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Abstract: The perceived texture directionality is an important, not fully explored image character-
istic. In many applications texture directionality detection is of fundamental importance. Several
approaches have been proposed, such as the fast Fourier-based method. We recently proposed a
method based on the interpolated grey-level co-occurrence matrix (iGLCM), robust to image blur
and noise but slower than the Fourier-based method. Here we test the applicability of convolutional
neural networks (CNNs) to texture directionality detection. To obtain the large amount of training
data required, we built a training dataset consisting of synthetic textures with known directionality
and varying perturbation levels. Subsequently, we defined and tested shallow and deep CNN archi-
tectures. We present the test results focusing on the CNN architectures and their robustness with
respect to image perturbations. We identify the best performing CNN architecture, and compare it
with the iGLCM, the Fourier and the local gradient orientation methods. We find that the accuracy
of CNN is lower, yet comparable to the iGLCM, and it outperforms the other two methods. As
expected, the CNN method shows the highest computing speed. Finally, we demonstrate the best
performing CNN on real-life images. Visual analysis suggests that the learned patterns generalize to
real-life image data. Hence, CNNs represent a promising approach for texture directionality detection,
warranting further investigation.

Keywords: directionality detection; texture; convolutional neural networks

1. Introduction
1.1. Texture Directionality Definition

Image texture carries valuable information about the spatial arrangement of intensity
values in an image. It plays a fundamental role in image classification, and it can also be
useful when performing image segmentation. A formal definition of texture can be given
referring to its inherent structure, which generally consists of regularly repeating patterns.
These patterns can be identified with respect to the smallest textural element, i.e., the
texton [1] or the texel [2]. Such a structure-based texture definition is meaningful and can
be especially useful when defining artificial textures. Alternatively, texture can be formally
defined based on the characterization of the intensity arrangement in the image. Such a
statistical approach is also meaningful and possibly more general, since natural textures are
irregular, and it is not always possible to clearly identify structural patterns. Ultimately one
can safely state that, due to the inherent complexity of image texture, attempts to formally
define texture have not been completely successful so far. It is important to observe that
texture directionality is a local property, not necessarily constant throughout the image.

Notwithstanding the lack of an agreed-upon formal definition for texture, both
structure-based and statistical definitions suggest that texture direction is often clearly
perceived by the observer. This is due, for instance, to local anisotropy as shown in Figure 1.
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Figure 1. Instances of textures with clearly perceived directionality: (a) grass [3], (b) Muscle Tissue—
Skeletal Muscle Fibers [4], (c) Indian Muntjac fibroblast cells [5]. 

Henceforth, we will refer to the clearly perceived direction of texture as texture di-
rectionality. Notably, texture directionality is closely related to the presence of entities 
such as lines, segments, or edges (Figure 2), which occur extensively in real-life applications. 
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Figure 2. Entities determining texture directionality perception: (a) line; (b) segment; (c) edge. 

In this work, we focus on the quantitative characterization of texture directionality, 
arguably a texture property of great importance. The complexity of texture makes direc-
tionality detection extremely challenging. On one hand, depending on the specific entities 
leading to texture directionality perception in the image, directionality can carry different 
periodicity (Figure 3a–c). On the other hand, many directions can coexist in the same in-
stance (Figure 3d). Furthermore, directions can be perceived at different scales, depending 
on the size of the entities determining texture directionality (Figure 3e). 
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Figure 1. Instances of textures with clearly perceived directionality: (a) grass [3], (b) Muscle Tissue—
Skeletal Muscle Fibers [4], (c) Indian Muntjac fibroblast cells [5].

Henceforth, we will refer to the clearly perceived direction of texture as texture
directionality. Notably, texture directionality is closely related to the presence of entities
such as lines, segments, or edges (Figure 2), which occur extensively in real-life applications.
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Figure 2. Entities determining texture directionality perception: (a) line; (b) segment; (c) edge.

In this work, we focus on the quantitative characterization of texture directionality,
arguably a texture property of great importance. The complexity of texture makes direc-
tionality detection extremely challenging. On one hand, depending on the specific entities
leading to texture directionality perception in the image, directionality can carry different
periodicity (Figure 3a–c). On the other hand, many directions can coexist in the same in-
stance (Figure 3d). Furthermore, directions can be perceived at different scales, depending
on the size of the entities determining texture directionality (Figure 3e).
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Figure 3. Texture directionality instances with different periodicity. (a) Simple line, periodicity 180◦;
(b) oriented line, periodicity 360◦; (c) honeycomb, periodicity 120◦; (d) multiple directionalities
coexisting at the same scale; (e) multiple directionalities coexisting at different scales.
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With respect to texture periodicity, we limit ourselves to cases of strong local anisotropy
for relatively small regions of interest (e.g., image tiles), for which one direction is present,
with 180◦ periodicity.

From the computational perspective, texture analysis can be quite expensive due to
the above-mentioned inherent complexity of texture. This is exacerbated by the need of
terabyte-size texture analysis, often in real-time, for instance in fields such as microscopy,
remote sensing, and astronomy [6,7]. Therefore, it is especially important to assess the
computational efficiency of texture analysis techniques, and in particular of the texture
directionality detection techniques addressed in this paper.

1.2. Related Work

Texture directionality analysis finds applications in many fields of scientific interest. In
the image processing field, it plays an important role in image classification and retrieval, as
shown in [8–10]. Texture directionality features have also been used for image coding [11].

In the biomedical field, texture directionality analysis can be extremely insightful into
biological phenomena of interest. In [12], the directionality distribution of collagen fibers is
associated with abnormal collagen morphology, a biomarker for several pathologies. In [13],
texture directionality analysis is applied to the study of extracellular elastin and fibrillar
collagen, whose directional arrangement is associated with atherosclerosis progression.
In [14], breast carcinoma cells are shown to be extremely sensitive to the collagen direction
and relative alignment.

In the material science field, texture directionality is associated with material properties.
In [15], the orientation of carbon nanotubes (CNT) is correlated to properties of CNT-based
materials such as strength and electric conductivity. Texture directionality is also used to
characterize the magnetic particle alignment in photosensitive polymer resins [16]. Other
applications include the astronomy field: in [17], an effort targeting high-throughput texture
directionality analysis of solar images captured by the Solar Dynamic Observatory mission
is described.

