitation attacks can
be protected, even if the underlying IoT devices connected in a network do not have the
ability to perform strict protocol validations. In the future, we aim to expand this work to
other IoT protocols and propose a generic parsing engine that can perform strict protocol
validations for every IoT application layer protocol.

Author Contributions: Conceptualization, S.G.A. and U.U.F.; methodology, M.H.; software, E.C.;
validation, E.C., M.M. and G.A.S.; formal analysis, K.H.; investigation, H.A.; resources, S.G.A.;
data curation, H.A.; writing and original draft preparation, S.G.A.; writing, review and editing,
E.C.; visualization, M.H.; supervision, M.H.; project administration, M.H.; funding acquisition, E.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Conflicts of Interest: Authors declare no conflict of interest.

References
1. Hussain, F.; Abbas, S.G.; Shah, G.A.; Pires, I.M.; Fayyaz, U.U.; Shahzad, F.; Garcia, N.M.; Zdravevski, E. A Framework for

Malicious Traffic Detection in IoT Healthcare Environment. Sensors 2021, 21, 3025. [CrossRef] [PubMed]
2. Deogirikar, J.; Vidhate, A. Security attacks in IoT: A survey. In Proceedings of the 2017 International Conference on I-SMAC (IoT

in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 32–37.
3. Ronen, E.; Shamir, A. Extended functionality attacks on IoT devices: The case of smart lights. In Proceedings of the 2016 IEEE

European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany, 21–24 March 2016; pp. 3–12.
4. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [CrossRef]
5. Harat, S.; Malczewski, M.; Szczotka, A.; Anderson, E.M. Discovery of IoT Devices. U.S. Patent 15/706,832, 10 March 2020 .
6. Yousefnezhad, N.; Malhi, A.; Främling, K. Security in product lifecycle of IoT devices: A survey. J. Netw. Comput. Appl. 2020,

171, 102779. [CrossRef]
7. Alladi, T.; Chamola, V.; Sikdar, B.; Choo, K.K.R. Consumer IoT: Security vulnerability case studies and solutions. IEEE Consum.

Electron. Mag. 2019, 9, 6–14. [CrossRef]
8. Wurm, J.; Hoang, K.; Arias, O.; Sadeghi, A.R.; Jin, Y. Security analysis on consumer and industrial IoT devices. In Proceedings of

the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macao, China, 25–28 January 2016; pp. 519–524.

http://doi.org/10.3390/s21093025
http://www.ncbi.nlm.nih.gov/pubmed/33925813
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.1016/j.jnca.2020.102779
http://dx.doi.org/10.1109/MCE.2019.2953740


Sensors 2022, 22, 567 25 of 26

9. Waraga, O.A.; Bettayeb, M.; Nasir, Q.; Talib, M.A. Design and implementation of automated IoT security testbed. Comput. Secur.
2020, 88, 101648. [CrossRef]

10. Stergiou, C.; Psannis, K.E.; Kim, B.G.; Gupta, B. Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 2018,
78, 964–975. [CrossRef]

11. Hussain, F.; Abbas, S.G.; Fayyaz, U.U.; Shah, G.A.; Toqeer, A.; Ali, A. Towards a Universal Features Set for IoT Botnet Attacks
Detection. arXiv 2020, arXiv:2012.00463.

12. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and security: Challenges and solutions. Appl. Sci. 2020,
10, 4102. [CrossRef]

13. Ling, Z.; Luo, J.; Xu, Y.; Gao, C.; Wu, K.; Fu, X. Security vulnerabilities of internet of things: A case study of the smart plug system.
IEEE Internet Things J. 2017, 4, 1899–1909. [CrossRef]

14. Williams, R.; McMahon, E.; Samtani, S.; Patton, M.; Chen, H. Identifying vulnerabilities of consumer Internet of Things (IoT)
devices: A scalable approach. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics
(ISI), Beijing, China, 22–24 July 2017; pp. 179–181.

15. Hong, D.K.; Chen, Q.A.; Mao, Z.M. An initial investigation of protocol customization. In Proceedings of the 2017 Workshop on
Forming an Ecosystem around Software Transformation, Dallas, TX, USA, 3 November 2017; pp. 57–64.

16. Butun, I.; Osterberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures. IEEE Commun.
Surv. Tutor. 2019, 22, 616–644. [CrossRef]

17. Makhshari, A.; Mesbah, A. IoT bugs and development challenges. In Proceedings of the 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), Madrid, Spain, 22–30 May 2021; pp. 460–472.

18. Newman, B.; Al-Nemrat, A. Making the Internet of Things Sustainable: An Evidence Based Practical Approach in Finding
Solutions for yet to Be Discussed Challenges in the Internet of Things. In Digital Forensic Investigation of Internet of Things (IoT)
Devices; Springer: Cham, Switzerland , 2021; pp. 255–285.

19. Palmieri, A.; Prem, P.; Ranise, S.; Morelli, U.; Ahmad, T. MQTTSA: A tool for automatically assisting the secure deployments
of MQTT brokers. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019;
Volume 2642, pp. 47–53.

20. Araujo Rodriguez, L.G.; Macêdo Batista, D. Program-aware fuzzing for MQTT applications. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, 18–22 July 2020; pp. 582–586.

21. Ghazanfar, S.; Hussain, F.; Rehman, A.U.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. IoT-Flock: An Open-source Framework for IoT
Traffic Generation. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST),
Karachi, Pakistan, 26–27 March 2020; pp. 1–6.

