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Abstract: A better understanding of wheat nitrogen status is important for improving N fertilizer
management in precision farming. In this study, four different sensors were evaluated for their ability
to estimate winter wheat nitrogen. A Gaussian process regression (GPR) method with the sequential
backward feature removal (SBBR) routine was used to identify the best combinations of vegetation
indices (VIs) sensitive to wheat N indicators for different sensors. Wheat leaf N concentration (LNC),
plant N concentration (PNC), and the nutrition index (NNI) were estimated by the VIs through
parametric regression (PR), multivariable linear regression (MLR), and Gaussian process regression
(GPR). The study results reveal that the optical fluorescence sensor provides more accurate estimates
of winter wheat N status at a low-canopy coverage condition. The Dualex Nitrogen Balance Index
(NBI) is the best leaf-level indicator for wheat LNC, PNC and NNI at the early wheat growth stage.
At the early growth stage, Multiplex indices are the best canopy-level indicators for LNC, PNC, and
NNI. At the late growth stage, ASD VIs provide accurate estimates for wheat N indicators. This study
also reveals that the GPR with SBBR analysis method provides more accurate estimates of winter
wheat LNC, PNC, and NNI, with the best VI combinations for these sensors across the different
winter wheat growth stages, compared with the MLR and PR methods.

Keywords: leaf nitrogen concentration; plant nitrogen content; nitrogen nutrition index; Gaussian
process regression

1. Introduction

Nitrogen (N) is a crucial nutrient required for crop growth and grain formation. Agri-
cultural managers can regulate N management at suitable rates and opportune moments
based on the crop’s N requirements. As an essential scatheless and real-time technique,
remote sensing technologies have been proved valuable for crop N status evaluation [1–6].

Much meaningful progress in sensor technology for evaluation of plant N status has
been achieved in recent years. Leaf sensors, such as chlorophyll meters [7–9] and Dualex
sensors [10], have been widely used to measure crop N status. These leaf clip sensors show
a stable relation with plant N due to their direct contact with the plant. However, there
are also some restrictions on these sensors because plant leaf water content, leaf structure,
or other nutrient deficiencies may also easily influence the sensor readings [11]. Some
studies indicate that measurement of polyphenol concentrations in the leaf is a new method
to overcome such barriers [12]. The ratio of chlorophyll to polyphenol is more stable
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than the leaf chlorophyll distribution [11,13]. At the canopy level, the spectral features of
chlorophyll from the visible to near-infrared bands are used as indicators of crop N [14–16].
The Multiplex 3 portable sensor has also been widely used for plant N diagnosis in recent
years, and it can detect plant chlorophyll and flavonol compounds simultaneously through
the chlorophyll fluorescence method [17]. As a new exploration of the low-altitude remote
sensing method, unmanned aerial vehicle (UAV)-based sensing has been widely used in
different fields recently due to its flexibility, affordability, and applicability for large-scale
monitoring compared to handheld active sensing [18,19]. Digital color images acquired by
UAV or airplane-mounted sensors have also proven to be a feasible way to estimate canopy
variables such as leaf chlorophyll content [20], nitrogen status [21], wheat senescence [22],
and vegetation cover [23] in a large area [24]. In general, rapid, precise, and non-destructive
acquisition of N information has become an essential technique for crop nutrition and
growth diagnosis [5,25], which helps dynamic regulations of N fertilizer use [26].

Previous studies attempted to retrieve N via a radiative transfer model. As an example,
Jacquemoud et al. attempted to incorporate N into the PROSPECT model, but this approach
was abandoned because of inconsistencies in N retrieval through model inversion [27].
More efforts have been directed at estimating crop N status using empirical methods based
on observed reflectance to measured vegetation characteristics [28,29]. Many practical re-
gression techniques using hyperspectral bands, vegetation indices (VIs), and different types
of sensor data have been proved influential in plant N estimation [21,28,29]. Parametric
regression (PR) methods based on band information or VIs of broadband satellite sensors
are probably the oldest and largest group of variable estimation approaches [30]. VIs
enhance spectral features sensitive to a vegetation property while reducing disturbances
by combining some spectral bands [31,32]. The major advantage of VIs is their intrinsic
simplicity. However, the selection of an optimal subset of hyperspectral bands or best
VIs sensitive to plant N encounters both numerical and computational difficulties [33,34].
Multivariable linear regression (MLR) methods are attractive because of their fast perfor-
mance in coping with spectroscopic data and their typical reliance on the estimation of
covariances [30]. Miphokasap et al. demonstrated that the model developed by MLR
led to a higher correlation coefficient and lower errors than model applications based on
narrowband VIs in estimating canopy nitrogen [30,35]. In recent decades, a variety of
non-linear, non-parametric methods have been developed, going beyond linear regression
or linear transformation techniques. These methods, also referred to as machine learning
regression algorithms, apply non-linear transformations [30]. Gaussian process regression
(GPR) applied to spectroscopic and hyperspectral data started more recently, such as air-
borne HyMap mapping of leaf chlorophyll content [36] and spaceborne CHRIS mapping
of leaf chlorophyll content, LAI, and fractional vegetation content [37]. The GPR method
is deemed to be one of the most exciting machine learning regression algorithms, which
can provide a full conditional statistic for the predicted variable [38,39]. GPR with the
sequential backward feature removal (SBBR) routine proposed by Verrelst et al. leads to
the identification of the most sensitive vegetation index for the crop nitrogen variable [34].

