
����������
�������

Citation: Hoskere, V.; Narazaki, Y.;

Spencer, B.F., Jr. Physics-Based

Graphics Models in 3D Synthetic

Environments as Autonomous

Vision-Based Inspection Testbeds.

Sensors 2022, 22, 532. https://

doi.org/10.3390/s22020532

Academic Editors: Piotr Kohut,

Alessandro Sabato, Adam Martowicz,

Krzysztof Holak and Sylvain Girard

Received: 20 October 2021

Accepted: 28 December 2021

Published: 11 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Physics-Based Graphics Models in 3D Synthetic Environments
as Autonomous Vision-Based Inspection Testbeds
Vedhus Hoskere 1,* , Yasutaka Narazaki 2 and Billie F. Spencer, Jr. 3

1 Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77024, USA
2 Department of Civil and Environmental Engineering, ZJUI-UIUC Institute, Zhejiang University,

Hangzhou 310027, China; narazaki@intl.zju.edu.cn
3 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA; bfs@illinois.edu
* Correspondence: vhoskere@uh.edu

Abstract: Manual visual inspection of civil infrastructure is high-risk, subjective, and time-consuming.
The success of deep learning and the proliferation of low-cost consumer robots has spurred rapid
growth in research and application of autonomous inspections. The major components of autonomous
inspection include data acquisition, data processing, and decision making, which are usually studied
independently. However, for robust real-world applicability, these three aspects of the overall process
need to be addressed concurrently with end-to-end testing, incorporating scenarios such as varia-
tions in structure type, color, damage level, camera distance, view angle, lighting, etc. Developing
real-world datasets that span all these scenarios is nearly impossible. In this paper, we propose a
framework to create a virtual visual inspection testbed using 3D synthetic environments that can
enable end-to-end testing of autonomous inspection strategies. To populate the 3D synthetic envi-
ronment with virtual damaged buildings, we propose the use of a non-linear finite element model
to inform the realistic and automated visual rendering of different damage types, the damage state,
and the material textures of what are termed herein physics-based graphics models (PBGMs). To
demonstrate the benefits of the autonomous inspection testbed, three experiments are conducted
with models of earthquake damaged reinforced concrete buildings. First, we implement the proposed
framework to generate a new large-scale annotated benchmark dataset for post-earthquake inspec-
tions of buildings termed QuakeCity. Second, we demonstrate the improved performance of deep
learning models trained using the QuakeCity dataset for inference on real data. Finally, a comparison
of deep learning-based damage state estimation for different data acquisition strategies is carried out.
The results demonstrate the use of PBGMs as an effective testbed for the development and validation
of strategies for autonomous vision-based inspections of civil infrastructure.

Keywords: inspection testbeds; deep learning; computer graphics; autonomous inspections; physics-
based graphics models; damage detection

1. Introduction

The inspections of structures that are necessary after earthquakes are laborious, high-
risk, and subject to human error. Describing the nature of inspections in a post-disaster
scenario, the ATC-20 field manual [1] states that post-earthquake safety evaluations of
buildings are “grueling work,” resulting in a high level of stress on the volunteer inspectors
that may lead to “burn-out.” Entry into damaged structures for inspections poses a serious
safety risk due to the unknown nature of their structural integrity. Additionally, the time-
consuming nature of these inspections can exacerbate the social and economic impacts of
the disaster on affected communities. For example, immediately after the 2017 Central
Mexico Earthquake, hundreds of thousands of citizens had to exit damaged buildings
(Figure 1a) and were left with uncertainty about the state of their homes and offices [2].

Sensors 2022, 22, 532. https://doi.org/10.3390/s22020532 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020532
https://doi.org/10.3390/s22020532
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2118-5975
https://orcid.org/0000-0002-1680-5079
https://doi.org/10.3390/s22020532
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020532?type=check_update&version=1

Sensors 2022, 22, 532 2 of 28

The initial evaluations conducted by the Civil Engineering Association took three weeks
from the occurrence of the earthquake [3]; at that time, 1210 buildings showed signs of
damage (e.g., Figure 1a), but were safe to occupy, 327 buildings were severely damaged and
unsafe to occupy, and 427 buildings needed detailed evaluation [4]. Nearly 17,000 people
were being housed in camps for weeks [5] while waiting for detailed inspections [6],
and hundreds could still be seen still camping out in tents after six months (Figure 1b).
Similar scenarios may be observed anytime a large earthquake hits a densely populated
region [7–9]. To help communities recover swiftly after a disaster and get people back in
their homes and businesses as soon as possible, more efficient inspections are required.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 29

[2]. The initial evaluations conducted by the Civil Engineering Association took three
weeks from the occurrence of the earthquake [3]; at that time, 1210 buildings showed signs
of damage (e.g., Figure 1a), but were safe to occupy, 327 buildings were severely damaged
and unsafe to occupy, and 427 buildings needed detailed evaluation [4]. Nearly 17,000
people were being housed in camps for weeks [5] while waiting for detailed inspections
[6], and hundreds could still be seen still camping out in tents after six months (Figure 1b).
Similar scenarios may be observed anytime a large earthquake hits a densely populated
region [7–9]. To help communities recover swiftly after a disaster and get people back in
their homes and businesses as soon as possible, more efficient inspections are required.

Figure 1. (a) Building damaged during the 2017 Puebla Earthquake. (b) Temporary tents by citizens
evacuated from buildings under inspection.

Data acquisition with unmanned aerial vehicles (UAVs) and data processing using
deep learning algorithms have shown tremendous potential in advancing the level of au-
tonomy in post-earthquake inspections. A frequently studied problem is the application
of machine learning algorithms, with a specific focus on the use of deep convolutional
neural networks (CNNs) for damage identification after earthquakes. Yeum et al. [10] pro-
posed the use of region-based R-CNN for spalling detection in earthquake-damaged
buildings. Mondal et al. [11], implemented the Faster R-CNN [12] algorithm to compare
different network architectures for multi-class detection of damage in earthquake-affected
buildings. Xu et al. [13] utilized Faster R-CNN for damage identification of cracks,
spalling, and exposed rebar in concrete columns. Researchers have also sought to
incorporate the context of the damage and information from the entire structure to
contribute to a structural assessment using deep learning methods. For example, Hoskere,
et al. [14,15] proposed the use of deep-learning based semantic segmentation for multiple
types of damage and materials. The proposed methodology was extended to the semantic
segmentation of scenes, components, and damage in reinforced concrete (RC) buildings
in [16]. Narazaki et al. [17,18] proposed the use of fully convolutional neural networks to
identify bridge components for post-earthquake inspections. Narazaki et al. [19]
employed recurrent neural networks with video data to help better understand the
structural component context of close up videos during bridge inspections. Gao et al. [20]
developed the PEER-Hub dataset incorporating multiple classification challenges for the
post-earthquake assessment of buildings. Liang et al. [21] proposed a three–level image–
based approach for post–disaster inspection reinforced concrete bridges using deep
learning. Dizaji et al. [22] conducted preliminary research on using 3D data to train a
network for defect identification of cracks and spalling on concrete columns. Pan et al.

Figure 1. (a) Building damaged during the 2017 Puebla Earthquake. (b) Temporary tents by citizens
evacuated from buildings under inspection.

Data acquisition with unmanned aerial vehicles (UAVs) and data processing using
deep learning algorithms have shown tremendous potential in advancing the level of
autonomy in post-earthquake inspections. A frequently studied problem is the application
of machine learning algorithms, with a specific focus on the use of deep convolutional
neural networks (CNNs) for damage identification after earthquakes. Yeum et al. [10]
proposed the use of region-based R-CNN for spalling detection in earthquake-damaged
buildings. Mondal et al. [11], implemented the Faster R-CNN [12] algorithm to compare
different network architectures for multi-class detection of damage in earthquake-affected
buildings. Xu et al. [13] utilized Faster R-CNN for damage identification of cracks, spalling,
and exposed rebar in concrete columns. Researchers have also sought to incorporate the
context of the damage and information from the entire structure to contribute to a structural
assessment using deep learning methods. For example, Hoskere, et al. [14,15] proposed
the use of deep-learning based semantic segmentation for multiple types of damage and
materials. The proposed methodology was extended to the semantic segmentation of
scenes, components, and damage in reinforced concrete (RC) buildings in [16]. Narazaki
et al. [17,18] proposed the use of fully convolutional neural networks to identify bridge
components for post-earthquake inspections. Narazaki et al. [19] employed recurrent neural
networks with video data to help better understand the structural component context of
close up videos during bridge inspections. Gao et al. [20] developed the PEER-Hub dataset
incorporating multiple classification challenges for the post-earthquake assessment of
buildings. Liang et al. [21] proposed a three–level image–based approach for post–disaster
inspection reinforced concrete bridges using deep learning. Dizaji et al. [22] conducted
preliminary research on using 3D data to train a network for defect identification of cracks
and spalling on concrete columns. Pan et al. [23] presented a framework to combine
performance assessment with repair cost evaluation using deep learning, extending the

Sensors 2022, 22, 532 3 of 28

types of information that can be extracted from image data to aid decision-makers. A
detailed review of advances in vision-based inspection and monitoring can be found in
Spencer et al. [24].

The significant progress in computer graphics software over the past decade has
allowed the creation of photo-realistic images and videos from 3D synthetic environments
that have spurred advances in computer vision. The data generated from these graphics
models, termed synthetic data, provides the ability to rapidly generate a large amount of
diverse data (e.g., representing different geometries, colors, lighting, viewpoints, etc.) that
may be impossible to otherwise acquire in the real world. Synthetic data has been used
to validate applications like robotic simulation (e.g., Gazebo [25]) and for reinforcement
learning in autonomous vehicles (e.g., AirSim [26]). Such synthetic data has also been
used for semantic segmentation of urban scenes that have shown promising performance
on field-collected data (Ros et al. [27]). Moreover, improving diversity and photorealism
of the simulated worlds has helped improve the performance of methods trained on
synthetic data and subsequently applied on field data, as demonstrated by recent results in
self-driving [28–30].

Researchers have recently begun utilizing 3D synthetic environments for applica-
tions in vision-based inspection and monitoring. Hoskere et al. [31–33] proposed ideas on
physics- and heuristics-based damage models as inspection testbeds and demonstrated
them for inland navigation infrastructure. For structural monitoring applications, Narazaki
et al. [34,35] also developed physics-based graphics models for displacement and strain mea-
surement of inland navigation infrastructure and laboratory bridge structures. Zdziebko
et al. [36] developed a physics-based graphics model of a laboratory beam structure for the
development of vision-based displacement measurement algorithms. For post-earthquake
inspections of RC viaducts, Narazki et al. [37] proposed heuristics-based models in a 3D
synthetic environment to obtain a dataset of images and train a deep neural network for
damage detection. While the efficacy of deep learning methods has been demonstrated
for autonomous inspection subtasks (such as data acquisition, damage identification, and
decision making), for robust real-world applicability, these subtasks need to be addressed
in an integrated manner, incorporating diverse scenarios including variations in structure
properties (e.g., geometry, color, material properties, damage amount), loading (intensity,
frequency content, etc.), camera properties (distance, viewpoint, etc.), and environment
(lighting, surrounding objects).

This paper proposes a novel framework for automatically generating 3D synthetic en-
vironments spanning diverse scenarios in structure properties, loading, camera properties,
and environment necessary for a robust inspection testbed. In particular, we propose a
procedure to generate physics-based graphics models (PBGMs) that incorporate a finite ele-
ment model with non-linear time history analysis for modeling the response of a structure,
and novel graphics algorithms to render physically consistent damage. Another significant
contribution of our research is the demonstration of the utility of the proposed testbed
through experiments with reinforced concrete RC buildings subject to earthquake excita-
tion. First, we implement the proposed framework to generate a new large-scale annotated
benchmark dataset for post-earthquake inspections of buildings termed QuakeCity. Second,
we demonstrate the improved performance of deep learning models trained using the
QuakeCity dataset for inference on real data. Finally, a comparison of deep learning-based
damage state estimation for different data acquisition strategies is carried out. A general
flowchart of the testbed process is provided in Figure 2. The manuscript is organized into
the following sections, (i) 3D synthetic environments for inspections, (ii) implementation of
the proposed framework for RC buildings, (iii) applications and experiments, (iv) results,
and (v) conclusions followed by references.

Sensors 2022, 22, 532 4 of 28
Sensors 2022, 22, x FOR PEER REVIEW 4 of 29

Figure 2. Flowchart of the proposed testbed process: After the generation of 3D synthetic environ-
ments, virtual data is collected and can be used to study and select different autonomous inspection
strategies.

