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Abstract: Group-based sparse representation (GSR) uses image nonlocal self-similarity (NSS) prior to
grouping similar image patches, and then performs sparse representation. However, the traditional
GSR model restores the image by training degraded images, which leads to the inevitable over-fitting
of the data in the training model, resulting in poor image restoration results. In this paper, we propose
a new hybrid sparse representation model (HSR) for image restoration. The proposed HSR model is
improved in two aspects. On the one hand, the proposed HSR model exploits the NSS priors of both
degraded images and external image datasets, making the model complementary in feature space
and the plane. On the other hand, we introduce a joint sparse representation model to make better use
of local sparsity and NSS characteristics of the images. This joint model integrates the patch-based
sparse representation (PSR) model and GSR model, while retaining the advantages of the GSR model
and the PSR model, so that the sparse representation model is unified. Extensive experimental results
show that the proposed hybrid model outperforms several existing image recovery algorithms in
both objective and subjective evaluations.

Keywords: image restoration; sparse representation; nonlocal self-similarity; alternating direction
multiplier method

1. Introduction

The purpose of image restoration is to reconstruct high-quality images x from the
degraded images y. This is a typical inverse problem, and its mathematical expression is

y = Hx + n (1)

where H denotes the degenerate operator and n is usually assumed to be zero-mean
Gaussian white noise. Under different settings, Equation (1) can represent different image
processing tasks. When H denotes the identity matrix, Equation (1) represents the image de-
noising task [1,2]; when H denotes a diagonal matrix with diagonal 1 or 0, Equation (1) rep-
resents an image inpainting task [3,4]; when H denotes the blurring operator, Equation (1)
represents an image deblurring task [5,6]. In this paper, we focus on the image restoration
task.

In order to obtain high-quality reconstructed images, image prior knowledge is usually
used to regularize the solution space. In general, image restoration can be expressed as the
following minimization problems:

x̂ = argmin
x

1
2
‖y− Hx‖2

2 + λR(x) (2)

where the first term 1
2‖y− Hx‖2

2 represents data fidelity, the second term R(x) depends
on the image prior, and λ is a regularization parameter that balances the two terms.
Due to the ill-posed nature of image restoration, the prior knowledge of image plays
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an important role in improving the performance of the image restoration algorithm. In the
past decades, various image prior models have been proposed, such as total variation [7],
sparse representation [3,8–11], and deep convolutional neural network (CNN) [2,12,13].

Sparse representation is a commonly used technique in image processing. Sparse
representation models are usually divided into two categories: analytical sparse represen-
tation models [14,15] and synthetic sparse representation models [3]. The analytic sparse
representation model represents the signal by multiplying it with an analytic over-complete
dictionary to produce a sparse effect. In this paper, we mainly study the synthetic sparse
representation model. Generally speaking, synthetic sparse representation models in image
processing can be further divided into two categories: patch-based sparse representation
(PSR) [16,17] and group-based sparse representation (GSR) [3,9–11]. The PSR model as-
sumes that each patch of an image can be modeled perfectly by sparse linear combination of
learnable dictionaries, which are usually learned from images or image datasets. Compared
with traditional analysis dictionaries, such as discrete cosine variation and wavelet, dictio-
naries that learn directly from images can improve sparsity and are superior in adapting to
the local structure of images. For example, K-SVD based dictionary learning [17] not only
shows good image denoising effects, but also has been extended to many image processing
and computer vision tasks [18,19]. However, the PSR model uses an over-complete dictio-
nary, which usually produces poor visual artifacts in image restoration [20]. Moreover, the
PSR model ignores the correlation between similar patches [3,21], which usually leads to
image degradation.

Inspired by the success of nonlocal self-similarity prior (NSS) [22], the GSR model
was proposed. The GSR model uses patch group instead of image patch as the basic unit
of image processing in sparse representation and shows great potential in various image
processing tasks [3,8,9,11,23–27]. Dabov et al. [27] proposed the BM3D method combining
transform domain filtering with NSS prior, which is still one of the most effective denoising
methods. Elad et al. [23] proposed an image denoising algorithm based on the improved
KSVD learning dictionary and non-local self-similarity, which combined the correlation
coefficient matching criterion with the dictionary clipping method. Mairal et al. [28]
proposed to learn simultaneous sparse coding (LSSC) for image restoration, improving the
recovery performance of KSVD [17] through GSR. Zhang et al. [24] used non-locally similar
patches as data samples and estimated statistical parameters based on PCA training. Zhang
et al. [3] proposed a group-based sparse representation model for image restoration, which
is essentially equivalent to a low-rank minimization model. Dong et al. [25] developed
structured sparse coding with Gaussian-scale mixture prior for image restoration. Zha
et al. [8] proposed a joint model to integrate the PSR model and GSR model, making image
restoration establish a unified model in the field of sparse representation. Wu et al. [11]
proposed structured analysis sparsity learning (SASL), which combines the structured
sparse priors learned from the given degraded image and reference images in an iterative
and trainable manner. Zha et al. [9] introduced the group sparse residual constraint, trying
to further define and simplify the image restoration problem by reducing the group sparse
residual. Zha et al. [26] proposed an image recovery method using NSS priors of both
internal and external image data to develop the GSR model. Despite the great success of
the GSR models in various image restoration tasks, the image restored by the traditional
GSR model is prone to over-smooth effect [29]. At the same time, the traditional GSR model
and various improved models only consider using the patch group of degraded image
to minimize the approximate error, which will produce the effect of image over-fitting,
especially when the degraded image is highly damaged.

Therefore, we propose a hybrid sparse representation model. The model uses both
degraded image and the NSS prior of external image dataset to perform image restoration
more effectively. On this basis, a joint sparse representation model is introduced. This
model integrates the PSR model and GSR model into one model, which not only retains
the advantages of the PSR model and the GSR model, but also reduces their shortcomings,
so that the models in the sparse representation field are unified. For the convenience of
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description, the proposed hybrid sparse representation model is called HSR model. The
NSS priors of degraded images are called internal NSS priors, and the NSS priors of external
image datasets are called external NSS priors. Figure 1 shows how the HSR model can
repair degraded images. The contributions of this paper are summarized as follows:

(1) We propose a hybrid sparse representation model that combines the NSS priori of
degraded images and external image dataset to make full use of the specific structure of
degraded image and the common characteristics of natural image;

(2) The introduction of joint model into the HSR not only retains the advantages of the
PSR model and GSR model, but also alleviates their respective disadvantages.

The rest of this paper is organized as follows. Section 1 describes the related work of
sparse representation. Section 2 introduces how to learn NSS prior from external image
corpus. Section 3 introduces the proposed mixed sparse representation model. Section 4
employs an iterative algorithm based on the alternating direction multiplier framework to
solve the proposed model. Section 5 presents the experimental results. Section 6 concludes
the paper.