Nevertheless, when this technique is applied in studies with spectral data from differ-
ent sensors, results on the best VIs or combinations and their performance on crop nitrogen
diagnosis have rarely been reported. Therefore, in this study, we propose assessing the
performance of different sensors for winter wheat N status estimation through PR, MLR,
and GPR analyses. To determine which spectral features could sufficiently estimate crop
N status indicators, we considered one leaf N status indicator (i.e., the leaf N concentra-
tion (LNC)), one plant N status indicator (i.e., the N plant concentration (PNC)), and one
relative plant N indicator (i.e., the nutrition index (NNI)), which is calculated as the ratio
of the measured N concentration and the critical N concentration. In this study, we also
performed sensitivity analysis on the wheat N indicators for different sensors through the
PR, MLR, and GPR methods. The main objectives of this study were to: (1) evaluate the
ability of four different proximal and UAV-mounted sensors for winter wheat N status
estimation; (2) identify the optimal VIs and VI combinations derived from the sensors for
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accurate winter wheat N status estimation; and (3) determine whether GPR models based
on the combination of VIs could further improve the estimation accuracy.

2. Materials and Methods
2.1. Experimental Design

This study was carried out at the National Experimental Station for Precision Agri-
culture in the Changping District of Beijing, China (40◦10.6′ N, 116◦26.3′ E; Figure 1). The
area of the study field was about 0.80 ha. Winter wheat was sown on 4 October 2013, in
15 cm-wide rows. The variety of wheat was Jindong 22. A total of 8 different nitrogen
fertilizer treatments were assigned to 104 plots in this experiment, each plot measuring
7 × 7.5 m (Figure 1). There was a 1 m buffer around each fertilization plot to minimize the
interference between different fertilizer treatments. Base fertilizer, including 72 kg/ha N,
60 kg/ha P2O5, and 75 kg/ha K2O, was applied to the experiment plots when the wheat
was seeded, except for the CK treatments. Topdressing was applied at the wheat jointing
stage (16 April, corresponding to Feekes 6), and detailed fertilizer information about the
treatments is listed in Table 1.
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nitrogen fertilization treatment; CK treatment: non-nitrogen fertilizer treatment; BH treatment: excess
nitrogen fertilizer treatment (N-rich strip treatment); S treatment: variable-rate nitrogen treatment
with fertilizer rate based on the SPAD value ratio between this treatment and N-rich strip treatment;
A treatment: variable-rate nitrogen treatment with fertilizer rate based on the ASD spectroradiometer
vegetation index OSAVI value ratio between this treatment and N-rich strip treatment; T treatment:
variable-rate nitrogen treatment with fertilizer rate based on the ASD spectroradiometer vegetation
index REPLI value ratio between this treatment and N-rich strip treatment; D treatment: variable-rate
nitrogen treatment with fertilizer rate based on the Dualex NBI value between this treatment and
N-rich strip treatment; and M treatment: variable-rate nitrogen treatment with fertilizer rate based on
the Multiplex NBI_R value ratio between this treatment and N-rich strip treatment.

Table 1. Fertilizer information for different treatments.

Treatment
Plot Base Fertilizer Topdressing Fertilizer Fertilizer Treatment Rate Statistic

Number Time N kg/ha Time N kg/ha Mean kg/ha Min kg/ha Max kg/ha CV %

BH 18 Seed 72 Feekes 2, 4 51,102 225 225 225 0
NM 13 Seed 72 Feekes 6 78 150 150 150 0
CK 13 Seed 0 Feekes 6 0 0 0 0 0
A 12 Seed 72 Feekes 6 78 150 147 154.1 1.78
M 12 Seed 72 Feekes 6 78 150 138.6 162.2 5.15
D 12 Seed 72 Feekes 6 78 150 141.6 160 3.04
S 12 Seed 72 Feekes 6 78 150 144.7 154.8 1.92
T 12 Seed 72 Feekes 6 78 150 131 183.1 10.25

2.2. Sensor Data Collection

The leaf and canopy spectral parameters were measured in a 1 m2 rectangular region
within each plot at the wheat raising stage (8 April 2014, corresponding to Feekes 5) and the
filling stage (28 May 2014, corresponding to Feekes 11). In this study, we used four different
optical instruments to collect wheat spectral data. The Dualex sensor was used to measure
wheat leaf spectral parameters. The Multiplex sensor and the ASD field spectrometer were
used to collect wheat canopy spectral parameters. A Sony DSC-QX100 digital RGB camera
mounted on a DJI S1000 UAV was used to collect wheat images for the experiment fields.
Table 2 lists the detailed information on the sensors used in this study.

Table 2. Parameters on sensors used in this study.

Sensor Information Polyphenol and Chlorophyll
Meter

Polyphenol and Chlorophyll
Meter Field Spectrometer UAV-Based Digital

Camera

Sensor Type Dualex Multiplex ASD RGB Camera

Sensor name Force-A Dualex Scientific Force-A MULTIPLEX 3 ASD FieldSpec 4 Sony DSC–QX100

Target sample Plant leaves Plant canopy Plant canopy Plant canopy

Field of view - - 25◦ 64◦

Image size - - - 3000 × 4000

Working height - 10 cm 1.3 m 50 m

Measurement area 5 mm in diameter 10 cm in diameter 50 cm in diameter Full field

Spectral information
Excitation channels: UV

(357 nm) and red (650 nm).
Detection channels: red and

far-red.

Excitation channels: UV
(375 nm), blue (450 nm), green

(510 nm), and red (630 nm).
Detection channels: yellow,

red, and far-red.

350–2500 nm R,G,B

Original spectral
resolution - - 3 nm @ 700 nm;

10 nm @ 1400 nm -

Data spectral
resolution 1 nm

Image spatial
resolution - - - 2 cm
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2.2.1. Leaf- and Canopy-Level Data Collection

For each plot, 10 wheat plants were randomly selected for Dualex measurement. The
first and second fully expanded leaves of the plants were clipped at the middle location, and
the measurement averages represented the Duelax NBI, Chl, and FLAV values of the plot.
Multiplex measurements and ASD spectral measurements were performed and repeated
20 times at 10 cm and 1.3 m above the wheat canopy, respectively. The measurement
averages represented the wheat canopy fluorescence and reflectance values for each plot. A
total of 9 Multiplex fluorescence VIs and 28 ASD spectral VIs sensitive to plant N are listed
in Table 3.