Several computational approaches for texture directionality analysis have been devel-
oped. The most widely used method is arguably the one based on the Fourier transform [18]
and implemented as a plugin in Fiji/ImageJ software [19]. Additional approaches are based
on Radon transform [20], Mojette transform [21], and Sobel filter. In [22], the authors use
the Fiji/ImageJ local gradient orientation (LGO) method, based on Sobel filter, to charac-
terize texture directionality in endothelial cells. Fractional Sobel filters provide enhanced
flexibility, but to properly define the fractional order and other parameters can be challeng-
ing [23]. Other approaches for texture directionality analysis rely on the autocovariance
function [24] or on the gray level co-occurrence transform (GLCM) [12,25]. GLCM fea-
tures have been used for texture classification [26] and for the analysis of multispectral
texture images [27], showing great potential for texture directionality analysis. In [28],
the authors propose a texture directionality detection method relying on the optimization
of an objective function, which involves the computation of GLCM features along four
directions. Recently, we developed and implemented a texture directionality detection
method using an interpolation-based version of GLCM (iGLCM), which can be computed
along any direction [29]. The implementation of our iGLCM method is available in a Github
repository [30]. Wavelets also have great potential for texture directionality analysis. They
have been used successfully for image texture classification in the biomedical field [31] and
in the manufacturing field [32]. Gabor wavelets, in particular, are closely related to struc-
turedness and directionality of texture. They have been successfully used to characterize
texture directionality in applications such as iris recognition, plant leaf recognition, and
mammogram analysis [33]. An important challenge associated to wavelets is the proper
definition of the right wavelet base and decomposition level to use [32,34].

Convolutional neural networks (CNNs) are becoming a leading image processing tool.
They are extensively used for image classification, detection, and segmentation [35]. They
have shown impressive performance on texture representation and classification [36–38],
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texture synthesis [39,40], as well as on texture anomaly detection [41]. In [42], the authors
propose a training augmentation method for shape-texture debiased learning, successfully
applied to texture recognition. In [43], CNNs are used to predict vegetation damage
based on texture and other properties of tree images. Another interesting application
of CNNs is described in [44], where the authors propose a deep learning-based cloud
detection method with application to remote sensing. The deep network consists of a
Gabor transform-based encoder-decoder, and of attention modules that enable the filtering
of irrelevant image and texture information. Due to the scarcity of labeled data in many
applications, transfer learning and data augmentation are used in many of the above papers.
To our knowledge, CNNs have not been used for texture directionality detection. From
a computational efficiency perspective, one can reasonably expect that CNNs will enable
faster computations when targeting texture directionality detection, especially on machines
equipped with GPUs (Graphical Processing Units) that allow for hardware-supported
convolution operations. From a computational accuracy perspective, some studies report
that CNNs are sensitive to textural features [45], suggesting they may perform well on
texture directionality detection.

In the last decade, as a result of computer vision competitions such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [46], many widely used deep network
architectures have been created, including AlexNet [47], VGG [48], and ResNet [49]. How-
ever, their size is considerable and results into a large number of parameters. Furthermore,
some of these networks are designed to tackle specific issues, not necessarily relevant in
every application. For instance, ResNet employs connections skipping to avoid the problem
of vanishing gradients or to mitigate accuracy saturation [49].

1.3. Technical Approach

Texture directionality analysis is computationally intensive due to the inherent com-
plexity of image texture and the need to characterize it locally. Furthermore, it can be
sensitive to image noise and blur. The Fourier transform-based method implemented in
Fiji/ImageJ [19] is fast and robust to image noise, but it can be extremely sensitive to image
blur [29]. The iGLCM-based method, on the other hand, has comparable accuracy and
is robust to both image blur and noise. However, due to the multiple required GLCM
computations for a given region of interest, the iGLCM-based method is computationally
intensive [29].

In this paper we propose an alternative approach for texture directionality detection
based on CNNs. Both shallow and deep CNNs have the potential to accurately and
efficiently detect texture directionality if properly designed and trained. The two main
challenges associated with the use of CNNs are discussed below.

The first challenge is defining the CNN architecture. In general, depending on CNN
size and features, a large number of parameters is involved in training and testing. There-
fore, one should try to minimize the number of parameters without adversely affecting
CNN performance. Given a specific application, rarely is there consensus on the optimal
size and number of layers for a CNN [50]. Since using available CNNs is not always viable,
it is common practice to investigate different CNN architectures empirically. One can start
with shallower networks and gradually deepen them by increasing the size and number of
layers, trying not to adversely affect accuracy and speed. This is the approach we employ
in this work.

The second challenge is related to CNN training and testing. Generally, the amount
of training data needed for CNNs can be overwhelming, especially when involving the
tedious manual or semimanual annotation of images. In some cases, synthetic images with
specific properties can be used for CNN training. Here we opt for the latter approach; to
this end, we specifically define synthetic texture images with known texture directionality
and perturbation levels for CNN training. On one hand, this will avoid the need for
time-consuming manual annotations. On the other hand, the expectation is that CNNs
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will be able to learn texture directionality based on artificial texture images, and possibly
generalize to real-life images.

2. Materials and Methods
2.1. Synthetic and Real Texture Images for CNN

We created a large set of synthetic images with well-defined texture directionality
for CNN training and testing as follows. Initially, images with size 1000 × 1000 pixels
consisting of evenly spaced vertical bars were created. By definition, each image is fully
characterized by its bar thickness (e.g., 4 pixels) and period (defined as the distance between
rising or falling edges of consecutive bars, in pixels), with the constraint that bar period
should always be larger than bar thickness. A total of nine different bar thickness/period
combinations were used: 2/8, 3/6, 4/8, 6/12, 8/16, 16/32, 20/40, 24/48, 32/64.

Each image was saved in 16-bit monochrome format, with background intensity of
16,384 (1/4 of the total range) and foreground intensity of 49,151 (3/4 of the total range).
Subsequently, the image was subjected to an affine rotation of 180 different angles over
the range (0◦, 179◦). After the rotation, the central part of the image (500 × 500 pixels)
was cropped to remove blank areas. Each image was then saved, representing synthetic
textures with no perturbation. A total of 9 × 180 = 1620 synthetic textures was obtained at
this stage.

Furthermore, perturbations were applied to such synthetic textures to take into account
the effect of noise and blur. The image perturbations consist of additive Gaussian noise with
zero mean and four standard deviations values (2000, 4000, 6000 and 8000), as well as of blur
averaging filters with four kernel sizes (3× 3, 5× 5, 7× 7 and 9 × 9). After perturbations, the
resulting set of synthetic textures amounts to a total of 1620 × (1 + 4 + 4) = 14,580 images.

Finally, the synthetic textures were divided into 49 nonoverlapping rectangular tiles of size
64 × 64 pixels. The final set of synthetic textures amounts to 14,580 × 49 = 714,420 images.
This set was shuffled and split into three subsets. The first subset amounts to half of the
images (357,210) and is used as training set. The second and third subsets amount to one
quarter of the images each (178,605) and are used as validation and testing sets. Figure 4
shows instances of synthetic texture images.
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The above procedure for building synthetic textures was implemented using the Py-
thon module CV2 for computer vision, a library of Python bindings with OpenCV (Open 

Figure 4. Instances of synthetic texture images. The directionality is reported with respect to vertical
direction. (a) Bar thickness 2, bar period 8, directionality 22◦, no perturbation; (b) bar thickness 4,
bar period 8, directionality 64◦, no perturbation; (c) bar thickness 3, bar period 6, directionality 37◦,
Gaussian noise with std equal 6000; (d) bar thickness 32, bar period 64, directionality 72◦, Gaussian
noise with std equal 8000; (e) bar thickness 8, bar period 16, directionality 53◦, averaging blur with
kernel 5 × 5; (f) bar thickness 12, bar period 24, directionality 11◦, averaging blur with kernel 9 × 9.