Figure 1. HSR-based image restoration.

2. Fundamentals of Image Analysis Methods

This section introduces the knowledge of the HSR model. The proposed HSR model
uses the NSS prior knowledge of both degraded images and external datasets and intro-
duces a joint model that integrates the PSR model and GSR model. Therefore, the proposed
HSR model is based on GSR and PSR. A brief introduction of these two models is given
below.

2.1. Patch-Based Sparse Representation

The basic unit of patch-based sparse representation (PSR) model is image patch.
Given an image x ∈ RN and a dictionary D ∈ Rb×M, b ≤ M, where M represents the
number of atoms in the dictionary D. The dictionary D in the PSR model is shared.
xi = Rix, ∀i = 1, 2, . . . , n represents the size image patch of

√
b×
√

b extracted from the
position i, and Ri represents the extraction operation. The sparse representation of each
patch xi is to find the sparse vectors Ai with most coefficients zero, that is xi = DAi. The l0-
norm represents the number of non-zero elements in a vector. To regularize the parameter
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matrix Ai with l0-norm is to expect most of the elements of Ai to be 0 and the parameter
Ai to be sparse. Therefore, by solving the following l0-norm minimization problem, each
patch xi can be sparsely represented as

Âi = argmin
Ai

1
2
‖xi − DAi‖2

2 + λ‖Ai‖0∀i (3)

where ‖‖2 denotes l2-norm and λ is a regularization parameter. In the image restoration
task, the input degraded image y ∈ Rb is used because the original image is not available.
Extracting image patch yi from degraded images y, each image patch yi can be sparsely
represented as

Âi = argmin
Ai

1
2
‖yi − DAi‖2

2 + λ‖Ai‖0∀i (4)

In this way, the whole image can be sparsely represented by a set of sparse codes{
Âi
}n

i=1.

2.2. Group-Based Sparse Representation

Compared with typical PSR models, the GSR model uses patch group as the basic unit
of image processing and can produce more promising results in various image processing
tasks [3,21,25]. In this subsection, we briefly introduce the GSR model.

Firstly, the image x is divided into n overlapped patch of size
√

b×
√

b, i = 1, 2, . . . , n.
For each exemplar patch xi, the m most similar matching patches are selected from the
search window of size is W ×W by the k-nearest neighbor (KNN) method to form the
set SGi . Then, all patches in SGi are stacked into a matrix Xi ∈ Rb×m, with each patch in
the collection SGi as a column of the matrix Xi, that is Xi = {xi,1, xi,2, . . . , xi,m}. Since Xi
is a matrix of all image blocks with similar structures, it is called a patch group, where
xi,j represents the j-th similar patch in the i-th patch group. Finally, given a dictionary
Di ∈ Rb×K, which D is usually learned from each image group, then each patch group Xi
can be sparsely represented as

B̂i = argmin
Bi

1
2
‖Xi − DiBi‖2

2 + ρ‖Bi‖0∀i (5)

where Bi represents the group sparsity coefficient of each image group, ‖‖0 represents the
l0-norm, and calculate the non-zero items of each column in Bi.

In image restoration tasks, since the original image is not available, we can only use
the input degraded image y ∈ Rb. According to the above steps, the image patch yi are
extracted from the degraded image y, search for similar matching patches to generate an
image group Yi ∈ Rb×m, i.e., Yi = {yi,1, yi,2, . . . , yi,m}.

B̂i = argmin
Bi

1
2
‖Yi − DiBi‖2

2 + ρ‖Bi‖0∀i (6)

The entire image can be sparsely represented by groups of sparse codes
{

B̂i
}n

i=1. In
the above introduction, yi in the PSR model and Yi in the GSR model are extracted from the
same degraded image y.

3. Learning NSS Priors from External Image Datasets

As mentioned earlier, the traditional sparse representation model only uses the NSS
prior of degraded image and ignores the NSS prior of external dataset. In this section, we
use the group-based Gaussian mixture model (GMM) [26,30] to learn the external NSS prior
from the patch group of a given training image dataset. The following briefly introduces
how to learn NSS priors from external image data sets.
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3.1. Gaussian Component Learning Based on Group GMM

Similar to the construction process of patch groups in Section 2.2, patch groups are
extracted from the given external training image dataset, and each patch group is expressed
as

Ei =
{

ei,j
}d

j=1, i = 1, 2, . . . , S (7)

where ei,j represents the j-th non-local similar patch of the i-th patch group Ei, ∀j =
1, 2, . . . , d. In this paper, the GMM model is used to learn k Gaussian components {N(uk, ∑k)}
from the patch group {Ei}S

i=1 of the external image dataset, and all patches in each patch
group are required to belong to the same Gaussian component. The likelihood of a patch
group {Ei}S

i=1 can be expressed as

P(Ei) = ∑K
k=1 πk∏d

j=1 N(ei.j

∣∣∣µk, ∑k) (8)

where K is the total number of Gaussian components, µk is the mean value, ∑k is the
covariance matrix, πk is the weight of Gaussian components, and ∑K

k=1 πk = 1. The GMM
model is parameterized by mean vectors {µk}, covariance matrices {∑k}, and the weights
of Gaussian components {πk}. To facilitate representation, we introduce variables =

{µk, ∑k, πk}K
k=1. Assume that all patch groups are independent, and the overall objective

likelihood function is L = ∏S
i=1 P(E). Taking the log of it, to maximize the objective

function of using group-based GMM learning,

InL = ∑S
i=1 In

(
∑K

k=1 πk∏d
j=1 N(ei,j

∣∣∣µk, ∑k)
)

(9)

We can optimize Equation (9) by using the expectation maximization (EM) algo-
rithm [30–32]. In the E-step, the posterior probability of the k component calculated by
Bayesian formula is

P(k|ei.j, ) =
πk∏d

j=1 N(ei,j
∣∣uk, ∑k)

∑K
i=1 πl∏

d
j=1 N(ei,j

∣∣ul , ∑l)
(10)

Sk = ∑S
i=1 P(k

∣∣ei,j, ) (11)

In the M-step, for each patch group Ei, we update the model parameters as follows

πk = Sk/S (12)

µk =
∑S

i=1 πk∑d
j=1 ei,j

∑S
i=1 πk

(13)

∑k =
∑S

i=1 P(k
∣∣ei,j, )∑d

j=1 ei,jeT
i,j

Sk
(14)

By iteratively alternating between the E-Step and M-Step, the model parameters are
iteratively updated until convergence is achieved.