Table 3. Vegetation indices based on Multiplex 3 and ASD sensors used in this study.

Sensor ID Vegetation Index Formula Reference

Multiplex

1 SFR_G FRF_G/RF_G [17]
2 SFR_R FRF_R/RF_R [17]
3 BRR_FRF BGF_UV/FRF_UV [17]
4 FER_RUV FRF_R/FRF_UV [17]
5 FER_RG FRF_R/FRF_G [17]
6 FLAV Log(FER_RUV) [17]
7 ANTH Log(FER_RG) [17]
8 NBI_G FRF_UV/RF_G [17]
9 NBI_R FRF_UV/RF_R [17]

ASD

1 SR(700,670) (R700)/(R670) [40]
2 SR(418,450) (R418)/(R450) [40]
3 VOGa (R740)/(R720) [41]
4 SR(553,537) (R553)/(R537) [42]
5 NDCI (R762 − R527)/(R762 + R527) [41]
6 NDRE (R790 − R720)/(R790 + R720) [43]
7 TBI1 (R434)/(R496 + R401) [44]
8 mND705 (R750 − R705)/(R750 + R705 − 2R445) [45]
9 NDIopt (R503 − R483)/(R503 + R483) [46]
10 TBI2 (R924 − R703)/(R924 − R703) [47]
11 NDVI(670,780 (R780 − R670)/(R780 + R670) [48]
12 RDVI (R800 − R670)/(R800 + R670)1/2 [49]
13 SR(750,700) (R750)/(R700) [50]
14 WI (R900)/(R950) [51]
15 NDWI (R860 − R1240)/(R860 + R1240) [52]
16 NDII (R819 − R1600)/(R819 + R1600) [53]
17 MCARI [(R700 − R670) − 0.2(R700 − R550)](R700/R670) [54]
18 TCARI 3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)] [54]
19 OSAVI 1.16(R800 − R670)/(R800 + R670 + 0.16) [55]
20 MSAVI 0.5[2R800 + 1 − ((2R800 + 1)2 − 8(R800 − R670))1/2] [56]
21 MCARI 1 1.2[2.5(R800 − R670) − 1.3(R800 − R550)] [57]
22 MCARI 2 1.5[2.5(R800 − R670) − 1.3(R800 − R550)]/[(2R800 + 1)2 − (6R800 − 5(R670)1/2) − 0.5]1/2 [57]
23 PPR (R550 − R450)/(R550 + R450) [58]
24 PVR (R550 − R650)/(R550 + R650) [59]
25 PRI (R531 − R570)/(R531 + R570) [60]
26 REP 700 + 40[(R670 + R780)/2) − R700)/(R740 − R700)] [61]
27 REV Reflectance value at REP [62]
28 REFD First deviation of red edge [62]

2.2.2. UAV-Level Data Collection

The UAV digital images were obtained at a 50 m altitude. Pix4Dmapper software
(Pix4D Inc., Lausanne, Switzerland) was used for automatic image mosaicking. The original
digital number (DN) values of the images were calibrated by the experimental line method
(Equation (1)) [63]:

DNi =
DNobject −DNblack

DNwhite −DNblack
× 255 (1)

where DNi represents the calibrated DN value for band i, such as R, G, and B; DNobject is
the original DN value of the images; and DNwhite and DNblack are the original DN values
from the white and black panels in the UAV-DN images. Then, the images were resampled
to 2 cm using the nearest neighbor method. An area of interest (AOI) (2 × 2 m) located in
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the middle region of each sample plot was delineated on the image to exclude the border
effect. A total of 208 winter wheat AOIs (104 AOIs at wheat Feekes stage 5 and 104 AOIs
at wheat Feekes stage 11) were clipped for the subsequent analysis. Then, the spectral
data from the mix of winter wheat and soil background were extracted, and the VIs were
calculated to indicate the winter wheat growth status for each plot. Table 4 lists the RGB
image bands and VIs used in this study.

Table 4. Vegetation indices based on digital RGB images.

ID Vegetation Index Full Name Formula Reference

1 R DN values for red band DNR/255 [64]
2 G DN values for green band DNG/255 [64]
3 B DN values for blue band DNB/255 [64]
4 r Chromatic coordinates for red R/(R + G + B) [64]
5 g Chromatic coordinates for green G/(R + G + B) [64]
6 b Chromatic coordinates for blue B/(R + G + B) [64]
7 ExR Excess red 1.4 × r − b [65]
8 ExG Excess green 2g − (r + b) [65]

9 NDI The normalized difference
vegetation index (b − g)/(b + g) [65]

10 CVI1 Color vegetation index 1 (r − g) [65]
11 CVI2 Color vegetation index 2 (g − b) [65]
12 CVI3 Color vegetation index 3 (g − b)/(r − g) [65]
13 GRVI Green–red vegetation index (g − r)/(g + r) [65]

14 NPCI Normalized pigment chlorophyll
ratio index (b − r)/(b + r) [66]

2.3. Plant Sampling Data Collection

We collected the plant samples as soon as the sensors’ measurements were completed.
In this study, plants from an area of 0.12 m2 (two rows and 40 cm wide) near the spectral
measurement plot were collected and sent to the laboratory for analysis. The vegetative
organs (leaves, stems, and ears) were then divided and dried in the oven at 80 ◦C for 24 h.
The biomass (g/m2) for wheat leaves (leaf biomass, LB), stems (stem biomass, SB), and ears
(ear biomass, EB) per unit area was calculated based on the measured planting density and
the dry weight of the samples. The leaf nitrogen concentration (LNC % (g N 100 g−1 DM)),
stem nitrogen concentration (SNC % (g N 100 g−1 DM)), and ear nitrogen concentration
(ENC % (g N 100 g−1 DM)) were then determined using the standard Kjeldahl method [67].
Plant N accumulation (PNA, kg/ha) was the sum of leaf, stem, and ear N accumulation
(Equation (2)). Wheat plant N content (PNC %) was determined by PNA (kg/ha) divided
by the plant biomass (kg/ha) (Equation (3)) [68].