The above procedure for building synthetic textures was implemented using the
Python module CV2 for computer vision, a library of Python bindings with OpenCV (Open
Source Computer Vision) [51]. The obtained images and metadata (i.e., texture direction,
perturbation level) were stored using Pickle, a user-friendly Python module for serializing
and de-serializing objects and data structures [52].

In order to demonstrate the performance of CNNs on real-life image data, we also
employed a limited set of texture images from various sources, such as the Brodatz tex-
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tures [53] and cell images obtained at the National Institute of Standards and Technology
(NIST) [54].

2.2. CNN-Based Directionality Detection

Texture directionality detection using CNNs can be addressed as a regression or a
classification problem. In the first case, the CNN will predict one direction for a given
texture image. However, as discussed in Section 1.1, in many cases several directions coexist
in a texture. Each direction can in general be perceived differently, e.g., more or less clearly.
Therefore, ideally one would like a texture directionality detection tool that can detect one
or more directions, and the relative importance of the various directions. Hence, in this
work, we address CNN-based texture directionality detection as a classification problem.

The output for a classification problem is generally a tensor of probabilities, whose size
is problem dependent. In our case, the output size is related to the chosen resolution, since
each component of the probability tensor represents a directionality angle. We use CNN
architectures with output of size 180, corresponding to a 1◦ resolution for a directionality
range 〈0◦, 179◦〉. The resulting probability values are used to select texture directionality
as the tensor component associated to the maximum value. However, in some cases (e.g.,
homogeneous images) the maximum probability value might not represent a meaningful
texture direction. In such cases, the associated directionality should be discarded. We
propose to discard the direction associated to the maximum probability value, if that value
is smaller than a given probability threshold. The probability threshold can be found
empirically, and it depends on the image data to analyze. In our case, tests on our image
data led to a probability threshold value equal to 0.011, around twice as much as the mean
probability value (i.e., 1/180).

To select a CNN architecture, as discussed in Section 1.3, our proposed approach is
to empirically define and test shallow and deeper architectures, in an attempt to identify
the best performing ones with limited number of parameters. Hence, we designed twelve
CNNs, four shallow and eight deep. For the design, training and testing of the CNNs
we used Keras [55], an open-source software based on the TensorFlow library and with
a Python interface [56] (version 3.6.12 of Python, 1.15.4 of TensorFlow and 2.2.4-tf of the
module TensorFlow-Keras, a TensorFlow-specific implementation of the Keras API). The
CNNs are described in Tables 1–3 and in Figure S1 from the Supplementary Materials.

The shallow CNNs (SN1-SN4) consist of one convolutional layer followed by global
max pool, dropout, and output layer (Table 1). The global max pool layer makes the CNN
independent of the input image size to some extent, unlike many available networks [47–49].
Basically, the minimum allowed input image size is limited by the size of the convolutional
layer filter. The number of filters in the convolutional layer is equal to the output size for
CNNs SN1 and SN3, and to half of the output size for CNNs SN2 and SN4. Two filter sizes
were used for the convolutional layer: 17 × 17 for CNNs SN1, SN2 and 13 × 13 for CNNs
SN3, SN4.

The eight deep CNNs (DN1-DN8) consist of three convolutional layers: the first two
(layers 2 and 5) are followed by max pool and dropout layers, the last one (layer 8) is
followed by global max pool and dropout (Tables 2 and 3). Then, a fully connected layer
(# 11) is followed by dropout and by the output layer. Akin to the shallow CNNs, the global
max pool subsampling layer makes the networks independent of the input image size to
some extent. In this case, the minimum allowed input image size is given by Equation (1).

minImSize = (c f8·mp6 + (c f5 − 1))mp3 + (c f2 − 1) (1)

where:
c fk = size of convolutional filter at layer k,
mpk = size of max pool subsampling at layer k
For the first convolutional layer, the filter kernels sizes are 17 × 17 (DN1 to DN4) or

7 × 7 (DN5 to DN8). For the remaining two convolutional layers, the filter kernels sizes
are 5 × 5 and 3 × 3. Subsequently, the minimum input image size is 36 × 36 pixels for
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the deep networks DN1 to DN4, and 26 × 26 for the deep networks DN5 to DN8. Please
note that the minimum input image sizes for deep networks are larger than in the case of
shallow networks.

Table 1. The four shallow CNN architectures.

# Layer Type SN1 SN2 SN3 SN4

1 input (min size x, min size y, channels) 17, 17, 1 17, 17, 1 13, 13, 1 13, 13, 1
2 convolution (size x, size y, count) 17, 17, 180 17, 17, 90 13, 13, 180 13, 13, 90
3 global max pool
4 dropout 0.25 0.25 0.25 0.25
5 output (count) 180 180 180 180

Total weights/parameters count 84,780 42,480 63,180 31,680

Table 2. The first four deep CNN architectures.

# Layer Type DN1 DN2 DN3 DN4

1 input (min size x, min size y, channels) 36, 36, 1 36, 36, 1 36, 36, 1 36, 36, 1
2 convolution (size x, size y, count) 17, 17, 16 17, 17, 16 17, 17, 90 17, 17, 90
3 max pool (size x, size y) 2, 2 2, 2 2, 2 2, 2
4 dropout 0.25 0.25 0.25 0.25
5 convolution (size x, size y, count) 5, 5, 16 5, 5, 32 5, 5, 16 5, 5, 32
6 max pool 2, 2 2, 2 2, 2 2, 2
7 dropout 0.25 0.25 0.25 0.25
8 convolution (size x, size y, count) 3, 3, 90 3, 3, 90 3, 3, 90 3, 3, 90
9 global max pool
10 dropout 0.25 0.25 0.25 0.25
11 dense (count) 90 90 90 90
12 dropout 0.5 0.5 0.5 0.5
13 output (count) 180 180 180 180

Total weights/parameters count 48,676 68,052 99,736 148,712

Table 3. The second four deep CNN architectures.

# Layer Type DN5 DN6 DN7 DN8

1 input (min size x, min size y, channels) 26, 26, 1 26, 26, 1 26, 26, 1 26, 26, 1
2 convolution (size x, size y, count) 7, 7, 16 7, 7, 16 7, 7, 90 7, 7, 90
3 max pool (size x, size y) 2, 2 2, 2 2, 2 2, 2
4 dropout 0.25 0.25 0.25 0.25
5 convolution (size x, size y, count) 5, 5, 16 5, 5, 32 5, 5, 16 5, 5, 32
6 max pool 2, 2 2, 2 2, 2 2, 2
7 dropout 0.25 0.25 0.25 0.25
8 convolution (size x, size y, count) 3, 3, 90 3, 3, 90 3, 3, 90 3, 3, 90
9 global max pool
10 dropout 0.25 0.25 0.25 0.25
11 dense (count) 90 90 90 90
12 dropout 0.5 0.5 0.5 0.5
13 output (count) 180 180 180 180

Total weights/parameters count 44,836 56,562 78,136 127,112

The number of filters in the first convolutional layer is equal to 16 for CNNs DN1,
DN2, DN5 and DN6, to 90 for CNNs DN3, DN4, DN7 and DN8. The number of filters in
the second convolutional layer is equal to 16 for CNNs DN1, DN3, DN5 and DN7, and to
32 for CNNs DN2, DN4, DN6 and DN8. The number of filters in the third convolutional
layer is equal to 90 for all deep CNNs

It is worth mentioning that all convolutional layers employ filters with no padding.
This is because padding will change the local direction at the edge of the image, hence
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creating an artifact that will likely affect the accuracy of directionality prediction. The SM
(soft max) activation function is always used in the output layer. For all other convolutional
and dense (fully connected) layers seven different activation functions were tested: ReLU
(rectified linear units), ELU (exponential linear units), SELU (scaled exponential linear
units), Si (sigmoid), SP (soft plus), SS (soft sign) and TanH (hyperbolical tangent). They are
shown in Figure S2 of Supplementary Materials [57].