3.2. Gaussian Component Selection

For patch group Yi of degraded image y, we can select the most appropriate Gaussian
component from the training GMM. According to [31], assuming that the image is broken
by a Gaussian white noise with a variance of σ2

e , the covariance matrix of the k-th Gaussian
component will be expressed as Σk + σ2

e I, where I is the unit matrix. The k-th Gaussian
component belonging to the image group Yi can be selected by posterior probability

P(k|Yi) =
∏d

j=1 N(yi,j|0, ∑k +σ2
e I)

∑K
l=1 ∏d

j=1 N(yi,j|0, ∑l +σ2
e I)

(15)
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By maximizing Equation (15), the k-th Gaussian component with the highest probabil-
ity can be selected for each group Yi. Each group Ei has the same Gaussian distribution.
The covariance matrix of the k-th Gaussian component is denoted by ∑k. By using the
eigenvalue factorization to ∑k, we have:

∑k = UkΛkUT
k (16)

where Uk represents the orthogonal matrix composed of the eigenvector ∑k and the diago-
nal matrix Λk of the eigenvalues. Based on the above GMM learning, the feature vector of
Uk can represent the statistical structure of NSS changes of natural images, so Uk can be
used to represent the structural changes of image groups in this component [33]. Finally, we
select the best matched Uk for each patch group Yi. Since solving the l0-norm minimization
problem is an NP-hard problem, the l0-norm minimization in Equation (6) is replaced by a
non-convex l1-norm. The sparse model based on external NSS can be expressed as follows

Ĉi = argmin
Ci

(
1
2
‖Yi −UkCi‖2

2 + ω‖Ci‖1), ∀i (17)

where Ci represents the sparse coefficient of the i-th image group Yi, and ω represents
a non-negative constant. After obtaining all the sparse codes

{
Ĉi
}n

i=1, a high-quality
reconstructed image x̂ can be obtained.

4. The Proposed Hybrid Sparse Representation Model

As mentioned above, the traditional sparse representation model only uses the internal
NSS priors of degraded images, which leads to over-fitting in the image restoration process.
Therefore, this paper uses both the internal NSS priors of degraded images and the external
NSS priors of external image dataset. At the same time, the PSR model usually produces
some undesirable visual artifacts, and the GSR model leads to over-smoothing effects in
various image processing tasks. In order to overcome their shortcomings and improve the
image restoration effect, we have introduced a joint model [8] based on both internal and
external NSS priors. This model integrates the PSR model and GSR model, instead of using
Equations (4) and (6) separately. Combining Equations (4), (6) and (17), the proposed new
hybrid sparse representation model is expressed as

(Âi, B̂i, Ĉi) = arg min
Ai ,Bi ,Ci

(
1

2µ‖Yi − Li Ni‖2
2 +

1
2η ‖Yi −UkCi‖2

2 + τ‖Ai‖0 + ϕ‖Bi‖0 + ω‖Ci‖1

)
Li = [ D Di ], Ni =

[
Ai
Bi

] (18)

where Ni represents the internal sparse coefficient of the joint sparse representation model,
and Li represents the internal joint dictionary of the joint sparse representation model. Uk
represents the external dictionary, which is learned from the image group of the external
image data set using the external NSS prior [26,30]. µ and η represent non-zero constants
and act as balance factors to make the solution of Equation (18) more feasible. τ = λ

2 ,
ϕ = ρ

2 , ω represents the regularization parameter, which is used to balance the sparse
coefficients terms of ‖Ai‖0, ‖Bi‖0, and ‖Ci‖1. The sparse coefficient Ai corresponds to
the sparseness of the image patch on the basis of maintaining the local consistency of the
image, which reduces the over-smoothing effect. The sparse coefficient Bi corresponds to
the sparseness of patch group on the basis of maintaining the non-local consistency of the
image and suppresses the undesirable visual artifacts. For specific details of the joint sparse
representation model, please refer to [8]. Based on the above analysis, the proposed hybrid
sparse representation model not only uses the internal and external NSS priors, but also
unifies the sparse representation model.

The hybrid sparse representation model is used in the task of image restoration, and
the joint Equations (1) and (18) are expressed as
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(Âi, B̂i, Ĉi) = arg min
Ai ,Bi ,Ci

(
1

2µ‖y− HLN‖2
2 +

1
2η ‖y− HUC‖2

2 + τ∑n
i=1‖Ai‖0 + ϕ∑n

i=1‖Bi‖0 + ω∑n
i=1‖Ci‖1

)
L = [ D DG ], N =

[
A
B

] (19)

In Equation (19), L represents the internal dictionary of the joint sparse representation
model, and U represents the external dictionary. N represents the sparse coefficient of the
joint sparse representation model, and C represents the external sparse coefficient. The
hybrid sparse representation model proposed in Equation (19) not only comprehensively
considers the NSS priors of internal image and external image database, which can provide
mutually complementary information for image reconstruction, but also unifies the sparse
representation model by combining the PSR model and GSR model.

5. The Solution Process of the Proposed Hybrid Sparse Representation Model

In this Section, in order to make the proposed model manageable and robust, the
alternating direction method of multipliers (ADMM) [34,35] is adopted to solve the large-
scale optimization problem in Equation (19). Specifically, the minimization of Equation
(19) involves three sub-problems, including Ai, Bi, and Ci. Different from the traditional
optimization strategies that only considers the fixed values of parameters µ, η, τ, ϕ, and ω,
we adaptively adjust all parameters in Equation (19) at each iteration to ensure the stability
and practicability of the algorithm. The specific implementation details of the hybrid sparse
representation model are given below.

5.1. Solution of Hybrid Sparse Representation Model Based on ADMM

Equation (19) is a large-scale non-convex optimization problem. In order to make the
optimization problem easy to handle, the alternating direction multiplier method (ADMM)
is used. The basic principle of ADMM is to decompose the unconstrained minimization
problem into different constrained sub-problems. The following is a brief introduction to
ADMM algorithm through a constraint optimization problem,

min
Z∈RN ,N∈RM

f (Z) + g(N), s.t.Z = LN (20)

where L ∈ RM×N , f : RN → R , g : RM → R . The basic ADMM is shown in Algorithm 1,
where t represents the number of iterations.