2. Physics-Based Graphics Models in 3D Synthetic Environments
3D synthetic environments (Figure 3) are defined as modeling software with the abil-

ity to simulate object geometries and textures, lighting sources, and cameras. Using syn-
thetic environments, image capture from UAV during an inspection is simulated by ren-
dering images from camera locations following planned flight trajectories. Different flight
paths and data acquisition schemes can be evaluated in the synthetic environment for
identification of flight parameters like distance from the structure for optimal identifica-
tion accuracy of both damage and components, flight path for complete coverage, etc. Be-
fore such tests can be carried out, a key challenge is to model the structure and environ-
ment of interest. In this study, PBGMs are proposed as an effective tool for modeling the
structures of interest in 3D synthetic environments. Generation of synthetic data using
PBGMs allows for the creation of useful annotated datasets of damaged structures, as any
data from algorithmically generated graphics models will be automatically labeled, both
at the pixel and image-level using damage locations and states implicit in the PBGM. Dif-
ferent conditions, such as ground excitation, lighting, paint colors, dirt, etc. can be simu-
lated, to generate a wider variety of training data robustly representing different realistic
environments (Figure 4). The generated data can be used to train a deep network for se-
mantic segmentation, facilitating the automation of multiple tasks. As the damage is in-
formed by a finite-element model, the generated data can be used to conduct overall as-
sessments using the ground truth of the structure condition is available. Finally, as the
visual representations are linked to the results of the finite element model, they provide
one means of developing finite element model updating strategies. Figure 5 lists applica-
tions of PBGMs in synthetic environments for various visual inspection tasks. PBGMs and
synthetic environments will provide a testbed for vision-algorithms with readily repeata-
ble conditions. Algorithms that are effective in these virtual testbeds will be more likely
to work well on field-collected datasets. The developed datasets using can also be used to
augment field datasets to enhance accuracy.

A framework for the generation of physics-based graphics models (PBGMs) for in-
spections is now presented. For clarity, the framework is illustrated in a schematic pre-
sented in Figure 6 with reinforced concrete buildings with masonry infill walls as the
structure type. However, the same procedures may be followed for other structures where
the physics can be simulated through finite element models. The framework consists of
five steps including, (i) graphics mesh, (ii) non-linear finite element analysis, (iii) damage
masks generation (iv) damage texture, and (v) scene, lights, camera, and render.

3D synthetic
environment
generation

VIrtual data
collection with
designed data

acquisition
strategies

Experiments to
study strategies for

autonomous
inspection

Optimal strategy
selection (e.g., data

acquisition, data
processing, and
decision making

strategies)

Figure 2. Flowchart of the proposed testbed process: After the generation of 3D synthetic environ-
ments, virtual data is collected and can be used to study and select different autonomous inspection
strategies.

2. Physics-Based Graphics Models in 3D Synthetic Environments

3D synthetic environments (Figure 3) are defined as modeling software with the
ability to simulate object geometries and textures, lighting sources, and cameras. Using
synthetic environments, image capture from UAV during an inspection is simulated by
rendering images from camera locations following planned flight trajectories. Different
flight paths and data acquisition schemes can be evaluated in the synthetic environment for
identification of flight parameters like distance from the structure for optimal identification
accuracy of both damage and components, flight path for complete coverage, etc. Before
such tests can be carried out, a key challenge is to model the structure and environment
of interest. In this study, PBGMs are proposed as an effective tool for modeling the
structures of interest in 3D synthetic environments. Generation of synthetic data using
PBGMs allows for the creation of useful annotated datasets of damaged structures, as
any data from algorithmically generated graphics models will be automatically labeled,
both at the pixel and image-level using damage locations and states implicit in the PBGM.
Different conditions, such as ground excitation, lighting, paint colors, dirt, etc. can be
simulated, to generate a wider variety of training data robustly representing different
realistic environments (Figure 4). The generated data can be used to train a deep network
for semantic segmentation, facilitating the automation of multiple tasks. As the damage
is informed by a finite-element model, the generated data can be used to conduct overall
assessments using the ground truth of the structure condition is available. Finally, as the
visual representations are linked to the results of the finite element model, they provide one
means of developing finite element model updating strategies. Figure 5 lists applications
of PBGMs in synthetic environments for various visual inspection tasks. PBGMs and
synthetic environments will provide a testbed for vision-algorithms with readily repeatable
conditions. Algorithms that are effective in these virtual testbeds will be more likely to
work well on field-collected datasets. The developed datasets using can also be used to
augment field datasets to enhance accuracy.

A framework for the generation of physics-based graphics models (PBGMs) for inspec-
tions is now presented. For clarity, the framework is illustrated in a schematic presented in
Figure 6 with reinforced concrete buildings with masonry infill walls as the structure type.
However, the same procedures may be followed for other structures where the physics
can be simulated through finite element models. The framework consists of five steps
including, (i) graphics mesh, (ii) non-linear finite element analysis, (iii) damage masks
generation (iv) damage texture, and (v) scene, lights, camera, and render.

Sensors 2022, 22, 532 5 of 28
Sensors 2022, 22, x FOR PEER REVIEW 5 of 29

Figure 3. 3D synthetic environments.

Figure 4. (a) Real image of a building damaged after the Puebla Earthquake captured from a UAV
(b) synthetic PBGM image of a building with similar layout subject to the Tabas earthquake with
different lighting generated using the proposed approach.

Figure 3. 3D synthetic environments.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 29

Figure 3. 3D synthetic environments.

Figure 4. (a) Real image of a building damaged after the Puebla Earthquake captured from a UAV
(b) synthetic PBGM image of a building with similar layout subject to the Tabas earthquake with
different lighting generated using the proposed approach.

Figure 4. (a) Real image of a building damaged after the Puebla Earthquake captured from a UAV
(b) synthetic PBGM image of a building with similar layout subject to the Tabas earthquake with
different lighting generated using the proposed approach.

Sensors 2022, 22, 532 6 of 28
Sensors 2022, 22, x FOR PEER REVIEW 6 of 29

Figure 5. Applications of PBGMs in synthetic environments for autonomous vision-based structural
inspections.

Figure 6. Framework for generation of PBGMs in 3D synthetic environments.

Data acquisition flight
planning

Study different
flight paths and
effect of lighting

scenarios

Automate path
planning

Vision-based
navigation

development

Deep learning-based data
processing

Generate auto-
annotated synthetic

training data

Semantic
segmentation,

instance
segmentation,
classification

Damage/component
identification

Structural assessment

Component
damage state
identification

Structure damage
state identification

Model updating

Update parameters
of the FE model
using identified

visual information

Predict future
performance in

aftershocks

Figure 5. Applications of PBGMs in synthetic environments for autonomous vision-based structural
inspections.

Figure 6. Framework for generation of PBGMs in 3D synthetic environments.

Sensors 2022, 22, 532 7 of 28

2.1. Graphics Mesh

The geometry of the structure of interest in the PBGM is represented by a 3D mesh.
The mesh may be created in any 3D creator software. The features of buildings incorporated
in the 3D mesh will enable networks trained on synthetic data to learn representations
for those features in real images. For structural inspections of buildings, structural com-
ponents like beams, columns, and shear walls, and non-structural components like infill
walls, doors, windows, and balconies, are highly relevant as damage to these components
provides visual indicators of structural health. Similar lists can be made for other types
of structures to be inspected. All these components should be created programmatically
through parameterization, or, as referred to in the field of computer graphics, created
“procedurally”. Procedural generation of the mesh will allow programmatic implemen-
tation of subsequent steps, thus enabling randomization of both geometry and textures.
Randomization has been shown to improve the performance for related tasks like robotic
perception when learning from synthetic data by Tobin et al. [38] and is regarded as an
effective way to learn generalizable representations [29].

2.2. Non-Linear Finite Element Analysis

From the perspective of PBGM generation, non-linear finite element analyses provide
valuable insight into the regions in a structure where damage is most likely to occur.
The same parameters used to construct the mesh procedurally are used to generate finite
element models as well. In the particular case of post-earthquake inspections, a two-step
analysis approach is proposed, first obtaining a simplified global response of the structure
and then conducting a high-fidelity analysis for the visible components to generate accurate
damage patterns. The main pieces of information derived from these analyses are the
plastic strain contours, and other damage indicators such as the compression damage index
from a concrete damaged plasticity model, which provides direct indicators for cracking
and spalling of members–two of the main visual indicators of structural health after an
earthquake. As the distribution of plastic strain is not likely to change for small changes
in the loading, the number of analyses can be further reduced for large structures with
little effect on the final result (i.e., the rendered PBGM) by taking advantage of the fact
that components often repeat in a structure (e.g., across floors in a building). The next
subsection describes the proposed methodology to identify physics-based damage hotspots
using non-linear analysis.

2.3. Damage Masks Generation

Damage masks are 2D binary images that indicate the presence of damage on compo-
nent surfaces. Several damage parameters need to be determined before these masks can
be generated using the conducted analysis. These parameters relate to the number, size,
shape, and location of the damage. Each of the relevant parameters may be determined
through, (i) physics-based response, or (ii) defined heuristics. Both these modes come with
their own set of merits and demerits. Heuristic methods are the only viable option for many
damage cases that are difficult to model (e.g., due to lack of suitable material models or
load representations) or for which no empirical data is available. Methods stemming from
empirical data are reliable because they are based directly on observations but identifying
good heuristics is challenging. When realizable, physics-based damage masks provide a
rigorous approach that links the visual representation to results of finite element analy-
ses, leveraging efforts by researchers in developing state-of-the-art constitutive models.
Incorporating the physics enables applications such as estimating structural response (e.g.,
interstory drift, damage state, etc.), failure mechanisms, and model updating. We first
propose a general framework to determine damage parameters and then demonstrate
generating masks for common damage types of cracks and spalling using the structural
response.

The damage parameters are obtained by Monte Carlo sampling from empirical or
heuristic distributions. The first step is to determine the damage state (DS) of the component

Sensors 2022, 22, 532 8 of 28

based on some structural response measure δ (e.g., interstory drift). The response measure
used may be anything that is sensitive to visual damage. For example, for reinforced
concrete buildings with masonry infill, a commonly used damage indicator, the interstory
drift may be used as the response measure. The relationship between DS and δ is then
modeled through a probability distribution (1). This distribution represents uncertainties
in the geometry, method of construction, and material properties. The component damage
state DSo is determined by sampling from the distribution given by

DSo ∼ Pδ(DS) (1)

Various parameters qi0 (e.g., number of cracks, crack width, crack length, etc.) are then
calculated by sampling from their corresponding distributions representing variation in
damage observed given a particular damage state shown in Equation (2).

qi0 ∼ PDSi (qi) (2)

While it may be possible to estimate the parameters qio directly from δ, this two-step
approach allows for a more intuitive method facilitating the construction of the distributions
Pδ and PDSi based on empirical data. For parameters whose value will vary depending
on the location in the member, parameters are further modified by a multiplicative factor
derived from the structural response as shown in Equation (3).

Qi(X, Y) = qi0 fi(X, Y) (3)

where f is a function of some structural response parameter (e.g., plastic strain) varying
in the component. Examples for selecting each of Pδ, PDSi , and fi for RC buildings with
masonry infill are provided in Section 3. The next subsections discuss the generation of
masks for cracks and spalls–two common types of defects once the damage parameters
have been determined.

Stochastic blobs are amorphous shapes generated to select subregions of generated
masks. The plastic strain map E is normalized to take the form of a probability distribution
P. A center point (xs, ys) is obtained by sampling from the distribution. An amorphous
blob-shaped region Sb is marked around the center point using a stochastic radius defined
as the cumulative sum of a periodic function with random amplitude and phase. The blob
generating function takes as input the number of waves along the circumference, w. The
precise equations proposed can be found in Figure 7 where ∼ U[a, b] represents sampling
from a uniform distribution between a and b.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 29

The damage parameters are obtained by Monte Carlo sampling from empirical or
heuristic distributions. The first step is to determine the damage state (DS) of the compo-
nent based on some structural response measure 𝛿 (e. g. , interstory drift). The response
measure used may be anything that is sensitive to visual damage. For example, for rein-
forced concrete buildings with masonry infill, a commonly used damage indicator, the
interstory drift may be used as the response measure. The relationship between DS and 𝛿
is then modeled through a probability distribution (1). This distribution represents uncer-
tainties in the geometry, method of construction, and material properties. The component
damage state 𝐷𝑆௢ is determined by sampling from the distribution given by 𝐷𝑆୭ ~𝑃ஔ(𝐷𝑆) (1)

Various parameters 𝑞௜బ (e.g., number of cracks, crack width, crack length, etc.) are
then calculated by sampling from their corresponding distributions representing varia-
tion in damage observed given a particular damage state shown in Equation (2). 𝑞௜బ~𝑃஽ௌ೔(𝑞௜) (2)

While it may be possible to estimate the parameters 𝑞௜೚ directly from 𝛿, this two-
step approach allows for a more intuitive method facilitating the construction of the dis-
tributions 𝑃ஔ and 𝑃஽ௌ೔ based on empirical data. For parameters whose value will vary
depending on the location in the member, parameters are further modified by a multipli-
cative factor derived from the structural response as shown in Equation (3). 𝑄௜(𝑋, 𝑌) = 𝑞௜బ𝑓௜(𝑋, 𝑌) (3)

where 𝑓 is a function of some structural response parameter (e.g., plastic strain) varying
in the component. Examples for selecting each of 𝑃ఋ, 𝑃஽ௌ೔, and 𝑓௜ for RC buildings with
masonry infill are provided in Section 3. The next subsections discuss the generation of
masks for cracks and spalls–two common types of defects once the damage parameters
have been determined.