22. Yi, M.; Xu, X.; Xu, L. An Intelligent Communication Warning Vulnerability Detection Algorithm Based on IoT Technology. IEEE
Access 2019, 7, 164803–164814. [CrossRef]

23. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

24. Nguyen, T.G.; Phan, T.V.; Nguyen, B.T.; So-In, C.; Baig, Z.A.; Sanguanpong, S. Search: A collaborative and intelligent nids
architecture for sdn-based cloud iot networks. IEEE Access 2019, 7, 107678–107694. [CrossRef]

25. Hussain, F.; Abbas, S.G.; Husnain, M.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. IoT DoS and DDoS Attack Detection using ResNet.
arXiv 2020, arXiv:2012.01971.

26. Dhakal, S.; Jaafar, F.; Zavarsky, P. Private blockchain network for IoT device firmware integrity verification and update.
In Proceedings of the 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE), Hangzhou,
China, 3–5 January 2019; pp. 164–170.

27. Shiaeles, S.; Kolokotronis, N.; Bellini, E. IoT vulnerability data crawling and analysis. In Proceedings of the 2019 IEEE World
Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; Volume 2642, pp. 78–83.

28. Xiao, Y.; Jia, Y.; Liu, C.; Cheng, X.; Yu, J.; Lv, W. Edge computing security: State of the art and challenges. Proc. IEEE 2019,
107, 1608–1631. [CrossRef]

29. Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. A Survey of IIoT Protocols: A Measure of Vulnerability Risk Analysis Based on
CVSS. ACM Comput. Surv. 2020, 53, 1–53. [CrossRef]

30. Ling, Z.; Liu, K.; Xu, Y.; Jin, Y.; Fu, X. An end-to-end view of IoT security and privacy. In Proceedings of the GLOBECOM
2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7.

31. Miller, C. Lessons learned from hacking a car. IEEE Design Test 2019, 36, 7–9. [CrossRef]
32. Feng, X.; Liao, X.; Wang, X.; Wang, H.; Li, Q.; Yang, K.; Zhu, H.; Sun, L. Understanding and securing device vulnerabilities

through automated bug report analysis. In Proceedings of the 28th USENIX Security Symposium, Santa Clara, CA, USA,
14–16 August 2019.

33. Wang, H.J.; Guo, C.; Simon, D.R.; Zugenmaier, A. Shield: Vulnerability-driven network filters for preventing known vulnerability
exploits. ACM SIGCOMM Comput. Commun. Rev. 2004, 34, 193–204. [CrossRef]

34. Kasinathan, P.; Pastrone, C.; Spirito, M.A.; Vinkovits, M. Denial-of-Service detection in 6LoWPAN based Internet of
Things. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 600–607.

http://dx.doi.org/10.1016/j.cose.2019.101648
http://dx.doi.org/10.1016/j.future.2016.11.031
http://dx.doi.org/10.3390/app10124102
http://dx.doi.org/10.1109/JIOT.2017.2707465
http://dx.doi.org/10.1109/COMST.2019.2953364
http://dx.doi.org/10.1109/ACCESS.2019.2953075
http://dx.doi.org/10.1109/ACCESS.2019.2932438
http://dx.doi.org/10.1109/JPROC.2019.2918437
http://dx.doi.org/10.1145/3381038
http://dx.doi.org/10.1109/MDAT.2018.2863106
http://dx.doi.org/10.1145/1030194.1015489


Sensors 2022, 22, 567 26 of 26

35. Sheikh, N.U.; Rahman, H.; Vikram, S.; AlQahtani, H. A Lightweight Signature-Based IDS for IoT Environment. arXiv 2018,
arXiv:1811.04582.

36. Rizzardi, A.; Sicari, S.; Miorandi, D.; Coen-Porisini, A. AUPS: An open source AUthenticated Publish/Subscribe system for the
Internet of Things. Inf. Syst. 2016, 62, 29–41. [CrossRef]

37. Andy, S.; Rahardjo, B.; Hanindhito, B. Attack scenarios and security analysis of MQTT communication protocol in IoT system.
In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),
Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6.

38. Haripriya, A.; Kulothungan, K. Secure-MQTT: An efficient fuzzy logic-based approach to detect DoS attack in MQTT protocol for
internet of things. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–15.

http://dx.doi.org/10.1016/j.is.2016.05.004

	Introduction
	Literature Review
	Analysis of Recently Reported MQTT Protocols Vulnerabilities
	Improper Packet Length Checks (LC)
	Lack of Required Fields Check (RFC)
	Missing Logical Errors Checks (LEC)
	Miscellaneous

	Methodology
	Protocol Intuition
	Vulnerabilities Assessment
	The Parsing Engine
	Protocol Identification
	Packet Parsing
	Strict Protocol Validations

	Rules Definition

	Results and Discussion
	Protocol Identification Testing
	Strict Protocol Validation Testing
	Experiment 2: Testing MQTT Normal Use Case
	Experiment 3: Testing MQTT Improper Length Check Vulnerability
	Experiment 4: Testing MQTT Required Field Check Vulnerability
	Experiment 5: Testing MQTT Logical Error Check Vulnerability
	Experiment 6: Testing MQTT Miscellaneous Vulnerability

	Rule-Based Testing
	Experiment 7: MQTT DoS Attack Testing
	Experiment 8: MQTT DDoS Attack Testing


	Conclusions and Future Work
	References