Algorithm 1. ADMM

Require: Z and N
1: Initialize t = 0, µ > 0, Z0 = 0, J0 = 0
2: for t = 0 to Max-Iter do

3: Zt+1 = argmin
Z

f (Z) +
v
2

∥∥Z− Nt − Jt
∥∥2

2

4: Nt+1 = argmin
N

g(N) +
v
2

∥∥Zt+1 − N − Jt
∥∥2

2

5: Jt+1 = Jt − (Zt+1 − Nt+1)
6: end for

Going back to the hybrid sparse representation model, we transform Equation (19)
into two constraint problems and call the ADMM method to solve it. We first transform
Equation (19) into an equivalent constraint form by introducing auxiliary variables Z and
Q,

(Âi, B̂i, Ĉi) = arg min
Ai ,Bi ,Ci

(
1

2µ‖y− HZ‖2
2 +

1
2η ‖y− HQ‖2

2 + τ∑n
i=1‖Ai‖0 + ϕ∑n

i=1‖Bi‖0 + ω∑n
i=1‖Ci‖1

)
s.t.Z = LN, Q = UC

(21)
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To facilitate the solution, Equation (21) can be decomposed into two constrained
optimization problems,

(Âi, B̂i) = arg min
Ai ,Bi ,Ci

(
1

2µ
‖y− HZ‖2

2 + τ∑n
i=1‖Ai‖0 + ϕ∑n

i=1‖Bi‖0

)
, s.t.Z = LN (22)

(Ĉi) = argmin
Ci

(
1

2η
‖y− HQ‖2

2 + ω∑n
i=1‖Ci‖1

)
, s.t.Q = UC (23)

Equation (22) represents the constrained optimization problem of solving the internal
joint sparse representation model, and Equation (23) represents the constrained optimiza-
tion problem of solving the external sparse representation model.

5.2. Solution of Internal Sparse Representation Model

Solving the internal sparse representation model in Equation (22), defining f (Z) =
1

2µ‖y− HZ‖2
2, g(N) = τ∑n

i=1‖Ai‖0 + ϕ∑n
i=1‖Bi‖0, and using line 3 in Algorithm 1,

Ẑt+1 = argmin
Z

f (Z) + v
2

∥∥Z− Nt − Jt
∥∥2

2

= argmin
Z

1
2µ‖y− HZ‖2

2 +
v
2

∥∥∥∥Z− [ D DG ][
At

Bt
G

]− Jt
∥∥∥∥2

2
= argmin

Z
1

2µ‖y− HZ‖2
2 +

v
2

∥∥Z− DAt − DGBt
G − Jt

∥∥2
2

(24)

where D represents the fixed dictionary in the PSR model, and DG represents the cascade
of all sub-dictionaries Di in the GSR model. Using line 4 in Algorithm 1, we obtain

N̂t+1 = argmin
N

g(N) + v
2

∥∥Zt+1 − LN − Jt
∥∥2

2

= argmin
N

τ∑n
i=1‖Ai‖0 + ϕ∑n

i=1‖Bi‖1 +
v
2

∥∥∥∥Zt+1 − [ D DG ][
A

BG
]− Jt

∥∥∥∥2

2
= argmin

N
τ∑n

i=1‖Ai‖0 + ϕ∑n
i=1‖Bi‖1 +

v
2

∥∥Zt+1 − DA− DGBG − Jt
∥∥2

2

(25)

The minimization problem N in Equation (25) is decomposed into Ai and Bi, and
solved respectively, as

Ât+1
i = argmin

Ai
τ∑n

i=1‖Ai‖0 +
v
2

∥∥∥Zt+1 − DA− DGBG − Jt
∥∥∥2

2
(26)

B̂t+1
i = argmin

Bi
ϕ∑n

i=1‖Bi‖1 +
v
2

∥∥∥Zt+1 − DA− DGBG − Jt
∥∥∥2

2
(27)

Finally, using line 5 of Algorithm 1 to update Jt,

Jt+1 = Jt − (Zt+1 − DAt+1 − DGBt+1
G ) (28)

In summary, the minimization of Equation (22) involves three minimization problems,
including Z, Ai, and Bi. Equation (26) represents the PSR model, and Equation (27)
represents the GSR model. The implementation details of an effective solution to each
sub-problem are given below.

5.2.1. Solution of Sub-Problem Z

Given A and BG, the sub-problem Z in Equation (24) is transformed into,

minL1(Zi)
Zi

= min
Zi

∑n
i=1

1
2µ
‖Yi − HiZi‖2

2 +
v
2
‖Zi − DAi − DiBi − Ji‖2

2, ∀i (29)
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Equation (29) is a quadratic form that has a closed-form solution so that

Ẑi = (HT
i Hi + vµI)

−1
(HT

i Yi + vµ(DAi + DiBi + Ji)), ∀i (30)

In Equation (30), I denotes the unit matrix of the desired dimension, and Ji is the
corresponding element in J. In Equation (30), (26) and (27) are used in combination to
estimate each.

5.2.2. Solution of Sub-Problem Ai

For each image patch in Equation (26), the sub-problem can be re-expressed as

min
Ai

L2(Ai) = min
Ai

∑n
i=1

1
2
‖DAi − ri‖2

2 +
µτ

v
‖Ai‖0, ∀i (31)

where ri = Zi − DiBi − Ji. Equation (31) is a sparse representation problem, where the
constraint form is directly solved,

min
Ai
‖Ai‖0, s.t.‖DAi − ri‖2

2 ≤ θ, ∀i (32)

where θ represents a small constant. Equation (32) can be effectively solved by the orthogo-
nal matching pursuit (OMP) algorithm [36].

5.2.3. Solution of Sub-Problem Bi

Given Z and A, the sub-problem in Equation (27) can be transformed into,

min
Bi

L2(Bi) = min
Bi

∑n
i=1

1
2
‖DiBi − Ri‖2

2 +
µϕ

v
‖Bi‖1, ∀i (33)

where Ri = Zi − DAi − Ji. Solving Equation (33), we find,

B̂i = argmin
Bi

∑n
i=1

1
2
‖Ri − DiBi‖2

2 +
µϕ

v
‖Bi‖1, ∀i (34)

An important problem in solving sub-problem Bi is the choice of dictionary Di. To
adapt the local structure of the image, a dictionary based on principal component analysis
(PCA) is learned for each group Ri. Due to the orthogonality of dictionary Di, Equation
(34) can be rewritten as

B̂i = argmin
Bi

∑n
i=1

1
2
‖γi − Bi‖2

2 +
µϕ

v
‖Bi‖1, ∀i (35)

where Ri = Diγi. We can solve the closed solution for each Bi by soft thresholding [31],

B̂i = so f t(γi,
µϕ

v
) (36)

5.3. Solution of External Sparse Representation Model

Solving the external sparse representation model in Equation (23), defining f (Q) =
1

2η ‖y− HQ‖2
2,g(C) = ω∑n

i=1‖Ci‖1, and using line 3 in Algorithm 1,

Q̂t+1 = argmin
Q

f (Q) + v
2

∥∥Q−UCt −Ot
∥∥2

2

= argmin
Q

1
2η ‖y− HQ‖2

2 +
v
2

∥∥Q−UCt −Ot
∥∥2

2

(37)
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Using line 4 in Algorithm 1, we obtain

Ĉt+1 = argmin
C

g(C) + v
2

∥∥Qt+1 −UC−Ot
∥∥2

2

= argmin
Ci

ω∑n
i=1‖Ci‖0 +

v
2

∥∥Qt+1 −UC−Ot
∥∥2

2

(38)

Finally, using line 5 of Algorithm 1 to update Ot,

Ot+1 = Ot − (Qt+1 −UCt+1) (39)

In summary, the minimization of Equation (23) involves two minimization sub-
problems, including Q and Ci. The solution procedure for Q and Ci is similar to that
in Section 5.2, and the implementation details of an efficient solution for each sub-problem
are given below.