PNA (kg/ha) =(LB× LNC) + (SB× SNC) + (EB× ENC) (2)

PNC (%) = PNA/(LB + SB + EB) (3)

The NNI was used to indicate the N status for each experimental plot, independent of
the growth stage and differing biomass levels. The NNI was calculated by Equation (4) [69]:

NNI = Nact/Nc (4)

where Nact is the actual N concentration, and Nc is the critical N concentration as a per-
centage of the aboveground dry matter expressed in % DM. The Nc for winter wheat was
described by Equation (5) [70]:

Nc = 4.15×W−0.38 (5)

where W is the aboveground biomass, expressed in Mg dry matter (DM) ha−1.
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2.4. Data Analysis Methods

Five traditional PR methods (linear, logarithmic, power, exponential, and second-order
polynomial) and the MLR and GPR methods were used to establish relationships between
wheat N parameters and spectral VIs in this study. For the PR methods, 70% of the samples
were used to build the models, and 30% were used to validate them. A stepwise MLR was
used to estimate the winter wheat N status by recursively applying multiple regression.

Compared to other machine learning regression approaches, the parameter optimiza-
tion of GPR is simpler and can be automatically completed by maximizing the marginal
likelihood in the training set [34]. The core of the kernel method for GPR is the squared
exponential. The use of a flexible kernel function (covariance function) generally suffices
for tackling most regression problems and is beneficial if prior knowledge is weak [37].
This is an opportunity to exploit asymmetries in the feature space by including a parameter
per feature, as in the very common anisotropic squared exponential (SE) kernel function:

K
(
xi, xj

)
= γexp(−

B

∑
b=1

(xb
i − xb

j )
2

2σ2
b

) (6)

where γ is a scaling factor; σb is the length scale per input feature, b = 1, . . . , B; and xb
i

represents the bth feature of the input feature vector xi. A smaller value of σb indicates
a higher level of informative content of this certain image feature. Verrelst et al. [34]
integrated this property and SBBR as a new feature selection algorithm, in which the least
significant feature with the highest σb was removed at each iteration and a new GPR model
was retrained with the remaining features only. A feature combination would eventually
be identified by the feature selection algorithm. To enable the automated identification of
the best-performing features for any regression problem, this feature selection algorithm
was automated and integrated into a user-friendly tool named GPR-BAT [34].

In this study, GPR with SBBR was used firstly to identify the best VI combinations for
different N parameters, and then MLR and GPR were used to build N parameter estimation
models based on those VI combinations. The 10-fold cross-validation technique was used to
determine the optimal number of latent factors based on the lowest root mean square error
(RMSE). The accuracy of each model was evaluated by the coefficient of determination R2,
RMSE, the mean absolute error (MAE), and the Nash–Sutcliffe modeling efficiency (NSE).
The equations used to calculate RMSE, MAE, and NSE are presented in Table 5.

Table 5. Statistics computed to compare the results of the different VIs used for the N parameter
estimation.

Statistics Formula Character Reference

Root mean square error (RMSE) RMSE =

√
∑n

i (ŷi−yi)
2

n
from 0 to +∞, optimum 0 [71]

Mean absolute error (MAE) MAE = ∑n
i=1|ŷi − yi|/n from 0 to +∞, optimum 0 [72]

Nash–Sutcliffe efficiency (NSE) NSE = 1−∑n
i=1(yi− ŷi)

2/ ∑n
i=1(yi − y)2 from −∞ to 1, optimum 1 [73]

Notes: ŷi is the predicted value of the ith observation, yi is the measured value of the ith observation, y is the
average of the measured values, and n is the number of observations in the calibration set.

3. Results
3.1. Variation in Winter Wheat N Indicators

Table 6 describes the variation in the winter wheat N indicators for different growth
stages. PNC had the most variation (CV = 49.46% across growth stages), followed by
LNC (CV = 32.34%) and NNI (CV = 18.59%). At Feekes stage 5, the greatest difference
occurred in NNI, which ranged from 0.74 to 1.58. PNC had more variation at Feekes stage 5
(CV = 13.42%) than at Feekes stages 11 (CV = 8.99%). The CV for LNC increased from
11.30% to 13.42% from Feekes 5 to Feekes 11. The CV for NNI decreased from 17.17% at
Feekes 5 to 11.97% at Feekes 11.
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Table 6. Descriptive statistics of winter wheat LNC, PNC, and NNI across different growth stages.

Growth Stage Parameter Min Max Mean Range Std CV (%)

Feekes 5
LNC (%) 3.07 5.16 4.33 2.09 0.49 11.30
PNC (%) 2.60 4.67 3.77 2.07 0.51 13.42

NNI 0.74 1.58 1.14 0.84 0.19 17.17

Feekes 11
LNC (%) 1.08 2.99 2.32 1.92 0.31 13.42
PNC (%) 0.77 1.58 1.33 0.81 0.12 8.99

NNI 0.44 1.17 0.89 0.73 0.11 11.97

Feekes 5–11
LNC (%) 1.08 5.16 3.33 4.08 1.08 32.34
PNC (%) 0.77 4.67 2.55 3.90 1.26 49.46