The activation functions have different properties. Some of the activation functions
are not differentiable at zero, nonlinear and/or bounded for negative or positive values.
They can be symmetrical with respect to zero. The expectation is that the performance
of a CNN on directionality detection will be affected by some of the properties of the
activation functions.

2.3. Training and Testing Procedures

Training was performed on the Enki cluster at NIST, consisting of IBM Power System
AC922 (IBM, Armonok, NY, USA) compute nodes equipped with 575 GB DDR4 memory,
two IBM POWER9 SMT4 Monza 20-core CPUs and four Nvidia Tesla V100 SXM2 GPUs. On
the other hand, testing was performed on a PC running with Ubuntu 20.4 OS (Canonical
Ltd. London, UK) and equipped with an Intel Core i7-9800X (8 cores, 16 threads, 3.8 GHz)
CPU (Intel, Santa Clara, CA, USA), a Nvidia Titan RTX (4608 CUDA cores with 24GB of
DDR6 RAM) GPU (Nvidia, Santa Clara, CA, USA), and 128 GB of RAM. The following
training procedure was carried out for each of the 84 combinations of the twelve CNNs and
seven activation functions. For each combination, three training replicates were carried
out starting from randomly set CNN parameters. Training was carried out on batches
of 32 input images for a total of 200 epochs. The loss function we used is based on
the categorical cross-entropy, which is a customary choice since in this work we address
directionality detection as a classification problem. The formal definition of the loss function
is provided as follows [58].

loss = − 1
N

N

∑
i=1

C

∑
j=1

tj(xi) log pj(xi) (2)

In Equation (2) N is the number of observations, xi represents the general observation,
C is the number of classes (in our case equal to 180, the number of directions considered),
and tj(xi) is the j-th element of the one-hot encoded label for the observation xi with the
following conditions: tj(xi) ∈ {0, 1} and ∑c

j=1 tj(xi) = 1 ∀ i. Furthermore, pj(xi) is the j-th
element of the network output (i.e., prediction) for the observation xi. Since the output layer
activation function is SM, the following conditions hold: pj(xi) ≥ 0 and ∑c

j=1 pj(xi) = 1 ∀ i.
The element pj(xi) represents the probability that the observation xi belongs to the class j.
The resulting loss value is unitless.

The same synthetic texture image set, consisting of 357,210 training images and
178,605 validation images, was used for all training. For each replicate, training and
validation curves were used for evaluation.

The remaining 178,605 synthetic texture images, consisting of a different set from the
training and validation images, were used for testing. The accuracy of texture directionality
detection was computed across different bar sizes and perturbation levels (i.e., noise
standard deviation values and blur kernel sizes). The categorial cross-entropy is not the
best choice for testing purposes, since by definition it does not take into account angle
periodicity, and it is not proportional to the angle error. Therefore, we used the directionality
prediction error defined in Equation (3), which accounts for 180◦ periodicity:

error = acos(|cos(α− β)|) (3)

where:
α—true direction,
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β—predicted direction.

3. Results
3.1. Training and Testing on Synthetic Textures

The twelve CNN architectures described above were initially evaluated using the
training and validation curves obtained from Keras libraries and functions [55]. The
three training replicates were consistent with no major differences (see Figures S3–S9 in
Supplementary Materials). Figure 5 shows the learning curves for the best performing
shallow and deep CNNs, SN1 and DN2. Figure 5 also shows the training replicate with the
best performance.

Sensors 2021, 22, x FOR PEER REVIEW 9 of 23 
 

 

The remaining 178,605 synthetic texture images, consisting of a different set from the 
training and validation images, were used for testing. The accuracy of texture direction-
ality detection was computed across different bar sizes and perturbation levels (i.e., noise 
standard deviation values and blur kernel sizes). The categorial cross-entropy is not the 
best choice for testing purposes, since by definition it does not take into account angle 
periodicity, and it is not proportional to the angle error. Therefore, we used the direction-
ality prediction error defined in Equation (3), which accounts for 180° periodicity: 𝑒𝑟𝑟𝑜𝑟 = acosሺ|cosሺ𝛼 − 𝛽ሻ|ሻ (3) 

where: 𝛼—true direction, 𝛽—predicted direction. 

3. Results 
3.1. Training and Testing on Synthetic Textures 

The twelve CNN architectures described above were initially evaluated using the 
training and validation curves obtained from Keras libraries and functions [55]. The three 
training replicates were consistent with no major differences (see Figures S3–S9 in Sup-
plementary Materials). Figure 5 shows the learning curves for the best performing shallow 
and deep CNNs, SN1 and DN2. Figure 5 also shows the training replicate with the best 
performance. 

For shallow CNNs, the majority of training and validation loss plots are smooth and 
show asymptotic behavior within 200 epochs. Most of the plots decrease monotonically, 
but for CNNs/activation function pairs SN3-ELU, SN4-ELU, SN2-SELU, SN3-SELU, SN4-
SELU, SN3-SP and SN4-SP, the training loss functions reach a minimum between epochs 
50 and 80 and then slightly increase (see Supplementary Materials Figures S10–S13). The 
best performing CNN is SN1, the network with the largest number of input filters (180) 
with the largest size (17 × 17). For SN1, the best performances occur with the activation 
functions ELU, SP, ReLU and SELU, whereas the worse performances occur with TanH 
and SS. Based on our data, the decreasing of number and size of input filters seem to 
generally lead to a decrease in CNN performance. 

  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100 120 140 160 180

lo
ss

epoch

SN1 training

ReLU

ELU

SELU

Si

SP

SS

TanH

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100 120 140 160 180

lo
ss

epoch

SN1 validation

ReLU

ELU

SELU

Si

SP

SS

TanH

Sensors 2021, 22, x FOR PEER REVIEW 10 of 23 
 

 

  
Figure 5. Training and validation loss curves for the best performing shallow and deep CNNs (best 
performing replicate). For DN2 validation plot, the SP plot was clipped due to its large fluctuations 
to keep the most appropriate plot scale. For the loss function, please refer to Equation (2) and related 
text. 