Stochastic blobs are amorphous shapes generated to select subregions of generated
masks. The plastic strain map 𝑬 is normalized to take the form of a probability distribu-
tion 𝑷. A center point (𝑥௦, 𝑦௦) is obtained by sampling from the distribution. An amor-
phous blob-shaped region 𝑺௕ is marked around the center point using a stochastic radius
defined as the cumulative sum of a periodic function with random amplitude and phase.
The blob generating function takes as input the number of waves along the circumference, 𝑤. The precise equations proposed can be found in Figure 7 where ~U[𝑎, 𝑏] represents
sampling from a uniform distribution between 𝑎 and 𝑏.

Figure 7. Stochastic blob generation.

For each component, the set of crack parameters are 𝒒𝒐 = ሼ𝑁, 𝐿, 𝑊ሽ where 𝑁 is the
number of cracks, 𝐿 is the length of cracks in pixels, 𝑊 is the crack widths in pixels. Once
these parameters are determined, the following pipeline for the generation of crack masks
from the plastic strain map provided in Figure 8 can be applied. A gaussian blur, with a
kernel 𝒈 is applied, followed by a Canny edge detector [39] to obtain an edge image. The

Figure 7. Stochastic blob generation.

For each component, the set of crack parameters are qo = {N, L, W} where N is the
number of cracks, L is the length of cracks in pixels, W is the crack widths in pixels. Once
these parameters are determined, the following pipeline for the generation of crack masks
from the plastic strain map provided in Figure 8 can be applied. A gaussian blur, with
a kernel g is applied, followed by a Canny edge detector [39] to obtain an edge image.
The edges are dilated by a factor of W. Finally, to add randomness to each component, a

Sensors 2022, 22, 532 9 of 28

stochastic blob is generated and the intersection of the blob with the dilated edge image is
included in the crack mask. This process is repeated N times.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 29

edges are dilated by a factor of 𝑊. Finally, to add randomness to each component, a sto-
chastic blob is generated and the intersection of the blob with the dilated edge image is
included in the crack mask. This process is repeated 𝑁 times.

Spalling is another common damage type for reinforced concrete and masonry struc-
tures affecting the integrity of components. The damage parameters to be determined here
are 𝒒௢ = ሼ𝑁௦, 𝑅ሽ where 𝑁௦ is the number of spalled regions, and 𝑅 is the nominal spall
radius. To generate spall masks with these parameters, an area of pixels corresponding to
the spall must first be defined. A stochastic blob 𝑆௕ is generated following the process
outlined in Figure 7. In addition to the blob, another region 𝑺ா is constructed correspond-
ing to pixels with compression damage greater than the mean compression within the
blob. The spall region 𝑺 is then set as the intersection of 𝑺ாand 𝑺௕. Rebar is made visible
under spalled regions with some probability 𝑃஽ௌ೔(𝑞௥௘௕௔௥). The process is illustrated in Fig-
ure 9.

Figure 8. Crack mask generation process.

Figure 9. Pipeline for generation of spall masks from plastic strain.

2.4. Damage Textures
Damage textures are image textures of damaged components. Damage textures need

to be generated so as to provide a realistic visual representation of the damaged structure.
The following points are discussed to illustrate the process followed in generating damage

Plastic strain map 𝑬 𝑋, 𝑌 , Crack
parameters:
length 𝐿(𝑬),

width 𝑊(𝑬), and
number 𝑁(𝑬)

Gaussian Blur 𝑮 = 𝒈 ∗ 𝑬 𝐶 = Canny edge
detector on 𝑮 𝑫 = Dilate edge

image 𝑪 by 𝑊 Generate N
stochastic 𝑏𝑙𝑜𝑏𝑠

of size 𝑳 and
intersect with 𝑫

Spall parameters:
radius R(𝑬), and

number 𝑁(𝑬)
Compute region 𝑺ா
with compression

damage greater than
mean compression
damage within blob 𝑺௕,

Spall region is given by
intersection 𝐒 = 𝑺௕ ∩ 𝑺ா

Expose rebar with
some probability 𝑃஽ௌ೔(𝑞௥௘௕௔௥)

(𝑥௦, 𝑦௦)

Figure 8. Crack mask generation process.

Spalling is another common damage type for reinforced concrete and masonry struc-
tures affecting the integrity of components. The damage parameters to be determined here
are qo = {Ns, R} where Ns is the number of spalled regions, and R is the nominal spall
radius. To generate spall masks with these parameters, an area of pixels corresponding
to the spall must first be defined. A stochastic blob Sb is generated following the process
outlined in Figure 7. In addition to the blob, another region SE is constructed corresponding
to pixels with compression damage greater than the mean compression within the blob.
The spall region S is then set as the intersection of SE and Sb. Rebar is made visible under
spalled regions with some probability PDSi (qrebar). The process is illustrated in Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 29

edges are dilated by a factor of 𝑊. Finally, to add randomness to each component, a sto-
chastic blob is generated and the intersection of the blob with the dilated edge image is
included in the crack mask. This process is repeated 𝑁 times.

Spalling is another common damage type for reinforced concrete and masonry struc-
tures affecting the integrity of components. The damage parameters to be determined here
are 𝒒௢ = ሼ𝑁௦, 𝑅ሽ where 𝑁௦ is the number of spalled regions, and 𝑅 is the nominal spall
radius. To generate spall masks with these parameters, an area of pixels corresponding to
the spall must first be defined. A stochastic blob 𝑆௕ is generated following the process
outlined in Figure 7. In addition to the blob, another region 𝑺ா is constructed correspond-
ing to pixels with compression damage greater than the mean compression within the
blob. The spall region 𝑺 is then set as the intersection of 𝑺ாand 𝑺௕. Rebar is made visible
under spalled regions with some probability 𝑃஽ௌ೔(𝑞௥௘௕௔௥). The process is illustrated in Fig-
ure 9.

Figure 8. Crack mask generation process.

Figure 9. Pipeline for generation of spall masks from plastic strain.

2.4. Damage Textures
Damage textures are image textures of damaged components. Damage textures need

to be generated so as to provide a realistic visual representation of the damaged structure.
The following points are discussed to illustrate the process followed in generating damage

Plastic strain map 𝑬 𝑋, 𝑌 , Crack
parameters:
length 𝐿(𝑬),

width 𝑊(𝑬), and
number 𝑁(𝑬)

Gaussian Blur 𝑮 = 𝒈 ∗ 𝑬 𝐶 = Canny edge
detector on 𝑮 𝑫 = Dilate edge

image 𝑪 by 𝑊 Generate N
stochastic 𝑏𝑙𝑜𝑏𝑠

of size 𝑳 and
intersect with 𝑫

Spall parameters:
radius R(𝑬), and

number 𝑁(𝑬)
Compute region 𝑺ா
with compression

damage greater than
mean compression
damage within blob 𝑺௕,

Spall region is given by
intersection 𝐒 = 𝑺௕ ∩ 𝑺ா

Expose rebar with
some probability 𝑃஽ௌ೔(𝑞௥௘௕௔௥)

(𝑥௦, 𝑦௦)

Figure 9. Pipeline for generation of spall masks from plastic strain.

2.4. Damage Textures

Damage textures are image textures of damaged components. Damage textures need
to be generated so as to provide a realistic visual representation of the damaged structure.
The following points are discussed to illustrate the process followed in generating damage
textures: (i) Bidirectional scattering distribution functions, (ii) material textures, (iii) damage
textures, and (iv) annotation textures.

Bidirectional scattering distribution functions: The visual appearance of an object is
dependent on how light incident on its surfaces is scattered, transmitted, or reflected. In
computer graphics, the behavior of light incident on a given material is represented by a
bidirectional scattering distribution function or BSDF [40]. BSDFs can be measured through
optical experiments with structured light sources. Based on experiments, researchers have

Sensors 2022, 22, 532 10 of 28

proposed different methods to model BSDFs. A widely implemented model available in
many 3D creator software known as the Principled BSDF was proposed by Burely et al. [41]
and is a physically-based rendering (PBR) model but with artistically intuitive parameters.
Apart from the base color, BSDFs have 10 parameters to describe each pixel including
properties of roughness, metallic, specularity, anisotropy, etc. Depending on the type
of material, several of these may not be applicable, for example, a concrete surface may
have negligible metallic scattering properties. In addition to these values defining the
scattering, the incorporation of surface normal directions at every point plays a significant
role in accurate renderings. If the surface is modeled at a very small-scale incorporating
undulations, then the values of the surface normal can be computed directly from the
geometry. However, such detailed surface modeling is seldom feasible and an alternative
way to retrieve the same effect is to use a predefined surface normal map.

Material textures: PBR textures encompassing maps with BSDF parameters for the
base color, roughness, metallicity, etc., and surface normals can be used to adequately
represent materials for the purpose of structural inspection simulation. PBR textures for
common construction materials incorporating BSDF parameters created through height
field photogrammetry are available on websites like CC0textures [42]. A sample image
texture of a brick wall rendered from [42] using Blender [43], an open-source 3D model
creation software is shown in Figure 10. The example incorporates three maps: the base
color, a roughness map, and the normal map. The roughness changes how the light is
reflected, especially near the edges of the bricks and the normal map helps visualize
the fine surface undulations and the protrusion of the bricks from the mortar plane. In
addition to photogrammetry-based textures, textures can also be procedurally generated in
material authoring programs like Substance [44] and provide the ability to create multiple
textures with different random seeds. As noted in [29,38] randomization is a crucial means
of enforcing generalization. We utilize both types of PBR maps (photogrammetric and
procedural) in the construction of the PBGMs. When multiple layers of materials are
present, (e.g., cement plaster over masonry, paint over concrete, etc.) maps are selected for
each material layer, and the displayed layer is selected based on the presence of damage at
any given pixel.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 29

Figure 10. Illustration of PBR texture using base color, roughness and normal maps.

Damage textures: The damage textures for the PBGM are obtained using the material
textures as the base and modifying the region within the generated physics-based damage
masks using opencv-Python [45]. The crack is textured by modifying the corresponding
surface normal through a bump map. The depth is set as a heuristic function of the plastic
strain similar to the width and length and the crack. The spall region is defined by apply-
ing a Musgrave [46] texture to create a bump map controlling the variation of depth within
the spall region. For reinforced concrete components, rebar is exposed depending on the
damage state of the material with some probability 𝑝. The rebars are modeled as cylinders
with surface variation and a metallic map.

Annotation textures: For deep learning methods, the ground truth synthetic data is
rendered by using an emission BSDF. As opposed to the principled BSDF with 10 param-
eters, an emission BSDF has a single color parameter and acts as a light source. The emis-
sion shader is useful for rendering homogenous colors, which is what is required as
ground truth for tasks like semantic segmentation. Depending on whether image data or
annotation data is being rendered, the appropriate texture types are selected during the
rendering process.

The generated textures are applied to the components after UV unwrapping the com-
ponents. For 3D models application of 2D textures requires a correspondence to be created
such that 2D surfaces can map to corresponding locations on the 3D surface. This process
of “unwrapping” the 3D model is termed UV unwrapping. UV unwrapping is conducted
by selecting the edges that are to serve as seams to break up the 3D model. In most pro-
grams, once the seams are selected, the resulting 2D surfaces are then arranged to fit
within a square surface. The obtained damage masks are also assembled in the same ar-
rangement to create a direct correspondence to the UV map and thus to the 3D model.
Other masks like the rebar mask are also arranged in the same way. Here, depending on
the aspect ratio of the component, the arrangement can take on a handful of configurations
that are hard coded along with the dimensions of the corresponding component so that
the rest of the process can be automated. An example of a UV unwrapped image is pro-
vided in Figure 11.

Base Color Render

Roughness map

with Roughness map with Roughness and Normal maps

Normal map

Figure 10. Illustration of PBR texture using base color, roughness and normal maps.

Damage textures: The damage textures for the PBGM are obtained using the material
textures as the base and modifying the region within the generated physics-based damage
masks using opencv-Python [45]. The crack is textured by modifying the corresponding
surface normal through a bump map. The depth is set as a heuristic function of the plastic

Sensors 2022, 22, 532 11 of 28

strain similar to the width and length and the crack. The spall region is defined by applying
a Musgrave [46] texture to create a bump map controlling the variation of depth within
the spall region. For reinforced concrete components, rebar is exposed depending on the
damage state of the material with some probability p. The rebars are modeled as cylinders
with surface variation and a metallic map.