NNI 0.44 1.58 1.00 1.14 0.20 18.59

3.2. Relationships between Wheat N and VIs for Different Sensors

After the correlation analysis between the VIs and the three N parameters, the VI with
the highest correlation coefficient was selected to establish the N estimation model. Table 7
lists the VIs and their R2 and RMSE for the best models for wheat LNC, PNC, and NNI
through traditional PR methods. For the PR methods, 70% of the samples (70 samples) were
used to build the models, and 30% (34 samples) were used to validate them. It could be
observed, at wheat Feekes stage 5, that the Dualex- and Multiplex-based VIs had a stronger
correlation with wheat LNC, PNC, and NNI. The R2 for the LNC and PNC models based
on the Dualex NBI reached 0.80 and 0.79, respectively. At the late wheat growth stage,
canopy-level VIs performed better than the leaf-level VIs. The RGB and ASD VIs performed
better than the Dualex and Multiplex VIs for LNC, PNC, and NNI estimation. RGB camera-
based r performed best for LNC estimation at wheat Feekes stage 11, followed by ASD
mND705, and Dualex CHI. For PNC estimation, ASD NDRE performed best, followed by
the RGB camera-based ExR. Multiplex performed best on the wheat N status estimation
across wheat stages (Feekes 5–11), and the R2 reached 0.87 for BRR_FRF and LNC, 0.86 for
BRR_FRF and PNC, and 0.56 for NBI_G and NNI.

Table 7. Relationship between wheat N variables and VIs from different sensors at different growth
stages (n = 104).

Sensor Feekes Stage
LNC (%) PNC (%) NNI

Model VI R2 RMSE Model VI R2 RMSE Model VI R2 RMSE

RGB
5 Poly NPCI 0.43 ** 0.23 Poly ExR 0.33 ** 0.10 Poly ExR 0.31 ** 0.09
11 Poly NDI 0.39 ** 0.38 Poly NDI 0.39 ** 0.26 Exp NDI 0.36 ** 0.16

5–11 Poly r 0.61 ** 0.68 Pow ExR 0.62 ** 0.40 Log ExR 0.37 ** 0.16

ASD
5 Poly NDIopt 0.19 0.44 Poly NDIopt 0.19 0.30 Poly SR(553,537) 0.30 ** 0.16
11 Poly mND705 0.40 ** 0.24 Poly NDRE 0.46 ** 0.09 Poly NDRE 0.39 ** 0.08

5–11 Poly NDIopt 0.85 ** 0.43 Poly NDIopt 0.84 ** 0.26 Log NDIopt 0.53 ** 0.14

Multiplex
5 Poly FLAV 0.55 ** 0.33 Poly FLAV 0.52 ** 0.24 Poly NBI_R 0.42 ** 0.15
11 Poly SFR_R 0.34 ** 0.25 Poly SFR_R 0.23 0.11 Poly SFR_R 0.21* 0.10

5–11 Poly BRR_FRF 0.87 ** 0.39 Poly BRR_FRF 0.86 ** 0.24 Poly NBI_G 0.56 ** 0.13

Dualex
5 Log NBI 0.80 ** 0.22 Pow NBI 0.79 ** 0.23 Lin NBI 0.49 ** 0.14
11 Poly CHI 0.36 ** 0.27 Log CHI 0.16 0.11 Log CHI 0.20 * 0.10

5–11 Poly NBI 0.57 ** 0.72 Poly NBI 0.50 ** 0.92 Exp NBI 0.46 ** 0.15

Note: Lin: linear, Exp: exponential, Pow: power, Poly: second-order polynomial, Log: logarithmic; ** r (0.01, 70)
= 0.302, indicates significance at the 0.01 probability level; * r (0.05, 70) = 0.232, indicates significance at the
0.05 probability level.

3.3. Wheat N Estimation through UAV-Level VIs

GPR and MLR were used to estimate the relationships between the RGB camera VIs
and N variables. The 10-fold cross-validation technique was used to determine the optimal
number of latent factors based on the lowest root mean square error (RMSE). Table 8 lists
the cross-validation results for models built by the selected VI combinations and all VIs
through the GPR and MLR methods. The VI combinations for different N variables were
selected by the GPR-SBBR feature selection algorithm.
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Table 8. Cross-validation results for N estimation through GPR and MLR based on UAV-mounted
RGB camera VIs.

N Feekes
VI

GPR-SBBR MLR
VIs

GPR MLR

Variable Stage R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNC
5 B, b 0.44 0.37 0.43 0.37 All 14 VIs 0.41 0.37 0.28 0.43

11 NPCI 0.43 0.24 0.36 0.25 All 14 VIs 0.40 0.25 0.33 0.26
5–11 B, g, CVI2 0.82 0.46 0.62 0.67 All 14 VIs 0.81 0.47 0.68 0.62

PNC
5 B, b 0.42 0.38 0.41 0.38 All 14 VIs 0.39 0.39 0.29 0.44

11 G, NDI 0.41 0.09 0.29 0.10 All 14 VIs 0.38 0.09 0.40 0.09
5–11 B, g, CVI2 0.89 0.43 0.59 0.82 All 14 VIs 0.87 0.45 0.67 0.74

NNI
5 B, b 0.35 0.16 0.35 0.16 All 14 VIs 0.28 0.16 0.33 0.16

11 R, NDI, CVI2 0.33 0.09 0.34 0.09 All 14 VIs 0.33 0.09 0.26 0.10
5–11 B, G, g, NDI, CVI2, CVI3 0.54 0.14 0.38 0.16 All 14 VIs 0.54 0.13 0.45 0.15

It can be observed in Table 8 that the best VI combinations for LNC, PNC, and NNI
estimation at the different wheat growth stages are different. At Feekes stags 5, the VI
combinations selected by the GPR-SBBR algorithm for LNC, PNC, and NNI estimation
were all B and b, indicating that the RGB camera VIs B and b can be used to identify the N
status at the wheat growth stage.