5.4. Solution of Sub-Problem Q

Given the internal sparse representation model, Equation (23) translates into

Ĉi = argmin
Ci

∑n
i=1

1
2
‖Yi − HiQi‖2

2 +
ηε

v
‖Ci‖1, s.t.Qi = UiCi (40)

Equation (37) is a quadratic form that has a closed-form solution so that

Q̂i = (HT
i Hi + ηεI)

−1
(HT

i Yi + ηε(UCi + Oi)), ∀i (41)

In Equation (38), I denotes the unit matrix of the desired dimension and Oi is the
corresponding element in O.

5.5. Solution of Sub-Problem Ci

Given Q, the sub-problem Ci in Equation (40) can be transformed so that

Ĉi = argmin
Ci

∑n
i=1

1
2
‖Yi −UiCi‖2

2 +
ηε

v
‖Ci‖1, ∀i (42)

Evidently, Equation (42) can be viewed as a sparse representation problem for each
image group Yi. According to Section 2, we can select the best-matching Gaussian compo-
nent for each group through Equation (15), and then assign the best matching PCA-based
dictionary to each group according to Equation (16). Due to the orthogonality of dictionary
Ui, Equation (42) can be rewritten as

Ĉi = argmin
Ci

∑n
i=1

1
2
‖κi − Ci‖2

2 +
ηε

v
‖Ci‖1, ∀i (43)

where Yi = Uiκi. We can solve the closed solution for each a by soft threshold [37],

Ĉi = so f t(κi,
ηε

v
) (44)

A complete description of the hybrid sparse representation model for image restoration
is given in Algorithm 2.
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Algorithm 2. A hybrid sparse representation model for image restoration

Require degraded image y, mask H and group-based GMM
1: Initialize x̂0 = y, A0

i = 0, B0
i = 0, C0

i = 0
2: Set parameters t, b, W, m, µ, η, τ, ϕ, ω, v, ς, ε

3: for t = 0 to Max-Iter do
4: Calculate σe by Equation (45)
5: Update Ot+1 by Equation (39)
6: for Each patch group Yi do
7: Select the k-th optimal Gaussian component by Equation (15)
8: Select the dictionary Uk by Equation(16)
9: Update Ct+1

i by Equation (44)
10: end for
11: Update Zt+1 by Equation (30)
12: Rt+1 = Zt+1 − DGBG − Jt

13: Create dictionary D by Rt+1 using KSVD
14: each patch ri do
15: Update At+1

i by Equation (32)
16: end for
17: Rt+1

G = Zt+1 − DA− Jt

18: for each patch group Ri do
19: Create dictionaries DG by Rt+1

i using PCA
20: Update Bt+1

i by Equation (36)
21: end for
22: Update Ct+1 by concatenating all Ci
23: Update At+1 by concatenating all Ai
24: Update Bt+1 by concatenating all Bi
25: Update Dt+1 by concatenating all Di
26: end for
27: Output: The final restored image x̂ = xt+1.

5.6. Adaptive Parameter Adjustment Strategy

There are six parameters in Equation (21), namely µ, η, τ, ϕ, ω, and v. A fixed value is
usually chosen for each parameter based on experience. However, this makes it difficult to
guarantee the stability and effectiveness of the whole algorithm. To address this problem,
an adaptive parameter adjustment scheme is proposed to make the proposed algorithm
more stable and practical. An iterative regularization strategy [38] is used to update the
estimate of the noise variance σe. The standard deviation of the noise σe at the t-th iteration
is expressed as

σt
e = δ

√
σ2

e − ‖x̂− y‖2
2 (45)

where t denotes the number of iterations, δ denotes the scale factor controlling the variance
estimation, and the scheme has been widely used for image denoising with Gaussian noise
variance estimation [30,38].

Therefore, µt and ηt can be expressed as

µt = a(σ2
e )

t
(46)

ηt = b(σ2
e )

t
(47)

where γi and κi denote the estimated standard deviation of B̂i and Ĉi [39], respectively.
ς denotes a constant with a small value to avoid division by zero. In order to make the
proposed algorithm more accurate and practical, according to [37], in the t-th iteration, the
ADMM balance factor a is set to

vt =
1

c(σ2
e )

t (48)

where c denotes the scale factor.
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6. Experimental Results

In this section, the experimental results of the proposed HSR model and seven com-
parison methods are given, including the SALSA [40], BPFA [41], GSR [3], JSR-SR [8],
GSRC-NLP [9], IR-CNN [42], and IDBP [43] methods. All experiments were carried out on
Intel (R) Core (TM) I7-6700 CPU and 3.40 GHz CPU PC under Matlab 2018B environment.
The source code for all competing methods is open source, and we use the default parame-
ter settings. The 13 images used for the experimental tests are shown in Figure 2. In order
to evaluate the quality of the restored images, an experimental comparative analysis of the
restored images was performed from both objective and subjective aspects. For objective
evaluation, the peak signal to noise ratio (PSNR) and structural similarity (SSIM) [44]
metrics were used for the experimental comparison of the restored images. The PSNR was
calculated as shown in Equations (49) and (50),

MSE =
1

H ×W

H−1

∑
i=0

W−1

∑
j=0
‖X(i, j)−Y(i, j)‖2 (49)

PSNR = 10· log10(
(2n − 1)2

MSE
) (50)

where X and Y denote the original image and the restored image, respectively, and H ×W
denotes the size of the image. Equation (20) is used to calculate the mean squared error
MSE of the original image X and the restored image Y. Equation (50) is the calculation
formula of PSNR, and n is the number of bits per pixel. A larger value of PSNR indicates
less image distortion. The calculation of SSIM is shown in Equations (51)–(55),

l(X, Y) =
2uXuY + C1

u2
X + u2

Y + C1
, c(X, Y) =

2σXσY + C2

σ2
X + σ2

Y + C2
, s(X, Y) =

2σXY + C3

σXσY + C3
(51)

uX =
1

H ×W

H

∑
i=1

W

∑
j=1

X(i, j) (52)

σ2
X =

1
H ×W − 1

H

∑
i=1

W

∑
j=1

(X(i, j)− uX)

2

(53)

σXY =
1

H ×W − 1

H

∑
i=1

W

∑
j=1

((X(i, j)− uX)(Y(i, j)− uY)) (54)

SSIM(X, Y) = l(X, Y)c(X, Y)s(X, Y) (55)

In Equation (51), SSIM measures similarity in terms of luminance l, contrast c, and
image structure s. Where uX and uY denote the mean of the original image X and the
restored image Y of size H ×W, respectively; σX and σY denote the variance of the original
image X and the restored image Y, respectively; and σXY denotes the covariance of the
original image X and the restored image Y. C1, C2, and C3 are constants and introducing a
constant can avoid the situation where the denominator is 0. The SSIM indicator is closer
to human subjective feelings, and its value range is [0, 1]. The larger the value of SSIM, the
more similar the two images are, and the better the effect of image restoration.