For deep CNNs, the behavior of training and validation loss curves was quite differ-
ent (see Supplementary Materials Figures S14–S21). In the case of the Si and SP activation 
functions, the training was not successful for any of the deep CNNs. For Si the learning 
loss curve does not decrease over the 200 epochs, whereas for SP it shows extremely large 
fluctuations. For the remaining activation functions, the validation loss curve consistently 
shows smaller fluctuations around smaller values, still suggesting possible instability in 
some cases. Overall, the best performing deep CNN is DN2. For CNNs DN2, DN3, DN4, 
DN6, DN7 and DN8, the TanH activation function is associated with the lowest validation 
loss and shows relatively small fluctuations throughout. Similarly, the SS activation func-
tion shows relatively small fluctuations, but the validation loss is higher than TanH. Over-
all, deep CNNs with larger kernels in the first convolutional layer show lower values in 
both training and validation loss (see Supplementary Materials Figures S14–S21). 

Figure 6 shows a bar plot of the directionality RMSE using the error from Equation 
(3) vs. bar thickness for CNNs SN1 and DN2. 

The best activation functions for the shallow CNN SN1 are ELU and SELU, whose 
training and validation also lead to low loss values. The worse activation function for the 
CNN SN1 is TanH. On the other hand, for the deep CNN DN2, the best activation func-
tions are TanH and SS. TanH shows the best performance based on the training loss curve 
as well. For both shallow and deep CNNs, the largest RMSE values correspond to syn-
thetic textures consisting of narrow bars (i.e., 2, 3, and 4 pixels wide). This is due to the 
effect of distortion (noise and blur), more noticeable on narrower bars, since the RMSE 
values are obtained over all distortion levels. Please note that for the deep CNN DN2, the 
training for the Si and SP activation functions was not successful, and hence the corre-
sponding plots are not shown. 

Figure 7 shows the directionality RMSE vs. blur kernel size for CNNs SN1 and DN2. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100 120 140 160 180

lo
ss

epoch

DN2 training

ReLU

ELU

SELU

Si

SP

SS

TanH

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100 120 140 160 180

lo
ss

epoch

DN2 validation

ReLU

ELU

SELU

Si

SP

SS

TanH

Figure 5. Training and validation loss curves for the best performing shallow and deep CNNs (best
performing replicate). For DN2 validation plot, the SP plot was clipped due to its large fluctuations
to keep the most appropriate plot scale. For the loss function, please refer to Equation (2) and
related text.
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For shallow CNNs, the majority of training and validation loss plots are smooth and
show asymptotic behavior within 200 epochs. Most of the plots decrease monotonically,
but for CNNs/activation function pairs SN3-ELU, SN4-ELU, SN2-SELU, SN3-SELU, SN4-
SELU, SN3-SP and SN4-SP, the training loss functions reach a minimum between epochs
50 and 80 and then slightly increase (see Supplementary Materials Figures S10–S13). The
best performing CNN is SN1, the network with the largest number of input filters (180)
with the largest size (17 × 17). For SN1, the best performances occur with the activation
functions ELU, SP, ReLU and SELU, whereas the worse performances occur with TanH and
SS. Based on our data, the decreasing of number and size of input filters seem to generally
lead to a decrease in CNN performance.

For deep CNNs, the behavior of training and validation loss curves was quite different
(see Supplementary Materials Figures S14–S21). In the case of the Si and SP activation
functions, the training was not successful for any of the deep CNNs. For Si the learning
loss curve does not decrease over the 200 epochs, whereas for SP it shows extremely large
fluctuations. For the remaining activation functions, the validation loss curve consistently
shows smaller fluctuations around smaller values, still suggesting possible instability in
some cases. Overall, the best performing deep CNN is DN2. For CNNs DN2, DN3, DN4,
DN6, DN7 and DN8, the TanH activation function is associated with the lowest validation
loss and shows relatively small fluctuations throughout. Similarly, the SS activation function
shows relatively small fluctuations, but the validation loss is higher than TanH. Overall,
deep CNNs with larger kernels in the first convolutional layer show lower values in both
training and validation loss (see Supplementary Materials Figures S14–S21).

Figure 6 shows a bar plot of the directionality RMSE using the error from Equation (3)
vs. bar thickness for CNNs SN1 and DN2.
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Figure 6. Directionality RMSE for CNNs SN1 and DN2 vs. synthetic texture bar thickness.

The best activation functions for the shallow CNN SN1 are ELU and SELU, whose
training and validation also lead to low loss values. The worse activation function for the
CNN SN1 is TanH. On the other hand, for the deep CNN DN2, the best activation functions
are TanH and SS. TanH shows the best performance based on the training loss curve as
well. For both shallow and deep CNNs, the largest RMSE values correspond to synthetic
textures consisting of narrow bars (i.e., 2, 3, and 4 pixels wide). This is due to the effect of
distortion (noise and blur), more noticeable on narrower bars, since the RMSE values are
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obtained over all distortion levels. Please note that for the deep CNN DN2, the training for
the Si and SP activation functions was not successful, and hence the corresponding plots
are not shown.

Figure 7 shows the directionality RMSE vs. blur kernel size for CNNs SN1 and DN2.
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Figure 7. Directionality RMSE for CNNs SN1 and DN2 vs. blur kernel size.

Both shallow and deep CNNs are sensitive to blurring for kernel size 7× 7 and beyond.
As before, the best performing activation functions for the shallow CNN are ELU and SELU,
whereas for the deep CNN are TanH and SS.

Finally, in Figure 8 the directionality RMSE vs. Gaussian noise standard deviation for
CNNs SN1 and DN2 is shown.

The shallow CNN SN1 seems robust to Gaussian noise for all activation functions as
RMSE does not increase significantly with noise standard deviation levels. The deep CNN
DN2 shows similar behavior only for the activation functions TanH and SP, whereas the
remaining activation functions are more sensitive to noise, showing significantly higher
RMSE values. Overall, deep CNNs with larger kernels in the first convolutional layers show
a slightly better performance than deep CNNs with smaller kernels (see Supplementary
Materials Figures S24 and S25).

The results presented above indicate CNN-based texture directionality detection
shows good performance on synthetic texture data. The best performing shallow and deep
CNNs are SN1 with the activation function ELU (henceforth called SN1-ELU) and DN2
with the activation function TanH (henceforth called DN2-TanH). They show comparable
accuracy and computational efficiency, with SN1-ELU slightly outperforming DN2-TanH
for all Gaussian noise levels and for small averaging blur kernels, up to size 5 × 5. On the
other hand, for larger blur levels DN2-TanH outperforms SN1-ELU (please see Table S1 in
the Supplementary Materials).

We used the shallow SN1-ELU network to assess the performance of CNN-based
texture directionality detection with respect to more traditional techniques. We compared
SN1-ELU with our iGLCM method [29] as well as with the Fourier and the LGO methods,
both implemented in Fiji/ImageJ [18,19,22,23]. Table 4 shows the directionality detection
RMSE values for the SN1-ELU and the three other methods.
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Figure 8. Directionality RMSE for CNNs SN1 and DN2 vs. Gaussian noise standard deviation.