GPR models built by the selected VIs had a higher cross-validation R2 compared to
the GPR models built by all VIs. MLR models based on the selected VIs achieved a higher
R2 at Feekes stage 5 and Feekes stage 11 for LNC and NNI estimation. However, MLR
models built by all VIs performed better than MLR models built by the selected VIs on N
status estimation across different wheat growth stages (Feekes stage 5–11).

3.4. Wheat N Estimation through Canopy-Level VIs

Tables 9 and 10 list the cross-validation results for the N estimation models through
GPR and MLR based on canopy-level VIs. Table 9 indicates that for LNC estimation, the
best ASD VI combinations were TBI1, NDIopt, and TBI2 at wheat Feekes stage 5, SR(700,670),
SR(418,405), and SR(740,720) at Feekes stage 11, and SR(418,405), TBI1, and PPR across Feekes
5–11. For PNC estimation, the optimal VI combinations were TBI1, NDIopt, and TBI2 at
wheat Feekes stage 5, SR(700,670), SR(418,405), and SR(740,720) at Feekes stage 11, and TBI1,
PPR, REV, and REFD across Feekes 5–11. The best VIs for NNI estimation included two VIs
(MSAVI and PPR) at wheat Feekes stage 5, four VIs (NDWI, MCARI, MSAVI, and PVR)
at wheat Feekes stage 11, and five VIs (SR(418,405), NDIopt, MSAVI, MCARI1, and PPR) at
wheat Feekes stage 5–11. It can be seen in Table 9 that the LNC, PNC, and NNI estimation
models built by GPR with the selected VIs performed better than those built by the other
three methods. MLR with all ASD VIs had a higher cross-validation R2 than MLR with the
selected ASD VIs or GPR with all ASD VIs at wheat Feekes stage 5 and Feekes stage 11.

Table 10 lists the LNC, PNC, and NNI estimation results through both the GPR method
and the MLR method. The best-performing Multiplex VI combinations for LNC estimation
were SFR_G, FLAV, and NBI_R at wheat Feekes stage 5, NBI_R and SFR_R at wheat Feekes
stage 11, and SFR_R, BRR_FRF, and NBI_R at wheat Feekes stage 5–11. The best Multiplex
VI combinations for PNC were SFR_R, FLAV, and NBI_R at wheat Feekes stage 5, SFR_R
at wheat Feekes stage 11, and SFR_R, BRR_FRF, and NBI_G at wheat Feekes stage 5–11.
For NNI, Multiplex FLAV and FER_RG at wheat Feekes growth stage 5, SFR_G and SFR_R
at wheat Feekes growth stage 11, and SFR_G, SFR_R, and NBI_G at wheat Feekes stage
5–11 performed well. The cross-validation R2 values for LNC, PNC, and NNI estimated by
GPR with the selected VIs were higher than those estimated by GPR or MLR with all VIs at
wheat Feekes stage 5 and Feekes stage 11.
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Table 9. Cross-validation results for N estimation through GPR and MLR methods based on ASD
VIs.

N Feekes
VI

GPR-SBBR MLR
VIs

GPR MLR

Variable Stage R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNC
5 TBI1, NDIopt, TBI2 0.47 0.36 0.31 0.41 All 28 VIs 0.28 0.42 0.34 0.42

11 SR(700,670), SR(418,405),
SR(740,720)

0.51 0.22 0.33 0.25 All 28 VIs 0.39 0.26 0.42 0.26

5–11 SR(418,405), TBI1, PPR,
PRI, REFD 0.93 0.29 0.88 0.37 All 28 VIs 0.92 0.30 0.91 0.34

PNC
5 TBI1, NDIopt, TBI2 0.46 0.37 0.32 0.42 All 28 VIs 0.27 0.44 0.33 0.44

11 SR(418,405), NDIopt,
RDVI, REFD 0.49 0.09 0.38 0.09 All 28 VIs 0.35 0.10 0.38 0.10

5–11 TBI1, PPR, REV, REFD 0.96 0.27 0.89 0.42 All 28 VIs 0.95 0.28 0.94 0.31

NNI
5 MSAVI, PPR 0.51 0.14 0.51 0.14 All 28 VIs 0.41 0.15 0.35 0.17

11 NDWI, MCARI,
MSAVI, PVR 0.39 0.08 0.21 0.10 All 28 VIs 0.28 0.10 0.21 0.10

5–11 SR(418,405), NDIopt, MSAVI,
MCARI1, PPR 0.66 0.12 0.56 0.13 All 28 VIs 0.59 0.12 0.59 0.13

Table 10. Cross-validation results for N estimation through GPR and MLR methods based on
Multiplex VIs.

N Feekes
VI

GPR-SBBR MLR
VIs

GPR MLR

Variable Stage R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNC
5 SFR_G, FLAV, NBI_R 0.59 0.31 0.59 0.31 All 9 VIs 0.57 0.31 0.58 0.32

11 SFR_R 0.44 0.28 0.27 0.27 All 9 VIs 0.39 0.30 0.16 0.29
5–11 SFR_R, BRR_FRF, NBI_R 0.93 0.29 0.88 0.38 All 9 VIs 0.93 0.30 0.90 0.34

PNC
5 SFR_R, FLAV, NBI_R 0.58 0.34 0.57 0.34 All 9 VIs 0.53 0.34 0.53 0.35

11 SFR_R 0.34 0.10 0.15 0.11 All 9 VIs 0.25 0.11 0.24 0.11
5–11 SFR_R, BRR_FRF, NBI_G 0.96 0.25 0.90 0.41 All 9 VIs 0.96 0.26 0.93 0.35

NNI
5 FLAV, FER_RG 0.52 0.34 0.52 0.14 All 9 VIs 0.52 0.14 0.44 0.15

11 SFR_G, SFR_R 0.31 0.09 0.24 0.09 All 9 VIs 0.18 0.10 0.25 0.10
5–11 SFR_G, SFR_R, NBI_G 0.59 0.13 0.58 0.13 All 9 VIs 0.58 0.13 0.58 0.13

3.5. Wheat N Estimation through Leaf-Level VIs

Table 11 lists the cross-validation results for the three N parameters estimated through
the GPR and MLR methods based on Dualex VIs. It can be seen in Table 11 that the
best-performing VI for LNC, PNC, and NNI was NBI at wheat Feekes stage 5. At wheat
Feekes stage 11, Chl performed best for LNC, PNC, and NNI estimation. These results
indicate that the Dualex sensor can detect the leaf N status at different wheat growth stages,
especially at Feekes stage 5. During Feekes stage 5–11, the combination of the Dualex NBI
and Chl performed best for estimating LNC, PNC, and NNI.