Annotation textures: For deep learning methods, the ground truth synthetic data is ren-
dered by using an emission BSDF. As opposed to the principled BSDF with 10 parameters,
an emission BSDF has a single color parameter and acts as a light source. The emission
shader is useful for rendering homogenous colors, which is what is required as ground
truth for tasks like semantic segmentation. Depending on whether image data or annotation
data is being rendered, the appropriate texture types are selected during the rendering
process.

The generated textures are applied to the components after UV unwrapping the
components. For 3D models application of 2D textures requires a correspondence to be
created such that 2D surfaces can map to corresponding locations on the 3D surface. This
process of “unwrapping” the 3D model is termed UV unwrapping. UV unwrapping is
conducted by selecting the edges that are to serve as seams to break up the 3D model. In
most programs, once the seams are selected, the resulting 2D surfaces are then arranged to
fit within a square surface. The obtained damage masks are also assembled in the same
arrangement to create a direct correspondence to the UV map and thus to the 3D model.
Other masks like the rebar mask are also arranged in the same way. Here, depending on
the aspect ratio of the component, the arrangement can take on a handful of configurations
that are hard coded along with the dimensions of the corresponding component so that the
rest of the process can be automated. An example of a UV unwrapped image is provided
in Figure 11.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 29

Figure 11. UV unwrapping and texture assignment to a wall.

2.5. Scene, Lights, Camera & Rendering
The steps discussed thus far describe the construction of a single PBGM. To obtain

photo-realistic images, the background scene also needs to be populated. For post-earth-
quake building inspections, which include multiple buildings, roads, sidewalks, light
poles, electric cables, trees, etc. Randomization of geometry and textures is important to-
wards the ultimate goal of the generalizability of deep learning models trained in the syn-
thetic environment. Thus procedural methods are adopted even in the scene assembly for
the generation of these items.

The final step is to render the images. There are two modes of rendering commonly
available in 3D creator software, namely path tracing and rasterization. Path tracing in-
volves simulating the path of light in the scene and is more computationally expensive
than rasterization but is preferred as it produces more photorealistic representations. To
render images, a light source and the camera locations and orientations are to be set in the
synthetic environment. To simulate realistic outdoor lighting, HDRI maps are used to
light the scene [47].

3. Implementation of 3D Synthetic Environment with RC Buildings
The proposed framework was implemented using multiple software applications. 3D

model construction was conducted in Blender 2.9 [43], the finite element analysis was con-
ducted using ABAQUS [48] and OpenSeesPy [49], material authoring using Substance
[44], and image processing in Python using OpenCV [45]. A summary of the applications
used are provided in Table 1. This section discusses parameters used for the construction
of the synthetic environment. While considerable care was taken in the selection of pa-
rameters, detailed studies on parameter selection are out of the scope of this manuscript
and will be the subject of future research.

Table 1. Summary of applications used.

Modeling Task Application Scripting
3D modeling and scene assembly Blender 2.9 Python 3.x
Finite element (FE) modeling (lo-

cal) Abaqus Python 2.7

FE modeling (global) OpenSeesPy Python 3.x

FE post-processing OpenCV and misc. Python pack-
ages

Python 3.x

Figure 11. UV unwrapping and texture assignment to a wall.

2.5. Scene, Lights, Camera & Rendering

The steps discussed thus far describe the construction of a single PBGM. To ob-
tain photo-realistic images, the background scene also needs to be populated. For post-
earthquake building inspections, which include multiple buildings, roads, sidewalks, light
poles, electric cables, trees, etc. Randomization of geometry and textures is important
towards the ultimate goal of the generalizability of deep learning models trained in the
synthetic environment. Thus procedural methods are adopted even in the scene assembly
for the generation of these items.

The final step is to render the images. There are two modes of rendering commonly
available in 3D creator software, namely path tracing and rasterization. Path tracing
involves simulating the path of light in the scene and is more computationally expensive
than rasterization but is preferred as it produces more photorealistic representations. To

Sensors 2022, 22, 532 12 of 28

render images, a light source and the camera locations and orientations are to be set in the
synthetic environment. To simulate realistic outdoor lighting, HDRI maps are used to light
the scene [47].

3. Implementation of 3D Synthetic Environment with RC Buildings

The proposed framework was implemented using multiple software applications. 3D
model construction was conducted in Blender 2.9 [43], the finite element analysis was con-
ducted using ABAQUS [48] and OpenSeesPy [49], material authoring using Substance [44],
and image processing in Python using OpenCV [45]. A summary of the applications used
are provided in Table 1. This section discusses parameters used for the construction of the
synthetic environment. While considerable care was taken in the selection of parameters,
detailed studies on parameter selection are out of the scope of this manuscript and will be
the subject of future research.

Table 1. Summary of applications used.

Modeling Task Application Scripting

3D modeling and scene assembly Blender 2.9 Python 3.x

Finite element (FE) modeling
(local) Abaqus Python 2.7

FE modeling (global) OpenSeesPy Python 3.x

FE post-processing OpenCV and misc. Python
packages Python 3.x

Texture generation Substance Designer Python 3.x

Image rendering Blender Cycles Python 3.x

Deep learning PyTorch Python 3.x

3.1. Graphics Mesh

3D models were created for 12 different fictional reinforced concrete buildings with
masonry infill walls. The main reason for creating multiple buildings is to be able to
generate diverse data that can be used for further experiments. The layout for these
buildings was loosely 3 buildings (shown in Figure 12) that were affected in the Mexico
City earthquake in 2017, with some simplifications made for parametric modeling. The
buildings were parameterized and different realizations for each of the buildings were
constructed with varying dimensions. Photographs of the buildings were obtained from
three different sources: datacenterhub [50], Google Street View [51], and direct photography
by the authors.

The dimensions and layout of the building were parameterized to include dimensions
and locations of columns, beams, walls, windows, and balconies. The building properties
were stored in a single class object that were used both for finite element model creation
and 3D model generation.

3.2. Non-Linear Finite Element Analysis

As mentioned in Section 2, both the global and local responses of the structure are
required for the generation of the PBGM. The global analysis of the buildings was conducted
using OpenSeesPy. The creation of the mesh was automated based on the building layout
parameters developed in the previous section. The structure was modeled using the
confined concrete model in OpenSeesPy with the parameters in Table 2.

Table 2. OpenSeesPy model concrete material properties.

Material fc
′

MPa (ksi) fcu
′

MPa (ksi) εsc0
′

εsU
′

Concrete01 41.36 (−6) −34.4 (−5) −0.004 −0.015

Sensors 2022, 22, 532 13 of 28

Sensors 2022, 22, x FOR PEER REVIEW 13 of 29

Texture generation Substance Designer Python 3.x
Image rendering Blender Cycles Python 3.x

Deep learning PyTorch Python 3.x

3.1. Graphics Mesh
3D models were created for 12 different fictional reinforced concrete buildings with

masonry infill walls. The main reason for creating multiple buildings is to be able to gen-
erate diverse data that can be used for further experiments. The layout for these buildings
was loosely 3 buildings (shown in Figure 12) that were affected in the Mexico City earth-
quake in 2017, with some simplifications made for parametric modeling. The buildings
were parameterized and different realizations for each of the buildings were constructed
with varying dimensions. Photographs of the buildings were obtained from three differ-
ent sources: datacenterhub [50], Google Street View [51], and direct photography by the
authors.

Figure 12. Three reference buildings damaged that suffered damage during the Mexico City earth-
quake in 2017.

The dimensions and layout of the building were parameterized to include dimen-
sions and locations of columns, beams, walls, windows, and balconies. The building prop-
erties were stored in a single class object that were used both for finite element model
creation and 3D model generation.

3.2. Non-Linear Finite Element Analysis
As mentioned in Section 2, both the global and local responses of the structure are

required for the generation of the PBGM. The global analysis of the buildings was con-
ducted using OpenSeesPy. The creation of the mesh was automated based on the building
layout parameters developed in the previous section. The structure was modeled using
the confined concrete model in OpenSeesPy with the parameters in Table 2.

Table 2. OpenSeesPy model concrete material properties.

Material 𝒇𝒄′ MPa (ksi) 𝒇𝒄𝒖′ MPa (ksi) 𝝐𝒔𝒄𝟎′ 𝝐𝒔𝑼′
Concrete01 41.36 (−6) −34.4 (−5) −0.004 −0.015

Figure 12. Three reference buildings damaged that suffered damage during the Mexico City earth-
quake in 2017.

Reinforced concrete sections were created for the members using the patch, section,
and layer commands in OpenSeesPy. The amount of rebar was set based on ACI 318-14 [52]
assuming a c/d ratio of 0.3 in Equations (4) and (5), where Ar is the reinforcement area, b, d
are the section dimensions of the concrete member, ρ is the rebar ratio, β = 0.85, fc

′ and
fy are the yield strengths of concrete and steel. A concrete cover of 40 mm was set ACI
minimum of 1.5 in for beams and columns.

Ar = ρbd (4)

ρ = 0.85β
c
d

f ′c
fy

(5)

The shear reinforcement was assumed to be at a spacing of a maximum of (100, d/3).
The shear strength from reinforcement is assumed to be 3

√
f ′cbd and the corresponding

rebar area as per ACI 318 are given by

Av =
3
√

f ′cbs
fy

(6)

The first three global mode shapes of a parametrically generated building are shown
in Figure 13.

Each building was subject to the Tabas earthquake with varying intensity from g/4
to g/6 from both x and y directions. An example of ground motion is shown in Figure 14.
A full analysis was conducted for the local response of the components using Abaqus. A
Python script was developed to automate the process of creation of the components of
the structure. The components models included the masonry wall and confining columns
and beams as shown in Figure 15 all modeled with solid elements. The model also in-
cluded rebar which was modeled with beam elements with a circular cross-section. The
nodal displacements at the corners of components were used as inputs for the detailed
local component models. For the concrete and masonry members, the concrete damaged
plasticity (CDP) model proposed by [53] was used. The material parameters used for
the concrete material were based on values reported in Jankowiak et al. [54] and for the
masonry material based on the values reported in Bolhassani et al. [55]. The masonry yield
stress for tensile behavior was factored down so that the tensile strength of the masonry

Sensors 2022, 22, 532 14 of 28

was less than that of the concrete. The steel was modeled as a plastic material with a yield
stress of 200 MPa. The stress-strain curves used are shown in Figure 16.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 29

Reinforced concrete sections were created for the members using the patch, section,
and layer commands in OpenSeesPy. The amount of rebar was set based on ACI 318-14
[52] assuming a c/d ratio of 0.3 in Equations (4) and (5), where 𝐴௥ is the reinforcement
area, 𝑏, 𝑑 are the section dimensions of the concrete member,𝜌 is the rebar ratio, 𝛽 =0.85, 𝑓௖′ and 𝑓௬ are the yield strengths of concrete and steel. A concrete cover of 40 mm
was set ACI minimum of 1.5 in for beams and columns. 𝐴௥ = 𝜌𝑏𝑑 (4)

𝜌 = 0.85𝛽 𝑐𝑑 𝑓௖ᇱ𝑓௬ (5)

The shear reinforcement was assumed to be at a spacing of a maximum of (100, 𝑑/3).
The shear strength from reinforcement is assumed to be 3ඥ𝑓௖ᇱ𝑏𝑑 and the corresponding
rebar area as per ACI 318 are given by 𝐴௩ = 3ඥ𝑓௖ᇱ𝑏𝑠𝑓௬ (6)

The first three global mode shapes of a parametrically generated building are shown
in Figure 13.

Figure 13. First three horizontal modes of a simulated structure.

Each building was subject to the Tabas earthquake with varying intensity from 𝑔/4
to 𝑔/6 from both x and y directions. An example of ground motion is shown in Figure
14. A full analysis was conducted for the local response of the components using Abaqus.

Figure 13. First three horizontal modes of a simulated structure.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 29

A Python script was developed to automate the process of creation of the components of
the structure. The components models included the masonry wall and confining columns
and beams as shown in Figure 15 all modeled with solid elements. The model also in-
cluded rebar which was modeled with beam elements with a circular cross-section. The
nodal displacements at the corners of components were used as inputs for the detailed
local component models. For the concrete and masonry members, the concrete damaged
plasticity (CDP) model proposed by [53] was used. The material parameters used for the
concrete material were based on values reported in Jankowiak et al. [54] and for the ma-
sonry material based on the values reported in Bolhassani et al. [55]. The masonry yield
stress for tensile behavior was factored down so that the tensile strength of the masonry
was less than that of the concrete. The steel was modeled as a plastic material with a yield
stress of 200 MPa. The stress-strain curves used are shown in Figure 16.

Figure 14. Ground motion input to global model with PGA 𝑔/4.

Figure 15 Illustrative response of component model in Abaqus including walls with window open-
ings, columns and beams.

Figure 14. Ground motion input to global model with PGA g/4.