For color images, this paper only focuses on the restoration of the luminance channel
in YCrCb space. In the group-based GMM learning phase, the training patch group used in
the experiment is collected from the Kodak photoCD dataset, which includes 24 natural
images.
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Figure 2. Test images.

6.1. Objective Evaluation

In the image restoration task, the image restoration results are given for four masks, i.e.,
80%, 70%, 60%, and 50% of random pixel loss. The parameters of the HSR model used for
image restoration are set as follows: the search window W ×W is set to 25× 25, the size of
the image patch is set to 8× 8, the number of similar patches is set to 60, σe =

√
2, ς = e−14,

and v = 0.2. We compared the proposed HSR model with seven restoration methods,
including SALSA [40], BPFA [41], GSR [3], JPG-SR [8], GSRC-NLP [9], IR-CNN [42] and
IDBP [43]. Among these seven methods for comparison, SALSA [40], BPFA [41], GSR [3],
JPG-SR [8], and GSRC-NLP [9] are based on traditional image restoration algorithms. The
GSR [3], JPG-SR [8], and GSRC-NLP [9] methods are image restoration algorithms based
on the traditional GSR model, which belong to the same type of model as our proposed
HSR model. SALSA [40] and BPFA [41] are not based on GSR. In order to comprehensively
evaluate the performance of the proposed model for image restoration, the proposed HSR
model was also compared with algorithms based on deep learning [42,43].

The SALSA model [40] proposes an algorithm belonging to the augmented Lagrangian
method family to deal with constraint problems. The method solves optimization problems
where the optimal regularization parameters are tuned by manual trial and error, which
requires considerable time and effort to achieve the optimal value of the method. The BPFA
model [41] utilizes a non-parametric Bayesian dictionary learning method for image sparse
representation, and uses image patches as the basic unit of sparse representation, which
ignores the similarity between image patches. In terms of the average value, the proposed
HSR model is 4.74 dB and 6.19 dB higher than SALAS and BPFA methods respectively.

The GSR method [3] is a typical representative of the traditional GSR model, and the
JPG-SR method [8] and the GSRC-NLP method [9] are both improved methods based on
the GSR model. The GSR method, the JPG-SR method and the GSRC-NLP method only
utilize the internal NSS prior. However, the HSR model proposed in this paper combines
internal and external NSS priors. In terms of the average value, the HSR model proposed
in this paper improves 1.47 dB, 1.43 dB, and 1.06 dB over the GSR, JPG-SR, and GSRC-NLP
methods respectively. IRCNN [42] and IDBP method [43] are recovery methods based on
deep learning, using powerful prior knowledge of deep neural networks. In terms of the
average value, the proposed HSR model improves 3.66 dB and 3.01 dB over the IRCNN
and IDBP methods, respectively.

As shown in Tables 1–4, the PSNR of the proposed HSR model on images with a pixel
loss rate of 80%, 70%, 60% and 50% is higher than that of SALSA, BPFA, GSR, JRG-SR,
GSRC-NLP, IR-CNN and IDBP. It can be seen from the statistical SSIM values in Tables 5–8,
that the HSR model is better than other methods in most cases. The experimental results in
Tables 1–4 and Tables 5–8 prove that the proposed HSR model is effective and gives good
restoration results compared to the comparison method.
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Table 1. PSNR values of our proposed HSR model and other comparison models after image
restoration with pixels missing rate 80%.

Pixels Missing = 80%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 24.41 23.25 24.57 25.40 25.55 23.77 25.08 26.17

Barbara 22.62 22.60 31.32 30.16 30.93 24.33 22.73 31.62

Butterfly 22.85 21.06 26.03 26.58 26.78 24.50 25.24 28.30

Corn 24.28 22.37 26.91 26.40 26.76 23.89 26.05 27.39

Cowboy 23.72 22.16 25.37 25.61 25.95 24.36 24.43 27.54

Fence 21.80 22.87 29.66 29.40 30.02 26.09 25.03 30.57

Girl 23.79 22.47 25.50 25.55 26.02 24.17 25.03 27.13

Leaves 22.03 19.30 27.46 27.33 27.62 23.57 25.84 29.10

Lena 28.20 27.56 31.41 31.25 31.86 29.53 29.69 32.55

Mickey 24.46 21.96 26.50 26.75 27.00 24.85 25.40 28.25

Mural 23.15 21.10 26.01 26.29 26.56 24.87 25.26 27.59

Nanna 24.12 22.38 25.24 25.92 26.17 24.68 25.51 27.48

Starifish 25.70 23.95 27.84 27.80 28.04 25.64 26.88 28.99

Average 23.93 22.54 27.22 27.26 27.64 24.94 25.55 28.66

Table 2. PSNR values of our proposed HSR model and other comparison models after image
restoration with pixels missing rate 70%.

Pixels Missing = 70%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 25.71 24.57 26.17 26.80 26.98 25.17 26.41 27.47

Barbara 23.38 25.49 34.43 33.45 33.98 27.12 26.23 34.43

Butterfly 25.06 23.95 28.92 29.24 29.47 27.34 28.29 30.12

Corn 26.11 25.31 29.35 28.82 29.10 26.58 28.09 29.63

Cowboy 25.70 24.55 27.63 27.78 28.04 26.49 27.15 29.33

Fence 23.57 25.56 31.73 31.53 31.82 28.71 29.24 32.26

Girl 25.47 24.71 27.86 27.96 28.20 26.47 27.45 28.99

Leaves 24.36 22.43 31.18 30.67 30.88 27.09 28.99 32.02

Lena 28.82 30.36 33.54 33.40 33.85 31.98 32.21 34.48

Mickey 28.98 24.16 29.02 28.93 29.31 27.74 28.69 30.14

Mural 25.00 23.34 28.46 28.50 28.71 27.42 27.68 29.25

Nanna 25.44 24.47 27.89 28.24 28.51 26.90 27.24 29.45

Starifish 27.55 26.83 30.31 30.11 30.46 28.16 29.28 31.09

Average 25.78 25.06 29.73 29.65 29.95 27.47 28.27 30.67
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Table 3. PSNR values of our proposed HSR model and other comparison models after image
restoration with pixels missing rate 60%.