Table 4. Performance comparison (RMSE (◦) and speed (tiles/s)) between CNN, iGLCM Fourier and
LGO-based directionality detection (same testing set).

SN1-ELU iGLCM Fourier LGO

Gaussian Noise Std Value RMSE (◦) RMSE (◦) RMSE (◦) RMSE (◦)

none 0.00 0.00 1.58 2.03
2000 0.01 0.00 1.70 2.11
4000 0.06 0.07 2.11 2.11
6000 0.23 0.16 2.93 2.43
8000 0.48 0.31 5.64 2.69

SN1-ELU iGLCM Fourier LGO
Blur Kernel Size RMSE (◦) RMSE (◦) RMSE (◦) RMSE (◦)

none 0.00 0.00 1.58 2.03
3 × 3 0.01 0.00 2.42 2.61
5 × 5 0.07 0.00 3.16 1.27
7 × 7 2.79 2.86 4.41 3.41
9 × 9 5.81 6.00 5.29 3.91

SN1-ELU iGLCM Fourier LGO
# Tiles Tested (tiles/s) (tiles/s) (tiles/s) (tiles/s)

178,605 6613.3 34.4 902.2 902.1

The data were obtained on the same test dataset as above. RMSE values were obtained
across different synthetic textures, for all blur kernel sizes and Gaussian noise standard devi-
ation levels used earlier. Generally, the SN1-ELU method has a slightly worse performance,
but comparable to the iGLCM. In particular, the iGLCM method slightly outperforms the
CNN with respect to Gaussian noise, and the blur up to averaging filter size 5 × 5. Both
the SN1-ELU and iGLCM methods outperform the Fourier and LGO methods, except for
the highest blur perturbation value.

As expected, the computational gain achieved with the CNN method is considerable
(~200 folds with respect to iGLCM, ~7 folds with respect to Fourier and LGO). The compu-
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tations were performed on the PC whose specifications were reported at the beginning of
Section 2.3.

3.2. Demonstration on Non-Synthetic Textures

The above results were obtained on synthetic image textures with known properties
(i.e., direction and perturbation level). CNNs trained on synthetic image textures seem to
enable texture directionality detection on other synthetic image textures, demonstrating
the ability to generalize.

Here, we test the directionality detection performance of CNNs on non-synthetic, real-
life images, to further test the generalization capability of CNNs for texture directionality
detection. To this end, we use selected images from Brodatz textures, a collection of
grayscale texture photographs obtained by Phil Brodatz [53] and publicly available in
image databases [59,60], as well as microscopy cell images showing protein filaments
obtained at NIST [54]. The best performing CNN SN1 with ELU activation function
was used for the purpose. Figure 9 shows representative results of CNN-based texture
directionality detection.
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Each image is tiled into rectangular tiles of size 64 × 64, equally spaced at 64 pixels,
and texture directionality is computed for each tile (represented by red lines superimposed
on the image). The assessment in this case can only be qualitative, since there is no reference
data available. However, these results and additional tests (see Supplementary Materials
Figure S22) clearly show that CNNs trained on synthetic data can perform well on real-life
images with applications such as cell biology. For instance, the directionality of protein
actin fibers within a fibroblast cell can be quantified using our CNN-based technique
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(Figure 9d), hence providing insight into the cell response to mechanical cues from the
extracellular matrix [54]. It should be noted that for Figure 9d and Figure S22 (from
Supplementary Materials), the probability threshold discussed in Section 2.2 was set so
that no directionality is detected in the artificial extracellular matrix on which fibroblast
cells were cultured. It is also important to observe that, in many applications, the tile-
based directionality assessment might need to be combined into a macro textural feature
(e.g., computed for the whole image or for specific regions of interest (ROI), consisting of
groups of tiles) to study application-specific aspects. In some cases, texture analysis might
also involve overlapping tiles for enhanced accuracy. To that effect, we show the polar
histograms obtained for the Brodatz textures in Supplementary Materials Figure S23 to
reinforce that our approach yields tile-based directionality assessment that is available to
the user, and which can be combined into a macro textural feature if needed. In addition,
data from the polar histograms can be used to compute higher order directionality features,
such as the dominant direction and associated spread.

4. Discussion and Future Work Directions

In this paper, we studied the performance of CNN architectures of different size on
texture directionality detection. We tested seven commonly used activation functions with
each of the CNN architectures to fully characterize their performance. We carried out
training and testing using synthetic texture images with varying perturbation levels to
assess the robustness of CNN-based texture directionality detection.

Data suggests that asymmetrical and unbounded activation functions such as ELU
and SELU have the highest accuracy for shallow CNNs. On the other hand, symmetrical
and bounded activation functions such as TanH and SS seem to work better for deep CNNs.
In general, shallow CNNs tend to outperform deep CNNs as far as robustness to noise and
to lower blur levels. For the two highest blur levels, deep CNNs are slightly better than
shallow ones (Figure S25 and Table S1 in Supplementary Materials).

In order to gain additional insight into the inner workings of shallow and deep CNNs,
the filters belonging to the only convolutional layer of the best performing shallow CNN,
SN1-ELU, and the filters belonging to the first convolutional layer of the best performing
deep CNNs, DN2-TanH and DN4-SS, are shown in Figure 10 (see also Figures S26 and S27
in Supplementary Materials).

In general, the presence of noisy convolutional filters indicates that the training has
not been fully successful [61]. In the case of SN1-ELU, none of the 180 filters is noisy and a
directional component can always be discerned. The filters show varying frequency levels,
and in most cases multiple directionalities coexist within the same filter. In the case of
DN2-TanH and DN4-SS, quite a few of the filters are noisy in the first convolutional layer,
and none of them has a clear directional component. Overall, the convolutional layer of
the shallow SN1-ELU seems to enable the full characterization of texture directionality, as
one would expect. On the other hand, the presence of noisy filters in the first convolutional
layer of the DN2-TanH and DN4-SS suggests that texture directionality characterization
does not fully occur in that layer, but subsequent layers may play an important role as
well. Additional evidence to that effect comes from Figures S24 and S25 (in Supplementary
Materials), where DN2-TanH, DN4-SS, DN6-TanH and DN8-TanH show better performance
than DN1-TanH, DN3-SS, DN5-TanH and DN7-TanH, respectively. Notably, one important
difference between the former and the latter deep networks is the size of the second
convolutional layer (Tables 2 and 3), suggesting such layer may play an important role
in the performance of the deep CNN. We show filters from the first, second and third
convolutional layer of DN2-TanH in Figure S27 (in Supplementary Materials). Once
again, visual inspection suggests that a few of the 16 filters from the first layer are noisy,
and none of the smaller filters from the second and the third layer seem to carry a clear
directional component. An important related observation is that, in the case of deep
networks, the directional information is not stored in a specific layer, but it lies across the
convolutional layers.
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180 filters), from the first convolutional layer of the best deep CNN, DN2-TanH ((b), 16 filters) and
from the first convolutional layer of the deep CNN, DN4-SS ((c), 90 filters). The filters are shown for
one training instance.