Sensors 2022, 22, 532 15 of 28

Sensors 2022, 22, x FOR PEER REVIEW 15 of 29

A Python script was developed to automate the process of creation of the components of
the structure. The components models included the masonry wall and confining columns
and beams as shown in Figure 15 all modeled with solid elements. The model also in-
cluded rebar which was modeled with beam elements with a circular cross-section. The
nodal displacements at the corners of components were used as inputs for the detailed
local component models. For the concrete and masonry members, the concrete damaged
plasticity (CDP) model proposed by [53] was used. The material parameters used for the
concrete material were based on values reported in Jankowiak et al. [54] and for the ma-
sonry material based on the values reported in Bolhassani et al. [55]. The masonry yield
stress for tensile behavior was factored down so that the tensile strength of the masonry
was less than that of the concrete. The steel was modeled as a plastic material with a yield
stress of 200 MPa. The stress-strain curves used are shown in Figure 16.

Figure 14. Ground motion input to global model with PGA 𝑔/4.

Figure 15 Illustrative response of component model in Abaqus including walls with window open-
ings, columns and beams.

Figure 15. Illustrative response of component model in Abaqus including walls with window
openings, columns and beams.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 29

Figure 16. Plastic stress strain curves for concrete, masonry and steel used in the PBGMs.

The rebars are embedded within the concrete members using the embedment inter-
action option in ABAQUS. The walls are tied to their immediate confining members using
the tie constraint in Abaqus. A multi-point constraint is applied to tie the top and bottom
surfaces of the beams and columns together. The bottom surface is fixed, and the top sur-
face is subject the interstory drift. The amplitudes are chosen to represent 4 different dam-
age states derived based on values reported by [56].

An Abaqus explicit analysis was run for each unique component and the plastic
strains at each of the amplitude levels are stored as an image for input to the texturing
process discussed in the next subsection.

3.3. Damage Mask Generation
As mentioned in Section 2, the first step in identifying the damage parameters is to

determine the damage state of the component. The probability distribution for different
damage states given the interstory drift is taken from Chozzi et al. [56], where data from
over 150 tests on masonry walls subject to in-plane loading were analyzed. A log normal
distribution is used to model the conditional probability of exceeding a given damage
state as shown in Equation (7). 𝜇௟௡(𝛿) and 𝛽 represent the central tendency and the dis-
persion parameters of the cumulative standard normal distribution Φ. The values used
for the different damage states are presented in Table 3, and the corresponding curves are
plotted in Figure 17. 𝑃(𝐷𝑆 ൒ 𝑑𝑠௜|𝐼𝐷𝑅 = 𝛿) = 1 െ Φ ቆln(𝛿) െ 𝜇௟௡(𝛿)𝛽 ቇ (7)

Figure 16. Plastic stress strain curves for concrete, masonry and steel used in the PBGMs.

The rebars are embedded within the concrete members using the embedment interac-
tion option in ABAQUS. The walls are tied to their immediate confining members using
the tie constraint in Abaqus. A multi-point constraint is applied to tie the top and bottom
surfaces of the beams and columns together. The bottom surface is fixed, and the top

Sensors 2022, 22, 532 16 of 28

surface is subject the interstory drift. The amplitudes are chosen to represent 4 different
damage states derived based on values reported by [56].

An Abaqus explicit analysis was run for each unique component and the plastic strains
at each of the amplitude levels are stored as an image for input to the texturing process
discussed in the next subsection.

3.3. Damage Mask Generation

As mentioned in Section 2, the first step in identifying the damage parameters is to
determine the damage state of the component. The probability distribution for different
damage states given the interstory drift is taken from Chozzi et al. [56], where data from
over 150 tests on masonry walls subject to in-plane loading were analyzed. A log normal
distribution is used to model the conditional probability of exceeding a given damage state
as shown in Equation (7). µln(δ) and β represent the central tendency and the dispersion
parameters of the cumulative standard normal distribution Φ. The values used for the
different damage states are presented in Table 3, and the corresponding curves are plotted
in Figure 17.

P(DS ≥ dsi|IDR = δ) = 1−Φ
(

ln(δ)− µln(δ)

β

)
(7)

Table 3. Interstory drift ratio for different damage states.

Damage Description Low Moderate Severe

Interstory drift ratio (IDR) % 0.125 0.25 0.82

Sensors 2022, 22, x FOR PEER REVIEW 17 of 29

Figure 17. Damage states fragility curves.

Table 3. Interstory drift ratio for different damage states.

Damage Description Low Moderate Severe
Interstory drift ratio (IDR) % 0.125 0.25 0.82

Once the damage is determined for the components, the various damage parameters
were computed by sampling from their corresponding lognormal distributions. The sta-
tistics of the distributions used are provided in Table 4 and the corresponding distribu-
tions are plotted in Figure 18. The values for the crack width are based on descriptions of
damage states given in Chozzi et al. [56]. The crack length, height, and number of cracks
for different damage states are approximated based on descriptions given in FEMA 306
[57] based on the component damage classification guides for concrete frames with ma-
sonry infill. The spall radius ratio 𝑅௦ and area 𝐴௦ has been generalized for both walls
and columns based on examples provided in [58]. In the presence of more rigorous exper-
imental data, corresponding distributions may be replaced to better represent the dam-
aged structure.

Table 4. Statistics for damage parameters.

Damage Parameter 𝝁 𝜷
Damage State 𝒅𝒔𝟎 𝒅𝒔𝟏 𝒅𝒔𝟐 𝒅𝒔𝟑 𝒅𝒔𝟎 𝒅𝒔𝟏 𝒅𝒔𝟐 𝒅𝒔𝟑

Crack width 𝑊
(mm)

0.01 2 3 5 1.5 0.15 0.15 0.2

Crack length ratio 𝐿 0.01 0.5 0.85 1 1.1 0.2 0.05 0.05
Number of cracks 𝑁௖ 0.01 3 6 12 2 0.2 0.15 0.15
Spall radius ratio 𝑅௦ 0.001 0.01 0.03 0.07 0.5 0.2 0.2 0.15
Spall area ratio 𝐴௦ 0.01 0.05 0.12 0.25 0.3 0.2 0.15 0.2

Figure 17. Damage states fragility curves.

Once the damage is determined for the components, the various damage parameters
were computed by sampling from their corresponding lognormal distributions. The statis-
tics of the distributions used are provided in Table 4 and the corresponding distributions
are plotted in Figure 18. The values for the crack width are based on descriptions of damage
states given in Chozzi et al. [56]. The crack length, height, and number of cracks for differ-
ent damage states are approximated based on descriptions given in FEMA 306 [57] based
on the component damage classification guides for concrete frames with masonry infill.
The spall radius ratio Rs and area As has been generalized for both walls and columns
based on examples provided in [58]. In the presence of more rigorous experimental data,
corresponding distributions may be replaced to better represent the damaged structure.

Sensors 2022, 22, 532 17 of 28

Table 4. Statistics for damage parameters.

Damage Parameter µ β

Damage State ds0 ds1 ds2 ds3 ds0 ds1 ds2 ds3

Crack width W (mm) 0.01 2 3 5 1.5 0.15 0.15 0.2

Crack length ratio L 0.01 0.5 0.85 1 1.1 0.2 0.05 0.05

Number of cracks Nc 0.01 3 6 12 2 0.2 0.15 0.15

Spall radius ratio Rs 0.001 0.01 0.03 0.07 0.5 0.2 0.2 0.15

Spall area ratio As 0.01 0.05 0.12 0.25 0.3 0.2 0.15 0.2

Sensors 2022, 22, x FOR PEER REVIEW 18 of 29

Figure 18. Visualization of damage parameter distributions.

3.4. Damage Texture Generation
PBR textures are used for all the construction materials. The textures for the paint,

walls, beams, and columns were all generated parametrically using Adobe Substance De-
signer [44]. The visual features parameterized include color properties, amount of dirt,
types of dirt, and size and orientation of bricks. For each generated building structure,
parameters including the paint color, concrete color, brick size, and brick color are first
selected. Then for each component, the parameters are perturbed to provide variability
for the components.

3.5. Scene, Lights, Camera & Rendering
The assembly and construction of the PBGM and synthetic environment are auto-

mated using Python scripts. In each scene, one PBGM building is created. Then, the side-
walks, trees, roads, and other buildings are added to complete the scene using the
SceneCity Blender plugin. The scene background and lighting was set using HDRI maps
downloaded from [42]. An emission shared was used for the annotations, and the images
were rendered using the cycles renderer.

4. Experiments and Results
The developed procedure for PBGMs is used to generate synthetic images that can

be used for automated visual inspection studies. Three applications and examples are il-
lustrated, (i) QuakeCity Dataset: Large-scale synthetic dataset of earthquake-damaged
buildings, (ii) Augmenting real data with synthetic data, and (iii) Comparing post-disaster
UAV data acquisition with ground camera data acquisition.

4.1. QuakeCity Dataset: Large-Scale Synthetic Dataset of Earthquake Damaged Buildings
Images are rendered from multiple simulated UAV surveys of 11 damaged buildings

in a city environment to create a new dataset called QuakeCity. Each survey replicates a
field scenario where a UAV circles the building at different altitudes to cover the entire
height, width, and length of the building. Each image captured by the simulated UAV is
associated with six different sets of annotations, including three damage masks (cracks,

Figure 18. Visualization of damage parameter distributions.

3.4. Damage Texture Generation

PBR textures are used for all the construction materials. The textures for the paint,
walls, beams, and columns were all generated parametrically using Adobe Substance
Designer [44]. The visual features parameterized include color properties, amount of dirt,
types of dirt, and size and orientation of bricks. For each generated building structure,
parameters including the paint color, concrete color, brick size, and brick color are first
selected. Then for each component, the parameters are perturbed to provide variability for
the components.

3.5. Scene, Lights, Camera & Rendering

The assembly and construction of the PBGM and synthetic environment are automated
using Python scripts. In each scene, one PBGM building is created. Then, the sidewalks,
trees, roads, and other buildings are added to complete the scene using the SceneCity
Blender plugin. The scene background and lighting was set using HDRI maps downloaded
from [42]. An emission shared was used for the annotations, and the images were rendered
using the cycles renderer.

4. Experiments and Results

The developed procedure for PBGMs is used to generate synthetic images that can
be used for automated visual inspection studies. Three applications and examples are

Sensors 2022, 22, 532 18 of 28

illustrated, (i) QuakeCity Dataset: Large-scale synthetic dataset of earthquake-damaged
buildings, (ii) Augmenting real data with synthetic data, and (iii) Comparing post-disaster
UAV data acquisition with ground camera data acquisition.

4.1. QuakeCity Dataset: Large-Scale Synthetic Dataset of Earthquake Damaged Buildings

Images are rendered from multiple simulated UAV surveys of 11 damaged buildings
in a city environment to create a new dataset called QuakeCity. Each survey replicates a
field scenario where a UAV circles the building at different altitudes to cover the entire
height, width, and length of the building. Each image captured by the simulated UAV is
associated with six different sets of annotations, including three damage masks (cracks,
spalling, exposed rebar), components, component damage states, and a depth map. In total,
4688 images and six annotations per image of size 1920 × 1080 are included in the dataset,
with 3684 for training, and 1004 for testing.

Example images of the generated dataset are shown in Figure 19. The images demon-
strate the diversity of damaged buildings in the dataset in terms of layout, color, damage
level. Images in the scenes are taken from different viewpoints and with different lighting
conditions. Each image in the dataset has six annotations and the color key for annotations
are provided in Figure 20. Figure 21 shows three example annotations including component
damage state, depth map, and component annotations. Figure 22 shows another image
generated with spalling, cracks, and rebar annotations for each pixel.

4.2. Augmenting Real Data with Synthetic Data

To reliably train an autonomous visual inspection system, a large amount of training
data with damaged structures would be required. Frequently, however, the amount of such
training data available is limited. Additionally, careful annotation of available images is also
a challenge. In this experiment, we are interested in studying whether the incorporation
of synthetic data in cases with limited availability of real data with annotations can help
boost the accuracy of networks on unseen real data.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 29

spalling, exposed rebar), components, component damage states, and a depth map. In
total, 4688 images and six annotations per image of size 1920 × 1080 are included in the
dataset, with 3684 for training, and 1004 for testing.

Example images of the generated dataset are shown in Figure 19. The images demon-
strate the diversity of damaged buildings in the dataset in terms of layout, color, damage
level. Images in the scenes are taken from different viewpoints and with different lighting
conditions. Each image in the dataset has six annotations and the color key for annotations
are provided in Figure 20. Figure 21 shows three example annotations including compo-
nent damage state, depth map, and component annotations. Figure 22 shows another im-
age generated with spalling, cracks, and rebar annotations for each pixel.

Figure 19. Example images from the QuakeCity Dataset.

Figure 20. Annotation color key.

Figure 21 Example annotations (clockwise from top left) Image, Component Damage State, Components, Depth.