Pixels Missing = 60%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 26.78 25.82 27.74 28.14 28.31 26.53 27.83 29.37

Barbara 24.57 28.05 36.42 35.72 36.59 29.67 28.73 37.00

Butterfly 26.79 26.06 31.09 31.15 31.46 29.32 30.03 32.57

Corn 27.75 27.54 31.39 30.84 31.18 28.89 29.94 32.34

Cowboy 26.99 26.36 29.49 29.59 29.99 28.70 28.97 32.50

Fence 25.45 27.74 33.23 33.14 33.51 30.46 31.25 34.32

Girl 27.02 26.68 29.47 29.87 30.17 28.60 29.32 31.71

Leaves 26.29 25.19 33.39 32.82 33.34 29.88 31.74 35.06

Lena 31.49 32.38 33.54 35.44 35.95 33.95 33.93 36.91

Mickey 27.41 25.75 31.10 31.12 31.29 29.78 31.18 32.74

Mural 26.66 25.17 29.98 30.15 30.33 29.16 29.79 31.30

Nanna 26.94 26.14 30.13 30.37 30.59 28.95 29.51 32.05

Starfish 29.09 28.76 32.89 32.37 32.71 30.41 31.79 33.68

Average 27.17 27.05 31.53 31.59 31.96 29.56 30.31 33.19

Table 4. PSNR values of our proposed HSR model and other comparison models after image
restoration with pixels missing rate 50%.

Pixels Missing = 50%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 27.98 27.13 29.42 29.61 29.75 27.99 29.23 32.19

Barbara 25.66 31.12 39.14 37.79 38.77 31.95 31.57 39.58

Butterfly 28.52 28.16 32.78 32.83 33.02 31.08 32.44 35.28

Corn 29.39 29.78 33.77 32.94 33.78 31.26 31.61 35.40

Cowboy 28.59 28.18 31.69 31.94 31.90 30.79 31.40 35.65

Fence 27.25 29.92 35.01 34.62 34.99 32.31 33.24 36.61

Girl 28.60 28.46 31.93 31.77 31.95 30.57 31.09 34.84

Leaves 28.11 28.13 35.86 35.21 35.79 32.62 34.34 38.20

Lena 33.08 34.15 37.64 37.18 37.64 35.71 36.25 39.54

Mickey 28.98 27.43 33.86 33.35 33.58 32.24 33.14 35.87

Mural 28.20 27.20 31.73 31.72 31.88 30.71 31.35 33.92

Nanna 28.53 28.17 32.16 32.21 32.36 31.71 31.35 35.02

Starfish 30.90 30.87 34.94 34.31 34.61 32.46 33.81 36.53

Average 28.75 29.13 33.50 33.85 34.19 31.65 32.37 36.04
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Table 5. SSIM values of our proposed HSR model and other comparison models after image restora-
tion with pixels missing rate 80%.

Pixels Missing = 80%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 0.6040 0.6328 0.6892 0.6629 0.6925 0.6785 0.6606 0.7154

Barbara 0.6782 0.6287 0.9334 0.8989 0.9242 0.7953 0.7522 0.9305

Butterfly 0.8161 0.6688 0.9223 0.9195 0.9269 0.8880 0.8901 0.9386

Corn 0.7103 0.7106 0.8822 0.8574 0.8717 0.8185 0.8430 0.8843

Cowboy 0.7965 0.6589 0.8807 0.8668 0.8823 0.8507 0.8407 0.8989

Fence 0.6339 0.6236 0.8862 0.8644 0.8817 0.8179 0.8013 0.8896

Girl 0.7196 0.6782 0.9014 0.8178 0.8381 0.8022 0.7979 0.8581

Leaves 0.7695 0.6576 0.9452 0.9364 0.9412 0.9037 0.9126 0.9510

Lena 0.8425 0.8108 0.9249 0.9062 0.9227 0.8831 0.8821 0.9282

Mickey 0.8000 0.6512 0.8816 0.8696 0.9197 0.8482 0.8422 0.8963

Mural 0.6785 0.6046 0.8158 0.7915 0.8135 0.7766 0.7615 0.8286

Nanna 0.7494 0.6721 0.8533 0.8395 0.8552 0.8204 0.8120 0.8722

Starfish 0.7594 0.7024 0.8691 0.8516 0.8653 0.8175 0.8286 0.8787

Average 0.7352 0.6693 0.8758 0.8525 0.8719 0.8231 0.8173 0.8823

Table 6. SSIM values of our proposed HSR model and other comparison models after image restora-
tion with pixels missing rate 70%.

Pixels Missing = 70%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 0.7024 0.7305 0.7796 0.7597 0.7818 0.7714 0.7456 0.8012

Barbara 0.7580 0.8032 0.9628 0.9474 0.9579 0.8883 0.8680 0.9606

Butterfly 0.8838 0.8281 0.9506 0.9475 0.9530 0.9326 0.9329 0.9569

Corn 0.8624 0.8492 0.9295 0.9142 0.9224 0.8978 0.8969 0.9298

Cowboy 0.8742 0.8265 0.9232 0.9127 0.9237 0.9079 0.8952 0.9341

Fence 0.7512 0.7726 0.9230 0.9069 0.9203 0.8877 0.8840 0.9272

Girl 0.8250 0.8021 0.9014 0.8861 0.8991 0.8792 0.8685 0.9106

Leaves 0.8726 0.8209 0.9743 0.9664 0.9697 0.9531 0.9500 0.9754

Lena 0.8576 0.9022 0.9507 0.9393 0.9499 0.9277 0.9239 0.9544

Mickey 0.8621 0.8097 0.9248 0.9142 0.9240 0.9060 0.9002 0.9297

Mural 0.7917 0.7532 0.8743 0.8565 0.8718 0.8551 0.8338 0.8819

Nanna 0.8369 0.8030 0.9076 0.8973 0.9075 0.8895 0.8697 0.9177

Starfish 0.8675 0.8466 0.9184 0.9032 0.9141 0.8876 0.8839 0.9227

Average 0.8266 0.8114 0.9169 0.9040 0.9150 0.8911 0.8810 0.9232
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Table 7. SSIM values of our proposed HSR model and other comparison models after image restora-
tion with pixels missing rate 60%.