Two main conclusions follow from above: (1) the performance of a CNN on texture
directionality detection is closely related to the properties of the activation functions used;
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(2) based on our data, both shallow and deep CNNs show potential for texture directionality
detection and warrant further investigation.

An important topic of discussion concerns the kernel sizes of the convolutional layers
in the deep networks. The general tendency is to use smaller kernel sizes for the sake of
computational efficiency, which for most applications does not adversely affect the accuracy
of the network. However, in the case of texture directionality detection we believe larger
filter kernels are more effective, especially when dealing with complex texture patterns. In
fact, larger kernels enable a better correlation of the kernel parameters with such complex
patterns, due to the higher number of parameters available. Indeed, larger kernels better fit
to the texture “building block” (i.e., texton [1] or texel [2]), which is generally large in the
analyzed textures. This results in more accurate representation of texture directionality by
the deep network. In Figure S28a,b of the Supplementary Materials, two images of textures
are shown. They are obtained using the same procedure that was used to generate synthetic
textures (Section 2.1), and each of them contains one bar with a specific orientation (156◦ and
157◦). Such orientations yield a complex texture, consisting of many intensity values due to
the sampling process. This is an instance of textures whose difference in directionality is
difficult to detect. As pointed out above, only the larger kernels will be able to distinguish
such textures due to the possibility of a better correlation of the kernel with the complex
texture structure. In Figure S28c of the Supplementary Materials another instance of a
complex texture is shown, this time from a real-life image of a fibroblast cell [54]. In general,
complex textures are present in both real-life image data and synthetic images.

In Figures S29 and S30 of the Supplementary Materials instances of the filtering
outcome are shown for synthetic images with complex texture directionality. In this case,
texture complexity is the result of image perturbation and/or specific bar orientation. The
filtering was carried out using the 16 large (17 × 17) and small (7 × 7) kernels followed
by the TanH activation function taken from the DN2-TanH and DN6-TanH networks. For
each synthetic image, the 16 filtered instances are shown. Clearly, the filtering outcome
from large kernels shows a stronger contrast with respect to small kernels. The contrast
is quantified on the right of each filtered image row using the standard deviation and
the intensity range. A stronger contrast represents a stronger signal resulting from the
filtering, which implies a better preservation of the directionality component in the case of
large kernels. Furthermore, in Table S2 of the Supplementary Materials the performance of
deep networks DN2-TanH and DN6-TanH, whose only difference is in the size of the first
filter kernel (17 × 17 and 7 × 7, respectively), are directly compared with focus on image
perturbation. The data clearly show that the network with the larger kernel consistently
outperforms the other one across all noise and blur levels. This is not extremely unusual
for deep networks. A few instances of networks whose performance does not improve
when using smaller filter kernels can be found in the literature, as well as studies focusing
on the most appropriate kernel size selection to maximize the network accuracy [62–65].

In future studies we will assess the role of non-linearities that are present in the deep
network layers. Our intuition is that, for the tested deep networks, most of the directionality
information lies in the first layer. For instance, the first layer of the deep network DN2-TanH
seems to be overwhelmingly more directional and less noisy than the remaining two by
visual inspection (please see Figure S27 of the Supplementary Materials). This might be
due to the presence of non-linearities such as the layer activation functions and pooling
operations, which somehow prevent the full propagation of directionality information to
the subsequent layers. We believe targeted modifications of the deep networks to eliminate
the non-linear components should be investigated in the future, in order to assess if the
directionality information can better propagate to the subsequent layers. That, in turn,
might change the behavior of the network, especially with respect to the size of the first
layer kernel.

Another important observation is related to the fact that shallow networks allow for
smaller input tiles (e.g., SN1 is capable processing tiles of size 17× 17) unlike deep networks
(the minimum allowed tile size is 36 × 36 or 26 × 26 for the deep networks studied in
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this paper), as observed earlier. This is clearly an important feature of the network, since
smaller tile size allows the analysis of smaller texture regions, and texture is by definition a
local property. Therefore, this feature might make shallow networks more appealing for
some applications.

Since there is room for improvement, several future research directions can be pursued.
For instance, custom loss functions could be designed to explicitly take direction periodicity
into account, thus possibly enhancing the performance of CNNs. An additional above-
related research direction is the investigation of additional CNN architectures. This includes
the design and testing of CNNs that will closely mimic directional filters for enhanced
accuracy. For instance, one can investigate the performance of CNN architectures consisting
of conveniently initialized and possibly partially constrained first convolutional layers,
aimed at detecting specific texture directions. An important caveat is that the definition of
novel CNN architectures always involves a trade-off between performance and generality
or efficiency. According to our data, for both shallow and deep CNNs the directionality
detection performance seems to generally increase with the size of the network. However,
larger CNNs are computationally expensive and large number of convolutional layers
enables the analysis of large images, hence adversely affecting the generality of the analysis.

Another future work direction is related to the criterion to discard texture direction-
alities when not meaningful (e.g., in the case of homogeneous images). As discussed
in Section 2.2, we currently use an empirically found threshold value for the maximum
probability, below which to discard the associated directionality. However, we believe
that this is a limitation of our current approach, since threshold-based approaches are not
general, and they usually depend on the analyzed image data. Therefore, more general
approaches to properly handle homogeneous images should be pursued, not necessarily
threshold-based. Furthermore, such approaches should also address the coexistence of
multiple directions in a texture image.

An aspect that also warrants further analysis is the generally low performance of the
proposed CNNs on synthetic texture images consisting of small bars perturbed using large
blur kernels. An initial assessment of such cases based on visual inspection suggests that
synthetic texture images can change their directionality properties when subjected to high
blurring perturbations. Figure 11 shows synthetic textures with different directions and
subjected to the highest tested blurring level.

Sensors 2021, 22, x FOR PEER REVIEW 18 of 23 
 

 

large blur kernels. An initial assessment of such cases based on visual inspection suggests 
that synthetic texture images can change their directionality properties when subjected to 
high blurring perturbations. Figure 11 shows synthetic textures with different directions 
and subjected to the highest tested blurring level. 

 
Figure 11. Instance of bars of bar size 4, bar period 8 and blurred by averaging filter with kernel size 
of 9 × 9. 

At direction 27°, one can clearly notice the emergence of additional directionality pat-
terns due to aliasing effects. In such case, the lower accuracy of CNNs is just an artifact. 
Related future research directions include more extensive testing, involving a broader 
range of synthetic data (e.g., more perturbation levels and different types or sizes). Such 
tests should, in particular, target cases as the one discussed above and shown in Figure 
11, so that potential artifacts are eliminated or ruled out. 

From the computational efficiency perspective, the best performing CNN network, 
SN1-ELU, was compared to the iGLCM, Fourier and LGO methods. The CNN method, 
which was implemented taking advantage of GPU acceleration, is the most efficient. This 
was surely expected when compared to the iGLCM method, which requires a total of DxL 
iGLCM computations, each involving O(N) expensive memory access operations (D, L 
and N are the number of directions used, number of offsets used, and number of pixels in 
the region of interest, respectively) [29]. It is worth mentioning that the currently imple-
mented version of all methods can be further optimized (e.g., for GPU computing), hence 
potentially improving the reported efficiencies. 