Table 11. Cross-validation results through GPR and MLR methods at different wheat growth stages.

N Feekes
VI

GPR-SBBR MLR
VIs

GPR MLR

Variable Stage R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LNC
5 NBI 0.80 0.22 0.79 0.23 All 3 VIs 0.77 0.22 0.80 0.22
11 Chl 0.55 0.21 0.12 0.31 All 3 VIs 0.52 0.21 0.10 0.36

5–11 NBI, Chl 0.83 0.43 0.60 0.69 All 3 VIs 0.83 0.43 0.74 0.56

PNC
5 NBI 0.79 0.23 0.79 0.23 All 3 VIs 0.78 0.22 0.79 0.23
11 Chl 0.20 0.11 0.11 0.11 All 3 VIs 0.12 0.12 0.16 0.11

5–11 NBI, Chl 0.82 0.55 0.55 0.86 All 3 VIs 0.81 0.54 0.67 0.74

NNI
5 NBI 0.51 0.14 0.49 0.14 All 3 VIs 0.51 0.14 0.47 0.14
11 Chl 0.27 0.10 0.10 0.10 All 3 VIs 0.22 0.10 0.26 0.09

5–11 NBI, Chl 0.60 0.13 0.42 0.15 All 3 VIs 0.59 0.13 0.48 0.15
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4. Discussion

Ground-based spectrometers are considered capable of monitoring crop trait expres-
sions and nutrients [74,75]; however, data collection with handheld sensors has the limita-
tions of instability, low sensing efficiency, and high cost [76]. In this study, variable-rate
N fertilization treatments in winter wheat were carried out to represent the reality, which
resulted in different winter wheat N nutrition conditions (Tables 1 and 6). Four different
sensors were used to obtain crop growth information during two winter wheat critical
growth stages. This allowed a preliminary assessment of the utility of the handheld leaf and
canopy sensors as well as the UAV-mounted sensor in the estimation of N status indictors
of winter wheat. The predictive performances of the four sensors were compared using
different modeling methods (PR, MLR, and GPR).

4.1. N Estimation Comparison for Different Sensors

We investigated the wheat N estimation capability for different sensors by comparing
the cross-validation R2 of the models. Figure 2 clearly shows that different sensors have
different capabilities in N status detection during the wheat growth stage.

It can be observed in Figure 2a,b that the Dualex sensor had an obvious advantage
in LNC and PNC estimation at wheat Feekes stage 5, and the R2 for different modeling
methods varied from 0.77 to 0.80 for LNC, and from 0.78 to 0.79 for PNC. The Multiplex
sensor can also detect LNC and PNC better than the ASD spectrometer or the RGB camera
at the early wheat growth stage because it can eliminate erroneous signals from bare soil or
distinguish between different N treatments in shadow with full sunlight. At Feekes stage
11, due to the biomass saturation, the correlations between N status and the VIs of the
Dualex and Multiplex sensors decreased quickly. The modeling mean R2 decreased from
0.79 to 0.33 for Dualex, and from 0.58 to 0.32 for Multiplex, over the winter wheat growth
stages. Compared with the other sensors, the ASD spectrometer performed well in LNC
and PNC estimation through GPR with the selected VIs at winter wheat Feekes stage 11.
The estimation R2 reached 0.51 for LNC and 0.49 for PNC. For NNI detection, the Dualex
sensor worked relatively well at wheat Feekes stage 5, with a mean R2 of 0.50 for different
regression methods, followed by the Multiplex sensor, with a mean R2 of 0.48 for different
regression methods. All sensors did not perform well in NNI estimation at wheat Feekes
stage 11 in this study. When data from the two stages were combined (Feekes 5–11), the
modeling accuracy for the three N parameters all increased obviously. It can be observed
in Figure 2 that the ASD and Multiplex sensors can detect LNC and PNC better than the
RGB camera and the Dualex sensor. The R2 values are all greater than 0.90 for the ASD and
Multiplex sensors.

Numerous studies have revealed that, at the leaf level, there is a well-established cor-
relation between photosynthetic capacity and N content [27], while at the scale of canopies,
reflectance patterns represent the integrated effects of leaf water content, biochemical con-
stituents, and various components of the plant structure [77]. As reviewed by Tremblay
et al., determining N status in plants by means of chlorophyll fluorescence can overcome
some of the limitations of reflectance-based chlorophyll methods [10]. The Dualex VIs,
namely, the Nitrogen Balance Index (NBI) and the chlorophyll index (CHI), seem to be good
indicators to evaluate the N conditions in wheat at the early growth stage. This was also
confirmed by the results of this study. The Multiplex sensor can overcome the deficiency of
a chlorophyll meter because it is able to distinguish N treatments equally well in shadow or
full sunlight, and at any time during the day [10]. Multiplex performs better in estimating
wheat LNC, PNC, and NNI than ASD at the early wheat growth stage, while ASD can
detect the wheat N indicators more accurately than Multiplex at the late wheat growth
stage.
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4.2. Accuracy Evaluation of GPR, MLR, and PR Methods

In this study, the GPR model combined with the SBBR algorithm was used to obtain
the optimum N-sensitive VI combinations for different sensors. Then, both the MLR
and GPR models based on the VI combinations and all VIs (Tables 8–11), as well as the
PR model (Table 7), were investigated for N estimation accuracy through comparing the
models’ R2 and RMSE. Figures 3 and 4 show the mean absolute error (MAE) and the
Nash–Sutcliffe modeling efficiency (NSE) for LNC, PNC, and NNI through the PR, MLR,
and GPR modeling methods.