Pixels Missing = 60%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 0.7756 0.7990 0.8446 0.8264 0.8439 0.8355 0.8140 0.8709

Barbara 0.8191 0.8879 0.9765 0.9657 0.9744 0.9305 0.9170 0.9757

Butterfly 0.9191 0.8974 0.9666 0.9620 0.9671 0.9535 0.9513 0.9715

Corn 0.9022 0.9092 0.9543 0.9442 0.9509 0.9375 0.9290 0.9599

Cowboy 0.9064 0.8946 0.9497 0.9413 0.9499 0.9417 0.9273 0.9613

Fence 0.8222 0.8523 0.9470 0.9342 0.9445 0.9229 0.9145 0.9525

Girl 0.8754 0.8764 0.9359 0.9252 0.9354 0.9227 0.9090 0.9474

Leaves 0.9173 0.9064 0.9849 0.9800 0.9833 0.9737 0.9696 0.9869

Lena 0.9283 0.9341 0.9668 0.9584 0.9664 0.9499 0.9448 0.9705

Mickey 0.8977 0.8717 0.9480 0.9392 0.9472 0.9356 0.9301 0.9547

Mural 0.8483 0.8337 0.9086 0.8944 0.9072 0.8972 0.8781 0.9199

Nanna 0.8823 0.8707 0.9383 0.9292 0.9382 0.9267 0.9164 0.9490

Starfish 0.9036 0.8997 0.9453 0.9336 0.9430 0.9260 0.9209 0.9514

Average 0.8767 0.8795 0.9436 0.9334 0.9421 0.9272 0.9171 0.9517

Table 8. SSIM values of our proposedSR model and other comparison models after image restoration
with pixels rate 50%.

Pixels Missing = 50%

Images SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Bahoon 0.8357 0.8508 0.8924 0.8781 0.8898 0.8834 0.8640 0.9287

Barbara 0.8651 0.9367 0.9850 0.9765 0.9839 0.9562 0.9471 0.9852

Butterfly 0.9432 0.9340 0.9759 0.9719 0.9762 0.9671 0.9662 0.9820

Corn 0.9310 0.9447 0.9719 0.9640 0.9692 0.9621 0.9514 0.9783

Cowboy 0.9344 0.9322 0.9668 0.9599 0.9663 0.9618 0.9518 0.9770

Fence 0.8705 0.9048 0.9627 0.9524 0.9605 0.9467 0.9046 0.9700

Girl 0.9108 0.9199 0.9581 0.9492 0.9569 0.9497 0.9365 0.9699

Leaves 0.9444 0.9534 0.9909 0.9786 0.9901 0.9847 0.9821 0.9928

Lena 0.9474 0.9525 0.9779 0.9701 0.9771 0.9649 0.9626 0.9816

Mickey 0.9243 0.8932 0.9661 0.9670 0.9645 0.9563 0.9506 0.9728

Mural 0.8876 0.8932 0.9345 0.9242 0.9340 0.9275 0.9118 0.9509

Nanna 0.9173 0.9202 0.9589 0.9504 0.9577 0.9505 0.9392 0.9705

Starfish 0.9335 0.9363 0.9634 0.9541 0.9615 0.9512 0.9458 0.9714

Average 0.9112 0.9209 0.9619 0.9536 0.9606 0.9509 0.9395 0.9716

6.2. Subjective Assessment

The visual comparison between the proposed HSR model in this paper and SALSA [40],
BPFA [41], GSR [3], JPG-SR [8], GSRC-NLP [9], IR-CNN [42] and IDBP [43] methods after
restoration of the image Mickey with pixel missing rate 80% is given in Figure 3. It can be
observed from Figure 3 that the SALSA [40] and BPFA [41] methods cannot recover sharp
edges and fine details. The GSR [3] method is better in recovering details, but produces an
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over-smoothing effect. The JPG-SR [8] method can obtain better visual quality than GSR [3]
method. However, the objective evaluation results in Tables 1–5 and Tables 5–8 show
that although the JPG-SR [8] method has a higher mean value of PSNR than the GSR [3]
method in Tables 1–5, in the actual restoration process, the PSNR and SSIM values of some
images after restoration are lower than the restoration results of GSR [3] method. The
image restoration effect of the JPG-SR [8] method is unstable, and only some of the image
restoration results are better than the GSR [3] method. The GSRC-NLP [9] method can
obtain similar visual effects as our proposed HSR model, which is not easy to distinguish
from the naked eye. However, according to the experimental results in Tables 1–5 and
Tables 5–8, our proposed HSR model has better objective evaluation results. The visual
result of our proposed method is also better in recovering details than the results of IR-
CNN [42] and IDBP [43]. The visual results in Figure 3 show that our proposed HSR model
retains clear edges and details, especially at higher pixel missing rates, and produces the
result with the best visual quality.

Figure 3. Results of Mickey image restoration with pixel missing rate of 80%. (a) Mickey; (b) Mickey
with pixel loss rate 80%; (c) the result of SALSA [40] (PSNR = 24.26, SSIM = 0.8000); (d) the result of
BPFA [41] (PSNR = 21.96, SSIM = 0.6512); (e) the result of GSR [3] (PSNR = 26.50, SSIM = 0.8816); (f)
the result of JPG-SR [8] (PSNR = 26.75, SSIM = 0.8696); (g) the result of GSRC-NLP [9] (PSNR = 27.00,
SSIM = 0.9197); (h) the result of IR-CNN [42] (PSNR = 24.87, SSIM = 0.8482); (i) the result of IDBP [43]
(PSNR = 25.26, SSIM = 8422); (j) the result of our proposed HSR (PSNR = 28.25, SSIM = 8963).

6.3. Running Time

In this section, we present a comparison of the proposed HSR method with other
comparison methods in terms of running time. Taking image Butterfly as an example, the
running time of all comparison methods is compared when the pixel loss rate is 50%. As can
be seen from Table 9, the processing time of HSR method proposed in this paper is 5000.22 s
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for the image, which is less than 5027.67 s of the GSRC-NLP method. The proposed HSR
method utilizes NSS to construct internal and external image groups and needs to learn the
corresponding dictionaries, which requires higher computational workload and therefore
consumes more time. To reduce processing time in our future work, learning external
NSS priors from the external data set will be done in advance in the Kodak photoCD data
set. Through one-time learning from Kodak photoCD data set, the external NSS priors
are obtained. The priors learned in advance are applied to speed up the proposed HSR
method.

Table 9. Comparison of running time in seconds of different methods.

Methods SALSA BPFA GSR JPG-SR GSRC-NLP IR-CNN IDBP HSR

Time 1.81 1200.23 923.24 499.48 5027.67 9.24 20.33 5000.22

7. Conclusions

In order to improve the repair performance of the traditional GSR model, we propose
a new hybrid sparse representation model. The model uses the NSS prior of degraded
image and external image data set, so that the model is complementary in the feature
space and the plane. And on this basis, we introduced a joint sparse representation
model. The joint model integrates the PSR model and the GSR model, while retaining
their advantages, overcoming their shortcomings, and unifying the sparse representation
model. Experimental results show that the model is comparable to the test method, and it
is better than several state-of-the-art image restoration and map methods in both objective
and subjective aspects.
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