Figure 19. Example images from the QuakeCity Dataset.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 29

spalling, exposed rebar), components, component damage states, and a depth map. In
total, 4688 images and six annotations per image of size 1920 × 1080 are included in the
dataset, with 3684 for training, and 1004 for testing.

Example images of the generated dataset are shown in Figure 19. The images demon-
strate the diversity of damaged buildings in the dataset in terms of layout, color, damage
level. Images in the scenes are taken from different viewpoints and with different lighting
conditions. Each image in the dataset has six annotations and the color key for annotations
are provided in Figure 20. Figure 21 shows three example annotations including compo-
nent damage state, depth map, and component annotations. Figure 22 shows another im-
age generated with spalling, cracks, and rebar annotations for each pixel.

Figure 19. Example images from the QuakeCity Dataset.

Figure 20. Annotation color key.

Figure 21 Example annotations (clockwise from top left) Image, Component Damage State, Components, Depth.

Figure 20. Annotation color key.

Sensors 2022, 22, 532 19 of 28

Sensors 2022, 22, x FOR PEER REVIEW 19 of 29

spalling, exposed rebar), components, component damage states, and a depth map. In
total, 4688 images and six annotations per image of size 1920 × 1080 are included in the
dataset, with 3684 for training, and 1004 for testing.

Example images of the generated dataset are shown in Figure 19. The images demon-
strate the diversity of damaged buildings in the dataset in terms of layout, color, damage
level. Images in the scenes are taken from different viewpoints and with different lighting
conditions. Each image in the dataset has six annotations and the color key for annotations
are provided in Figure 20. Figure 21 shows three example annotations including compo-
nent damage state, depth map, and component annotations. Figure 22 shows another im-
age generated with spalling, cracks, and rebar annotations for each pixel.

Figure 19. Example images from the QuakeCity Dataset.

Figure 20. Annotation color key.

Figure 21 Example annotations (clockwise from top left) Image, Component Damage State, Components, Depth.

Figure 21. Example annotations (clockwise from top left) Image, Component Damage State, Compo-
nents, Depth.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 29

Figure 22. Example annotations (clockwise from top left) Image, Spalling, Cracks, Exposed Rebar.

4.2. Augmenting Real Data with Synthetic Data
To reliably train an autonomous visual inspection system, a large amount of training

data with damaged structures would be required. Frequently, however, the amount of
such training data available is limited. Additionally, careful annotation of available im-
ages is also a challenge. In this experiment, we are interested in studying whether the
incorporation of synthetic data in cases with limited availability of real data with annota-
tions can help boost the accuracy of networks on unseen real data.

4.2.1. Real Image Dataset
A dataset for semantic segmentation of real earthquake-damaged buildings was de-

veloped for the purpose of this study. The images were acquired by the authors after the
2017 Mexico City Earthquake using a DJI Phantom 3, and a Nikon D3300. The images
were annotated for the presence of spalling using InstaDam [59]. In total, 150 images of
resolution 1920 × 1080 were annotated as part of the dataset.

4.2.2. Network Architecture
A deep network is constructed for semantic segmentation using a ResNet [60] archi-

tecture with 45 layers. The details of the encoder part of the architecture are provided in
Figure 23. Residual connections involve the summation of the output of prior layers to
enforce learning of new information in subsequent layers. These residual connections are
used between alternate layers (e.g., Conv0 to Conv2, Conv2 to Conv4, etc.). A rectified
linear unit is used as the non-linearity for all layers of the network. The details of the de-
coder part of the architecture are provided in Model training. The skip connections with
1 × 1 convolutions described in the previous subsection are taken after the Conv8, Conv20,
and Conv32 layers. The network parameters were trained by minimizing the cross-en-
tropy loss function between the predicted softmax probabilities and the corresponding
one-hot labels with an L2-regularization weight decay [53]. The incorporation of the
weight decay term gives preference to smaller weights and helps tackle overfitting. Batch
normalization was applied to address the covariate shift that occurs during training [24],
where each feature dimension is shifted by a weighted mean and standard deviation that
was learned during training. The percentage of pixels in each of the classes varies signifi-
cantly. For example, some classes such as cracks have much fewer pixels than spalling or

Figure 22. Example annotations (clockwise from top left) Image, Spalling, Cracks, Exposed Rebar.

4.2.1. Real Image Dataset

A dataset for semantic segmentation of real earthquake-damaged buildings was
developed for the purpose of this study. The images were acquired by the authors after
the 2017 Mexico City Earthquake using a DJI Phantom 3, and a Nikon D3300. The images
were annotated for the presence of spalling using InstaDam [59]. In total, 150 images of
resolution 1920 × 1080 were annotated as part of the dataset.

Sensors 2022, 22, 532 20 of 28

4.2.2. Network Architecture

A deep network is constructed for semantic segmentation using a ResNet [60] archi-
tecture with 45 layers. The details of the encoder part of the architecture are provided in
Figure 23. Residual connections involve the summation of the output of prior layers to
enforce learning of new information in subsequent layers. These residual connections are
used between alternate layers (e.g., Conv0 to Conv2, Conv2 to Conv4, etc.). A rectified
linear unit is used as the non-linearity for all layers of the network. The details of the
decoder part of the architecture are provided in Model training. The skip connections with
1 × 1 convolutions described in the previous subsection are taken after the Conv8, Conv20,
and Conv32 layers. The network parameters were trained by minimizing the cross-entropy
loss function between the predicted softmax probabilities and the corresponding one-hot
labels with an L2-regularization weight decay [53]. The incorporation of the weight decay
term gives preference to smaller weights and helps tackle overfitting. Batch normalization
was applied to address the covariate shift that occurs during training [24], where each
feature dimension is shifted by a weighted mean and standard deviation that was learned
during training. The percentage of pixels in each of the classes varies significantly. For
example, some classes such as cracks have much fewer pixels than spalling or corrosion due
to the nature of the damage. To balance the frequencies of different classes in the data set
and prioritize all classes equally, median class balancing [26] was applied by reweighting
each class in the cross-entropy loss. Data augmentation by resizing and cropping was incor-
porated in order to increase the efficacy and efficiency of training and prevent issues such
as overfitting. The training was conducted using the Adam optimizer [54] implemented in
Pytorch [61].

Sensors 2022, 22, x FOR PEER REVIEW 21 of 29

corrosion due to the nature of the damage. To balance the frequencies of different classes
in the data set and prioritize all classes equally, median class balancing [26] was applied
by reweighting each class in the cross-entropy loss. Data augmentation by resizing and
cropping was incorporated in order to increase the efficacy and efficiency of training and
prevent issues such as overfitting. The training was conducted using the Adam optimizer
[54] implemented in Pytorch [61].

Figure 23. Schematic illustration of feature layers in the proposed FCN.

4.2.3. Model Training
Eight different models were trained to evaluate the potential role of synthetic data in

enhancing the overall performance of the models on real data. The eight models included
four pairs of training schemes listed in Table 5, where each scheme had one model trained
purely on real data and another trained on real plus synthetic data. In each pair, the
train/test split of real data was varied, starting from 0.2 train + 0.8 test, to 0.8 train + 0.2
test, in increments of 0.2. The same amount of synthetic training data was used in all four
schemas, and this included the training images from the QuakeCity dataset (i.e., 3684 im-
ages).

Table 5. Training schemes evaluated.

Training Scheme
Number of Real

Images
Number of Synthetic

Images
Test Set (Real

Images)
0.2 Real 30 0 120

0.2 Real + QuakeCity 30 3684 120
0.4 Real 60 0 90

0.4 Real + QuakeCity 60 3684 90
0.6 Real 90 0 60

0.6 Real + QuakeCity 90 3684 60
0.8 Real 120 0 30

0.8 Real + QuakeCity 120 3684 30

The results from the different models trained are shown in Figure 24a,b. Figure 24a
shows the comparison of test Intersection-over-Union (IoU) [62] on 60% of real data while
training on 40% of the real images with and without QuakeCity data. While the initial
accuracy with only real data is higher than with QuakeCity, after about 75 epochs, it was

Figure 23. Schematic illustration of feature layers in the proposed FCN.

4.2.3. Model Training

Eight different models were trained to evaluate the potential role of synthetic data in en-
hancing the overall performance of the models on real data. The eight models included four
pairs of training schemes listed in Table 5, where each scheme had one model trained purely
on real data and another trained on real plus synthetic data. In each pair, the train/test split
of real data was varied, starting from 0.2 train + 0.8 test, to 0.8 train + 0.2 test, in increments

Sensors 2022, 22, 532 21 of 28

of 0.2. The same amount of synthetic training data was used in all four schemas, and this
included the training images from the QuakeCity dataset (i.e., 3684 images).

Table 5. Training schemes evaluated.

Training Scheme Number of Real
Images

Number of Synthetic
Images

Test Set (Real
Images)

0.2 Real 30 0 120
0.2 Real + QuakeCity 30 3684 120

0.4 Real 60 0 90
0.4 Real + QuakeCity 60 3684 90

0.6 Real 90 0 60
0.6 Real + QuakeCity 90 3684 60

0.8 Real 120 0 30
0.8 Real + QuakeCity 120 3684 30

The results from the different models trained are shown in Figure 24a,b. Figure 24a
shows the comparison of test Intersection-over-Union (IoU) [62] on 60% of real data while
training on 40% of the real images with and without QuakeCity data. While the initial
accuracy with only real data is higher than with QuakeCity, after about 75 epochs, it was
noticed that there was a significant increase in the performance of the model trained with
QuakeCity data. The performance of the model clearly highlights the benefits of using
synthetic data to improve the performance of deep learning models on unseen real data.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 29

noticed that there was a significant increase in the performance of the model trained with
QuakeCity data. The performance of the model clearly highlights the benefits of using
synthetic data to improve the performance of deep learning models on unseen real data.

The addition of synthetic data was also shown to improve the performance of the
deep neural network even for varying splits of training and testing data. Figure 24b shows
the difference between the two values plotted in Figure 24a, for all four models trained.
The performance of all models trained with the QuakeCity dataset is better than the model
without the QuakeCity data after 400 epochs. The improvement in IoU is seen to be as
much as 10%. Table 6 shows examples of images where the 0.4 Real model with QuakeCity
data performs better than the model without. The quality of the predictions is clearly im-
proved, and the border of the predictions can be seen to be more accurate.

Figure 24. (a) Comparison of test set accuracy on 60% of real data while training on 40% of the real
images with and without QuakeCity data (b) Difference between test accuracy with and without
QuakeCity data for varying fractions of real training data.

4.3. Comparing Damage State Estimation Using UAV and Ground-Based Images
While implementing autonomous visual inspection systems after disasters, a trained

model using a dataset conducted prior to the disaster would be used to process new data
acquired after the disaster. The quality of the predictions on new data may however vary
widely depending on the image acquisition distance. For example, it may not always be
possible to have consistent data acquisition modes or distances for various structures of
interest. This is especially so in crowded cities where many obstacles are present. To better
study the robustness of the trained models, practitioners may want to evaluate the
model’s performance for different camera distances to see where data gaps are present in
the model, or to inform their field acquisition strategies. In such a scenario, using a PBGM
would prove very useful, as images could be acquired with different camera paths, and
the accuracy of predictions of a fixed trained model can be studied.

In this experiment, we train two different ResNet 45 models to predict component
damage states. One model is using only the QuakeCity training dataset and is tested on
images from another building. Two test sets are prepared, one simulating a UAV camera
for data acquisition (UAV-B12), and another simulating a person on the ground collecting
images of the structure by pointing the camera forward and upward (Ground-B12). To-
gether, the datasets are referred to as B12. Another model is trained with the QuakeCity
training dataset plus 25% of the images from B12 (QuakeCity + 0.25 B12) and evaluated
on 75% of the B12 data (0.75 B12). The results of performance on the ground data are re-
ported separately for the UAV and Ground parts of B12.

Figure 24. (a) Comparison of test set accuracy on 60% of real data while training on 40% of the real
images with and without QuakeCity data (b) Difference between test accuracy with and without
QuakeCity data for varying fractions of real training data.

The addition of synthetic data was also shown to improve the performance of the
deep neural network even for varying splits of training and testing data. Figure 24b shows
the difference between the two values plotted in Figure 24a, for all four models trained.
The performance of all models trained with the QuakeCity dataset is better than the model
without the QuakeCity data after 400 epochs. The improvement in IoU is seen to be as
much as 10%. Table 6 shows examples of images where the 0.4 Real model with QuakeCity
data performs better than the model without. The quality of the predictions is clearly
improved, and the border of the predictions can be seen to be more accurate.

Sensors 2022, 22, 532 22 of 28

Table 6. Qualitative comparison of results with and without QuakeCity training data.