The ideal MAE value is 0 from the range of 0 to positive infinity, while the optimum
NSE value is 1 from the range of negative infinity to 1. As shown in Figure 3, the MAE
values for the LNC models built by GPR methods for different sensors are generally less
than those of the PR and MLR methods. Meanwhile, the NSE values in Figure 4 indicate
that the GPR methods have a higher accuracy, especially when modeling with the ASD
and RGB VIs across different wheat growth stages. For PNC estimation, the PR method
can obtain a lower MAE at wheat Feekes stage 5, while the GPR models perform better
at wheat Feekes stage 11. For NNI estimation, GPR modeling with the selected Multiplex
and ASD VIs has a higher MAE than the other methods, indicating that these two sensors
may not be suitable for NNI estimation at the early wheat growth stage. It can be seen in
Figures 3 and 4 that when the two stages are combined, GPR modeling with all VIs or the
selected VIs can estimate N parameters with a lower MAE and a higher NSE than the other
modeling methods.

Figure 5 shows the scatterplots of the estimated vs. measured LNC, PNC, and NNI
through the GPR-SBBR process based on the best VIs for the four sensors.
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Contrary to other methods, the training phase in GPR takes place in a Bayesian
framework. Verrelst et al. compared GPR with parametric methods based on established
and generic VIs [34]. GPR not only outperformed parametric linear regression methods but
also offered additional interesting features that go far beyond what is typically available
from parametric or non-parametric approaches [35]. In this study, the GPR model with
the selected ASD VIs yielded an obviously higher accuracy for LNC and PNC estimation
compared to the PR and MLR models. The result from this study is consistent with previous
findings.

Apart from the GPR model, the R2, MAE, and NSE value variation for the MLR and
PR models across different wheat growth stages indicates that these models could not
produce reliable estimates of winter wheat N status indicators. RGB image-based VIs were
used to estimate the N status of winter wheat in field conditions. The observed wheat N
parameters were fairly well described by the image data with the GPR model, indicating
that a digital camera can be used as a low-cost tool to estimate crop N status and deliver
information for N management over a broader region.

The relationships between the VIs from different sensors and N status indicators at
the early wheat growth stage were generally better than those at the late stage. The growth
stage was found to have a significant effect on the relationships between VIs and N status
indicators. This was also confirmed by the results of previous studies [3,38]. However,
because the Multiplex or ASD sensor requires measurements made over the plant, covering
a small area, it is difficult to apply this type of sensor in monitoring N status in larger
areas. Although multispectral or hyperspectral images with near-infrared sensitivity can
often convey more information than conventional RGB images, RGB cameras have been
more frequently used due to their low cost and ease of use [78]. In this study, RGB image-
based VIs were used to estimate the nitrogen status of winter wheat canopies under field
conditions. Compared with the other sensors, the UAV-mounted RGB camera is a better
selection for crop growth and nutrition monitoring due to its ability to conduct the same
type of assessment over hundreds or thousands of plots with a low cost and ease of use, as
shown in this study. Different types of sensors can be carried by the UAV to detect the crop
growth and nutrition status. The crop information extracted from UAV images is affected
not only by the sensor type, but also by the UAV imaging conditions, such as the UAV
flight height and speed. In this study, only one sensor (the RGB camera) was mounted on
the UAV to test its ability to estimate crop N status. More research is needed to explore the
feasibility of this type of camera and other sensors for estimating the spatial distribution
of the N status of winter wheat and other crops under different UAV flight heights and
speeds over large areas.

5. Conclusions

Crop nitrogen nutrition diagnosis is important for practicing precision farming. Proxi-
mal and airborne sensors provide useful information for the diagnosis of crop N nutritional
status. In this study, a GPR method with the 10-fold cross-validation SBBR routine was
used to identify the best VIs sensitive to wheat LNC, PNC, and NNI for four different
sensors. The observed wheat N parameters were well described by the GPR and traditional
PR methods throughout the two growth stages. The following conclusions can be drawn
from this study:

At the early wheat growth stage, the Dualex NBI is a good leaf-level indicator for
wheat LNC, PNC, and NNI estimation. Meanwhile, the combination of Multiplex SFR_G,
FLAV, and NBI_R, the combination of SFR_R, FLAV, and NBI_R, and the combination of
FLAV and FER_RG are the best canopy-level indicators for LNC, PNC, and NNI estimation
at the early wheat growth stage. The results indicate that the optical fluorescence sensor
provides more accurate estimates of winter wheat N status at a low-canopy coverage
condition.

At the late wheat growth stage, the best ASD VIs, including the combination of
SR(700,670), SR(418,405), and SR(740,720), the combination of SR(418,405), NDIopt, RDVI, and
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REFD, and the combination of NDWI, MCARI, MSAVI, and PVR, provided accurate
estimates for wheat LNC, PNC, and NNI. The results indicate that the ASD sensor, which
collects more detailed information, is an essential tool for N estimation at the late wheat
growth stage, although the reflectance patterns of ASD represent the integrated effects of
leaf water content, biochemical constituents, and various components of the plant structure.

This study reveals that the GPR with SBBR method provides more accurate estimates
of winter wheat LNC, PNC, and NNI with the best VI combinations of Dualex, Multiplex,
ASD, and RGB camera sensors, compared with GPR with full VIs or the MLR and PR
methods.
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