A final observation is that the best performing CNN network (SN1-ELU) was demon-
strated using real-life images from various sources. While the analysis was purely quali-
tative, visual inspection suggests that carefully designed CNN networks trained on syn-
thetic texture images generalize to real-life image data, motivating further pursuit of the 
proposed approach. To further demonstrate this generalization capability, CNN-based 
texture directionality detection can be more extensively and, when possible, quantitively 
demonstrated on real-life image data. This will involve the acquisition of labeled image 
data targeting texture directionality. 

5. Summary 
The following main achievements were accomplished as part of this study. 
We built upon our previous work [29] and created a significantly larger dataset of 

synthetic texture images with known directionality and perturbation levels (i.e., additive 

Figure 11. Instance of bars of bar size 4, bar period 8 and blurred by averaging filter with kernel size
of 9 × 9.



Sensors 2022, 22, 562 18 of 22

At direction 27◦, one can clearly notice the emergence of additional directionality
patterns due to aliasing effects. In such case, the lower accuracy of CNNs is just an artifact.
Related future research directions include more extensive testing, involving a broader range
of synthetic data (e.g., more perturbation levels and different types or sizes). Such tests
should, in particular, target cases as the one discussed above and shown in Figure 11, so
that potential artifacts are eliminated or ruled out.

From the computational efficiency perspective, the best performing CNN network,
SN1-ELU, was compared to the iGLCM, Fourier and LGO methods. The CNN method,
which was implemented taking advantage of GPU acceleration, is the most efficient. This
was surely expected when compared to the iGLCM method, which requires a total of
DxL iGLCM computations, each involving O(N) expensive memory access operations
(D, L and N are the number of directions used, number of offsets used, and number of
pixels in the region of interest, respectively) [29]. It is worth mentioning that the currently
implemented version of all methods can be further optimized (e.g., for GPU computing),
hence potentially improving the reported efficiencies.

A final observation is that the best performing CNN network (SN1-ELU) was demon-
strated using real-life images from various sources. While the analysis was purely qualita-
tive, visual inspection suggests that carefully designed CNN networks trained on synthetic
texture images generalize to real-life image data, motivating further pursuit of the proposed
approach. To further demonstrate this generalization capability, CNN-based texture direc-
tionality detection can be more extensively and, when possible, quantitively demonstrated
on real-life image data. This will involve the acquisition of labeled image data targeting
texture directionality.

5. Summary

The following main achievements were accomplished as part of this study.
We built upon our previous work [29] and created a significantly larger dataset of

synthetic texture images with known directionality and perturbation levels (i.e., addi-
tive Gaussian noise or averaging kernel-based blurring), feasible for the training and
testing of artificial intelligence or other computational tools targeting automated texture
directionality detection.

We designed twelve CNN architectures with varying properties. Using the above-
mentioned synthetic texture images, we carried out extensive training, validation and
testing assays with seven different activation functions. The analysis of the resulting data
led to the identification of the best performing CNN network for texture directionality
detection, SN1, to be used in combination with the ELU activation function. The network,
SN1-ELU, consists of a single convolutional layer of size 17 × 17 × 180 with ELU activation
function, global max pooling, and an output layer of size 180 with SM activation function.
The network is general, since by design it accommodates images of varying size, even
conveniently small.

We subsequently compared the performance of the SN1-ELU network with three
state-of-the-art techniques for texture directionality detection, whose implementation is
available. Two of techniques are based on LGO and Fourier, and they are implemented as
part of the well-known Fiji/ImageJ software [19]. The third technique, based on iGLCM,
was designed and implemented in our earlier work on texture directionality detection [29],
whose implementation is available in a Github repository [30]. The comparison was carried
out based on a separate set of synthetic texture images, different from the one used for
training and validation of the CNNs. Data show that SN1-ELU outperforms LGO and
Fourier except for the highest blur level, and it is lower but comparable to iGLCM. Based
on our tests, the computational efficiency of the SN1-ELU network is superior to the
other methods.

Finally, we demonstrated the performance of SN1-ELU on real-life images from the
Brodatz repository and from biomedical image repositories. The qualitative assessment
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of the data clearly shows that our CNN-based model for texture directionality detection,
which was trained on synthetic images, nicely generalizes to real-life images.

As pointed out, texture directionality detection is a field with a wealth of applications
and with room for further investigation. The novel data and methodologies presented in
this paper show the potential of CNN-based approaches. Hence, this work represents a
basis for the pursuit and improvement of CNN-based texture directionality detection.

6. Disclaimer

Commercial products are identified in this document in order to specify the experi-
mental procedure adequately. Such identification is not intended to imply recommendation
or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the products identified are necessarily the best available for the purpose.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22020562/s1, Figure S1: Instances of shallow and deep CNN
architectures; Figure S2: Activation functions tested in this work; Figure S3: Training and validation
loss curves for the three replicas of SN1 ReLU; Figure S4: Training and validation loss curves for the
three replicas of SN1 ELU; Figure S5: Training and validation loss curves for the three replicas of
SN1 SELU; Figure S6: Training and validation loss curves for the three replicas of SN1 Si; Figure S7:
Training and validation loss curves for the three replicas of SN1 SP; Figure S8: Training and validation
loss curves for the three replicas of SN1 SS; Figure S9: Training and validation loss curves for the three
replicas of TanH; Figure S10: Training and validation loss curves for the SN1; Figure S11: Training
and validation loss curves for the SN2; Figure S12: Training and validation loss curves for the SN3;
Figure S13: Training and validation loss curves for the SN4; Figure S14: Training and validation loss
curves for the DN1; Figure S15: Training and validation loss curves for the DN2; Figure S16: Training
and validation loss curves for the DN3; Figure S17: Training and validation loss curves for the DN4;
Figure S18: Training and validation loss curves for the DN5; Figure S19: Training and validation
loss curves for the DN6; Figure S20: Training and validation loss curves for the DN7; Figure S21:
Training and validation loss curves for the DN8; Figure S22: CNN-based directionality detection on
microcopy images of actin-stained fibroblast cells; Figure S23: CNN-based directionality detection
on Brodatz textures [52,59,60] and corresponding polar plots; Figure S24: Directionality RMSE vs.
Gaussian noise standard deviation for all shallow and deep CNNs; Figure S25: Directionality RMSE
vs. blur kernel size for all shallow and deep CNNs; Figure S26: Filters from the only convolutional
layer of the best shallow CNN, SN1-ELU for the three training replicates; Figure S27: Filters from the
convolutional layers of the best deep CNN, DN2-TanH for the three training replicates; Figure S28:
Instances of synthetic and real-life textures with complex signal; Figure S29: Instances of convolutions
of synthetic textures with kernels from the first layer of the deep network DN2; Figure S30: Instances
of convolutions of synthetic textures with kernels from the first layer of the deep network DN6; Table
S1: Performance comparison between the best shallow and deep CNNs; Table S2: Directionality
RMSE values vs. Gaussian noise standard deviation and averaging blur for deep networks DN2-TanH
and DN6-TanH.
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