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

IoU N/A 0.40838659 0.84830129

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

IoU N/A 0.23776706 0.60649584

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

IoU N/A 0.56585139 0.89356358

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Real Image Ground truth Real 0.4 QuakeCity + Real 0.4

IoU N/A 0.40838659 0.84830129

IoU N/A 0.23776706 0.60649584

IoU N/A 0.56585139 0.89356358

IoU N/A 0.3649658 0.65546518

IoU N/A 0.3649658 0.65546518

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

IoU N/A 0.60729252 0.89446025

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

IoU N/A 0.54610351 0.76673772

4.3. Comparing Damage State Estimation Using UAV and Ground-Based Images

While implementing autonomous visual inspection systems after disasters, a trained
model using a dataset conducted prior to the disaster would be used to process new data
acquired after the disaster. The quality of the predictions on new data may however vary
widely depending on the image acquisition distance. For example, it may not always
be possible to have consistent data acquisition modes or distances for various structures
of interest. This is especially so in crowded cities where many obstacles are present. To
better study the robustness of the trained models, practitioners may want to evaluate the
model’s performance for different camera distances to see where data gaps are present in
the model, or to inform their field acquisition strategies. In such a scenario, using a PBGM
would prove very useful, as images could be acquired with different camera paths, and the
accuracy of predictions of a fixed trained model can be studied.

In this experiment, we train two different ResNet 45 models to predict component
damage states. One model is using only the QuakeCity training dataset and is tested
on images from another building. Two test sets are prepared, one simulating a UAV
camera for data acquisition (UAV-B12), and another simulating a person on the ground

Sensors 2022, 22, 532 23 of 28

collecting images of the structure by pointing the camera forward and upward (Ground-
B12). Together, the datasets are referred to as B12. Another model is trained with the
QuakeCity training dataset plus 25% of the images from B12 (QuakeCity + 0.25 B12) and
evaluated on 75% of the B12 data (0.75 B12). The results of performance on the ground data
are reported separately for the UAV and Ground parts of B12.

Table 7 shows the test IoU for different damage states for the various models trained.
The model trained on the QuakeCity dataset only, which is limited to UAV views performs
poorly on Ground B12 images. As a comparison, the performance of the model on 75%
of UAV B12 is also shown. With the addition of 25% of B12 to the training dataset, the
model performs much better on the remaining 75% of the data and is much closer to the
performance on 75% of the UAV B12 set. While the results are along expected lines, the
study nonetheless highlights the benefits of using a PBGM for tasks where the value and
type of additional information to be incorporated into the network needs to be quantified.
Given that there will be some cost associated with incorporating new data into the training
dataset, a performance-based approach for data inclusion can be set-up using a PBGM as a
reference. Tables 8 and 9 show examples of predictions for the Ground and UAV B12 test
datasets, respectively.

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3

QuakeCity Ground B12 0.08 0.49 0.10
QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 2 of 4

IoU N/A 0.60729252 0.89446025

IoU N/A 0.54610351 0.76673772

Table 7. Comparing damage state estimation using UAV and ground-based images.

Train Test ds1 ds2 ds3
QuakeCity Ground B12 0.08 0.49 0.10

QuakeCity + 0.25 B12 0.75 UAV B12 0.40 0.72 0.79
QuakeCity + 0.25 B12 0.75 Ground B12 0.40 0.65 0.71

Table 8. Results for Ground B12 images.

Image from Ground B12 Ground Truth Inference

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, 532 24 of 28

Table 9. Results for UAV B12 images.

Image from UAV B12 Ground Truth Inference

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Sensors 2022, 22, x FOR PEER REVIEW 3 of 4

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various param-
eters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shak-
ing intensity, etc., based on published literature. However, for autonomous inspection
studies, the key requirement is the ability to generate large amounts of diverse data, and
thus such assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost
The proposed framework for data generation has several components that contribute

to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped compo-
nents, the analysis was run for just one story with different intensities and re-purposed
for use with other stories. This simplification greatly reduced the overall computational
time. The 3D synthetic environment for one damaged building can be created in about 8
h of total time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The
rendering of each image then takes about 1.5 min, and each annotation takes about 0.05
min using Blender Cycles. The distribution of time taken for each component of the frame-
work is provided in Table 10.

Table 10. Computational cost for PBGM generation.

 Time Taken (Minutes)
Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

5. Discussion
5.1. PBGM Parameters

An important aspect of generating effective PBGMs is the selection of various parame-
ters in the five different steps of the proposed framework. The choice of these parameters
will most certainly have an influence on the realism of the resulting simulations. In the
absence of any data about the structure’s properties, several arbitrary assumptions were
made in relation to the structure geometry, material properties, paint color, ground shaking
intensity, etc., based on published literature. However, for autonomous inspection studies,
the key requirement is the ability to generate large amounts of diverse data, and thus such
assumptions, while not perfectly realistic, were reasonable for this research.

5.2. Computational Cost

The proposed framework for data generation has several components that contribute
to the relatively high computational cost of generating the data. Running non-linear time
history analysis for each component of the structure is very computationally expensive.
Leveraging the regularity of the plan in the buildings, and the fact that the same material
model will produce similar responses at different floors for identically shaped components,
the analysis was run for just one story with different intensities and re-purposed for use
with other stories. This simplification greatly reduced the overall computational time. The
3D synthetic environment for one damaged building can be created in about 8 h of total
time on a PC with 2 Nvidia RTX 2080 Ti, Intel i7-8700K, and 16 GB of RAM. The rendering
of each image then takes about 1.5 min, and each annotation takes about 0.05 min using
Blender Cycles. The distribution of time taken for each component of the framework is
provided in Table 10.

Sensors 2022, 22, 532 25 of 28

Table 10. Computational cost for PBGM generation.

Time Taken (minutes)

Graphics Mesh (per building) 0.5

Global FE analysis (per building) 15

Component-level (single story) 360

Damage texture generation (per building) 25

Scene assembly (per environment) 4

Image rendering (per image, 1920 × 1080) 1.5

Annotation rendering (per annotation) 0.05

5.3. Autonomous Inspection Experiments

The experiments conducted demonstrate the efficacy of the proposed framework as a
testbed for end-to-end validation of autonomous inspections.

The first experiment involved implementing the proposed framework to generate
the QuakeCity dataset. The quantity and diversity of data generated in the QuakeCity
dataset underscore the benefits of using 3D synthetic environments to generate data to
study algorithms for autonomous inspections. While such studies were out of the scope of
this manuscript, the dataset has been released as part of the International Competition on
Structural Health Monitoring; over 150 teams of researchers are participating to study the
performance of different algorithms with the dataset.

The second experiment was conducted to study the utility of synthetic data generated
from the proposed framework to directly augment deep networks trained for inference on
real data for autonomous inspections. The results demonstrated that the use of synthetic
data allowed the deep networks to learn better features that resulted in better performance
on real data. The transferability of features learned on synthetic data to real data makes the
use of the synthetic environment even more attractive.

The third experiment illustrates another use case of the proposed framework to study
the ability of already trained networks to perform on new scenarios. In the experiment, a
deep network trained on UAV acquired data for physics-based damage state estimation
is applied to data collected from the ground. The poor results, in this case, indicate
that additional data would be required from a ground viewpoint to have an effective
network. The addition of about 25% of the data from a single survey was found to increase
significantly the performance of the network. Given the cost associated with acquiring data
in the real world, such studies are crucial in efficiently developing inspection systems for
use in field applications.

6. Conclusions

This paper proposed a framework for generating physics-based graphics models
(PBGMs) as part of a 3D synthetic environment that can support the development of au-
tomated inspection strategies for civil infrastructure. The proposed framework involved
combining the response of a non-linear finite element model to inform the realistic vi-
sual rendering of different damage types. The framework was implemented for eleven
reinforced concrete building structures subject to earthquake excitation and the damage
types rendered included cracks, spalling, and exposed rebar. Three applications were
demonstrated for the proposed framework. First, images were rendered from the dam-
aged structures, pixel-level ground truth was generated for the various damage types,
for components, component damage states, and depths. The QuakeCity dataset will
serve as a benchmark dataset to study the use of deep learning algorithms in automated
post-earthquake inspections of building structures. Second, the efficacy of the proposed
framework in generating synthetic data to augment real data was demonstrated. It was
shown that the performance of models trained with synthetic data and real data performed
up to 10 IoU points better than models trained with only real data. Finally, a third exper-

Sensors 2022, 22, 532 26 of 28

iment was conducted comparing the performance of trained models on the ground and
UAV-based data. The experiment demonstrated the utility of the proposed framework
for studying and quantifying the value of additional information for models trained for
visual inspections. The results demonstrate the immense potential of using PBGMs as an
end-to-end tool for the development and study of visual inspection systems.

Author Contributions: Conceptualization, V.H., Y.N. and B.F.S.J.; methodology, V.H. and Y.N.;
software V.H.; validation, V.H.; resources, B.F.S.J. and V.H.; data curation, V.H.; writing—original
draft preparation, V.H.; writing—review and editing, V.H., Y.N. and B.F.S.J. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the financial support by the U.S. Army Corps of
Engineers (Contract/Purchase Order No. W912HZ-17-2-0024). This research was also supported in
part by the National Natural Science Foundation of China Grant No. 51978182.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset generated, termed QuakeCity, was released as part of the
International Competition on Structural Health Monitoring 2021.

Acknowledgments: The authors would like to thank Shengyi Wang for his help in annotating the
real datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rojahn, C.; Bonneville, D.R.; Quadri, N.D.; Phipps, M.T.; Ranous, R.A.; Russell, J.E.; Staehlin, W.E.; Turner, Z. ATC-20-1 Field

Manual: Postearthquake Safety Evaluation of Buildings; Applied Technology Council: Redwood City, CA, USA, 2005.
2. Mexico City Earthquake: What We Know. Available online: https://www.usatoday.com/story/news/world/2017/09/20/what-

we-know-mexico-earthquake/684113001/ (accessed on 16 November 2020).
3. Eulich, W. Mexico’s Long Wait for Building Inspections. Available online: https://www.usnews.com/news/best-countries/

articles/2017-09-27/mexicans-face-a-daunting-wait-for-building-inspections-after-earthquakes (accessed on 5 July 2018).
4. Colegio de Ingenieros Civiles de México (CICM) Resumen Preliminar de Danos de los Inmeubles Inspeccionados por las Brigadas

del CICM del Sismo del 19/09/2017. Available online: https://www.sismosmexico.org/informes (accessed on 1 April 2018).
5. Thousands Homeless after Mexico Earthquake. Available online: https://www.13abc.com/content/news/Thousands-homeless-

after-Mexico-earthquake-447419433.html (accessed on 16 November 2020).
6. 6 Months after Mexico Quake Some Still Camp Outside Homes–The Denver Post. Available online: https://www.denverpost.

com/2018/03/20/mexico-earthquake-homeless-camps/ (accessed on 16 November 2020).
7. 2015 Nepal Earthquake: Facts, FAQs, and How to Help | World Vision. Available online: https://www.worldvision.org/disaster-

relief-news-stories/2015-nepal-earthquake-facts (accessed on 2 June 2020).
8. Italian Earthquake: 40 Dead and 50,000 Homeless-Telegraph. Available online: https://www.telegraph.co.uk/news/worldnews/

europe/italy/5113762/Italian-earthquake-40-dead-and-50000-homeless.html (accessed on 2 June 2020).
9. New Zealand Earthquake “Damaged 100,000 Homes”-BBC News. Available online: https://www.bbc.com/news/world-asia-

pacific-11191105 (accessed on 2 June 2020).
10. Yeum, C.M. Computer Vision-Based Structural Assessment Exploiting Large Volumes of Images. Ph.D. Dissertation, Purdue

University, West Lafayette, IN, USA, 2016.
11. Ghosh Mondal, T.; Jahanshahi, M.R.; Wu, R.; Wu, Z.Y. Deep learning-based multi-class damage detection for autonomous

post-disaster reconnaissance. Struct. Control Heal. Monit. 2020, 27. [CrossRef]
12. Ren, S.; He, K.; Gershick, R.; Sun, J.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks. Adv. Neural Inf. Process. Syst. 2015, 39, 91–99. [CrossRef]
13. Xu, Y.; Wei, S.; Bao, Y.; Li, H. Automatic seismic damage identification of reinforced concrete columns from images by a

region-based deep convolutional neural network. Struct. Control Heal. Monit. 2019, 26, e2313. [CrossRef]
14. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F. Vision-based Structural Inspection using Multiscale Deep Convolutional

Neural Networks. In Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers,
Urbana, IL, USA, 11–12 August 2017.

15. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F., Jr. MaDnet: Multi-task Semantic Segmentation of Multiple types of Structural
Materials and Damage in Images of Civil Infrastructure. J. Civ. Struct. Heal. Monit. 2020, 10, 757–773. [CrossRef]

https://www.usatoday.com/story/news/world/2017/09/20/what-we-know-mexico-earthquake/684113001/
https://www.usatoday.com/story/news/world/2017/09/20/what-we-know-mexico-earthquake/684113001/
https://www.usnews.com/news/best-countries/articles/2017-09-27/mexicans-face-a-daunting-wait-for-building-inspections-after-earthquakes
https://www.usnews.com/news/best-countries/articles/2017-09-27/mexicans-face-a-daunting-wait-for-building-inspections-after-earthquakes
https://www.sismosmexico.org/informes
https://www.13abc.com/content/news/Thousands-homeless-after-Mexico-earthquake-447419433.html
https://www.13abc.com/content/news/Thousands-homeless-after-Mexico-earthquake-447419433.html
https://www.denverpost.com/2018/03/20/mexico-earthquake-homeless-camps/
https://www.denverpost.com/2018/03/20/mexico-earthquake-homeless-camps/
https://www.worldvision.org/disaster-relief-news-stories/2015-nepal-earthquake-facts
https://www.worldvision.org/disaster-relief-news-stories/2015-nepal-earthquake-facts
https://www.telegraph.co.uk/news/worldnews/europe/italy/5113762/Italian-earthquake-40-dead-and-50000-homeless.html
https://www.telegraph.co.uk/news/worldnews/europe/italy/5113762/Italian-earthquake-40-dead-and-50000-homeless.html
https://www.bbc.com/news/world-asia-pacific-11191105
https://www.bbc.com/news/world-asia-pacific-11191105
http://doi.org/10.1002/stc.2507
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1002/stc.2313
http://doi.org/10.1007/s13349-020-00409-0

Sensors 2022, 22, 532 27 of 28

16. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F., Jr. Towards Automated Post-Earthquake Inspections with Deep Learning-
based Condition-Aware Models. In Proceedings of the 7th World Conference on Structural Control and Monitoring, 7WCSCM,
Qingdao, China, 22–25 July 2018.

17. Narazaki, Y.; Hoskere, V.; Hoang, T.A.; Spencer, B.F., Jr. Vision-based automated bridge component recognition integrated with
high-level scene understanding. In Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart
Structures Technology (ANCRiSST), Tokyo, Japan, 22–23 July 2017.

18. Narazaki, Y.; Hoskere, V.; Hoang, T.A.; Fujino, Y.; Sakurai, A.; Spencer, B.F. Vision-based automated bridge component recognition
with high-level scene consistency. Comput. Civ. Infrastruct. Eng. 2019, 12505. [CrossRef]

19. Narazaki, Y.; Hoskere, V.; Hoang, T.A.; Spencer, B.F., Jr. Automated Bridge Component Recognition using Video Data. In
Proceedings of the 7th World Conference on Structural Control and Monitoring, 7WCSCM, Qingdao, China, 22–25 July 2018.

20. Gao, Y.; Mosalam, K.M. PEER Hub ImageNet (Φ-Net): A Large-Scale Multi-Attribute Benchmark Dataset of Structural Images; PEER
Report No. 2019/07; University of California: Berkeley, CA, USA, 2019.

21. Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian
optimization. Comput. Civ. Infrastruct. Eng. 2018. [CrossRef]

22. Shafiei Dizaji, M.; Harris, D. 3D InspectionNet: A deep 3D convolutional neural networks based approach for 3D defect detection
on concrete columns. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace,
Civil Infrastructure, and Transportation XIII, Denver, CO, USA, 4–7 March 2019; Gyekenyesi, A.L., Ed.; SPIE: Bellingham, WA,
USA, 2019; Volume 10971, p. 13.

23. Pan, X.; Yang, T.Y. Postdisaster image-based damage detection and repair cost estimation of reinforced concrete buildings using
dual convolutional neural networks. Comput. Civ. Infrastruct. Eng. 2020, 35, 495–510. [CrossRef]

24. Spencer Jr., B.F.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision–based Civil Infrastructure Inspection and Monitoring.
Engineering 2019. [CrossRef]

25. Gazebo. Available online: http://gazebosim.org/ (accessed on 26 October 2020).
26. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. arXiv

2018, arXiv:1705.05065.
27. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images for

Semantic Segmentation of Urban Scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las
Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243.

28. Dosovitskiy, A.; Ros, G.; Codevilla, F.; López, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. arXiv 2017,
arXiv:1711.03938.

29. Bewley, A.; Rigley, J.; Liu, Y.; Hawke, J.; Shen, R.; Lam, V.-D.; Kendall, A. Learning to Drive from Simulation without Real World
Labels. arXiv 2018, arXiv:1812.03823.

30. Richter, S.R.; Darmstadt, T.U.; Anu, Z.H.; Koltun, V. Playing for Benchmarks. In Proceedings of the International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017.

31. Hoskere, V.; Narazaki, Y.; Spencer, B.F.; Smith, M.D. Deep learning-based damage detection of miter gates using synthetic imagery
from computer graphics. In Proceedings of the Structural Health Monitoring, Stanford, CA, USA, 10–12 September 2019.

32. Hoskere, V.; Narazaki, Y.; Spencer, B.F., Jr. Learning to Detect Important Visual Changes for Structural Inspections using Physics-
based Graphics Models. In Proceedings of the Submitted to the 9th International Conference on Structural Health Monitoring of
Intelligent Infrastructure (SHMII-9), St Louis, MO, USA, 4–7 August 2019.

33. Hoskere, V. Developing autonomy in structural inspections through computer vision and graphics. Ph.D. Dissertation, University
of Illinois at Urbana-Champaign, Champaign, IL, USA, 2021.

34. Narazaki, Y.; Hoskere, V.; Eick, B.A.; Smith, M.D.; Spencer, B.F. Vision-based dense displacement and strain estimation of miter
gates with the performance evaluation using physics-based graphics models. Smart Struct. Syst. 2019, 24, 709–721. [CrossRef]

35. Narazaki, Y.; Gomez, F.; Hoskere, V.; Smith, M.D.; Spencer, B.F. Efficient development of vision-based dense three-dimensional
displacement measurement algorithms using physics-based graphics models. J. Struct. Heal. Monit. 2020, 20, 1841–1863.
[CrossRef]

36. Zdziebko, P.; Holak, K. Synthetic Image Generation Using the Finite Element Method and Blender Graphics Program for Modeling
of Vision-Based Measurement Systems. Sensors 2021, 21, 6046. [CrossRef]

37. Narazaki, Y.; Hoskere, V.; Yoshida, K.; Spencer, B.F.; Fujino, Y. Synthetic environments for vision-based structural condition
assessment of Japanese high-speed railway viaducts. Mech. Syst. Signal Process. 2021, 160, 107850. [CrossRef]

38. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain Randomization for Transferring Deep Neural Networks
from Simulation to the Real World. arXiv 2017, arXiv:1703.06907.

39. Szeliski, R. Computer Vision; Texts in Computer Science; Springer: London, UK, 2011; ISBN 978-1-84882-934-3.
40. Bartell, F.O.; Dereniak, E.L.; Wolfe, W.L. The Theory and Measurement of Bidirectional Reflectance Distribution Function (Brdf)

And Bidirectional Transmittance Distribution Function (BTDF). In Proceedings of the Radiation Scattering in Optical Systems;
Hunt, G.H., Ed.; SPIE: Bellingham, WA, USA, 1981; Volume 0257, pp. 154–160.

41. Burley, B.; Disney, W.; Studios, A. Physically Based Shading at Disney. ACM SIGGRAPH 2012, 2012, 1–7.
42. CC0 Textures-Public Domain PBR Materials. Available online: https://cc0textures.com/ (accessed on 11 July 2020).
43. Blender. Available online: https://www.blender.org/ (accessed on 1 August 2018).

http://doi.org/10.1111/mice.12505
http://doi.org/10.1111/mice.12425
http://doi.org/10.1111/mice.12549
http://doi.org/10.1016/j.eng.2018.11.030
http://gazebosim.org/
http://doi.org/10.12989/SSS.2019.24.6.709
http://doi.org/10.1177/1475921720939522
http://doi.org/10.3390/s21186046
http://doi.org/10.1016/j.ymssp.2021.107850
https://cc0textures.com/
https://www.blender.org/

Sensors 2022, 22, 532 28 of 28

44. Adobe Substance by Adobe. Available online: https://www.substance3d.com/ (accessed on 16 May 2019).
45. OpenCV. Available online: https://opencv.org/ (accessed on 12 March 2020).
46. Musgrave, F.K.; Kolb, C.E.; Mace, R.S. The synthesis and rendering of eroded fractal terrains. In Proceedings of the 16th Annual

Conference on Computer Graphics and Interactive Techniques-SIGGRAPH ’89, New York, NY, USA, 31 July–4 August 1989;
Volume 23, pp. 41–50.

47. Reinhard, E.; Heidrich, W.; Pattanaik, S.; Debevec, P.; Ward, G. High Dynamic Range Imaging: Acquisition, Display, and Image-based
Lighting; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9780123749147.

48. © Dassault Systèmes Abaqus 6.14 Online Documentation. Available online: http://Abaqus.software.polimi.it/v6.14/index.html
(accessed on 15 September 2017).

49. The OpenSeesPy Library—OpenSeesPy 3.3.0.0 Documentation. Available online: https://openseespydoc.readthedocs.io/en/
latest/ (accessed on 27 September 2021).

50. Data-Driven Science. Available online: https://datacenterhub.org/ (accessed on 6 August 2017).
51. Discover Street View and Contribute Your Own Imagery to Google Maps. Available online: https://www.google.com/streetview/

(accessed on 12 July 2020).
52. 318-14: Building Code Requirements for Structural Concrete and Commentary. Available online: https://www.concrete.org/

store/productdetail.aspx?ItemID=318U14&Language=English (accessed on 12 July 2020).
53. Lee, J.; Fenves, G.L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [CrossRef]
54. Jankowiak, T.; Lodygowski, T. Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ.

2005, 53–69.
55. Bolhassani, M.; Hamid, A.A.; Lau, A.C.W.; Moon, F. Simplified micro modeling of partially grouted masonry assemblages. Constr.

Build. Mater. 2015, 83, 159–173. [CrossRef]
56. Chiozzi, A.; Miranda, E. Fragility functions for masonry infill walls with in-plane loading. Earthq. Eng. Struct. Dyn. 2017, 46,

2831–2850. [CrossRef]
57. FEMA 306 Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings Basic Procedures Manual Applied Technology Council

(ATC-43 Project) The Partnership for Response and Recovery; The Partnership for Response and Recovery: Washington, DC, USA,
1998.

58. Tu, Y.H.; Ao, L.C.; Jean, W.Y. Study on the Earthquake Damage Evaluation Procedure for RC and Confined Masonry Buildings. In
Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012.

59. Hoskere, V.; Friedel, D.; Amer, F.; Li, Z.; Yang, W.; Salinamakki, N.; Srikanth, P.; Tang, Y.; Narazaki, Y.; Spencer, B.F., Jr. InstaDam:
A software tool for rapid semi-automated pixel-wise annotation of defects in images. Appl. Sci. 2021, 11, 1–16.

60. Wu, S.; Zhong, S.; Liu, Y. Deep residual learning for image steganalysis. Multimed. Tools Appl. 2017, 77, 1–17. [CrossRef]
61. PyTorch. Available online: https://pytorch.org/ (accessed on 18 October 2021).
62. Shelhamer, E.; Long, J.; Darrell, T.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [CrossRef]

https://www.substance3d.com/
https://opencv.org/
http://Abaqus.software.polimi.it/v6.14/index.html
https://openseespydoc.readthedocs.io/en/latest/
https://openseespydoc.readthedocs.io/en/latest/
https://datacenterhub.org/
https://www.google.com/streetview/
https://www.concrete.org/store/productdetail.aspx?ItemID=318U14&Language=English
https://www.concrete.org/store/productdetail.aspx?ItemID=318U14&Language=English
http://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
http://doi.org/10.1016/j.conbuildmat.2015.03.021
http://doi.org/10.1002/eqe.2934
http://doi.org/10.1007/s11042-017-4440-4
https://pytorch.org/
http://doi.org/10.1109/TPAMI.2016.2572683

	Introduction
	Physics-Based Graphics Models in 3D Synthetic Environments
	Graphics Mesh
	Non-Linear Finite Element Analysis
	Damage Masks Generation
	Damage Textures
	Scene, Lights, Camera & Rendering

	Implementation of 3D Synthetic Environment with RC Buildings
	Graphics Mesh
	Non-Linear Finite Element Analysis
	Damage Mask Generation
	Damage Texture Generation
	Scene, Lights, Camera & Rendering

	Experiments and Results
	QuakeCity Dataset: Large-Scale Synthetic Dataset of Earthquake Damaged Buildings
	Augmenting Real Data with Synthetic Data
	Real Image Dataset
	Network Architecture
	Model Training

	Comparing Damage State Estimation Using UAV and Ground-Based Images

	Discussion
	PBGM Parameters
	Computational Cost
	Autonomous Inspection Experiments

	Conclusions
	References

