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Abstract: In this paper, focusing on the slow time-varying characteristics, a series of works have been
conducted to implement an accurate quality prediction for batch processes. To deal with the time-
varying characteristics along the batch direction, sliding windows can be constructed. Then, the start-
up process is identified and the whole process is divided into two modes according to the steady-state
identification. In the most important mode, the process data matrix, used to establish the regression
model of the current batch, is expanded to involve the process data of previous batches, which is called
batch augmentation. Thus, the process data of previous batches, which have an important influence
on the quality of the current batch, will be identified and form a new batch augmentation matrix
for modeling using the partial least squares (PLS) method. Moreover, considering the multiphase
characteristic, batch augmentation analysis and modeling is conducted within each phase. Finally,
the proposed method is applied to a typical batch process, the injection molding process. The quality
prediction results are compared with those of the traditional quality prediction method based on
PLS and the ridge regression method under the proposed batch augmentation analysis framework.
The conclusion is obtained that the proposed method based on the batch augmentation analysis
is superior.

Keywords: batch process; partial least squares; batch augmentation; quality prediction

1. Introduction

As an important mode of industrial production, batch processing is closely related to
modern people’s life, and is widely used in many fields. In recent years, the fast-changing
market of modern society has brought more urgent demands on products, such as multiple
varieties, multiple specifications, and high quality, so that the modern process industry
is more dependent on batch processes for producing small-batch and high value-added
products. Therefore, the pursuit of high-quality products using batch process production
has become the focus of attention.

Batch processing usually needs several minutes or even days to obtain the final quality
after the end of a batch operation cycle. After various quality tests, the quality data can
be collected and stored in the database. Therefore, serious time lags exist before obtaining
the product quality measurement, which makes it impossible to feed back the quality
information to the process control system timely during the current batch operation cycle.
Thus, precise control cannot be carried out. This problem has become the bottleneck in the
field of industrial quality control of batch processes. However, the other process variables
of batch processes, such as pressure, temperature, flow, speed, and valve opening, can
be accurately measured online. By observing and calculating the specific relationships
between the process variables and the final quality, the final quality of products can be
analyzed and predicted online. Therefore, how to extract high-quality information from
the vast data ocean and make full use of it to guide production has attracted the attention
and interest of researchers. Principal component analysis (PCA) [1–4], independent com-
ponent analysis (ICA) [5–8] and partial least squares regression (PLS) [9–12], which are
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the core of multivariate statistical analysis technology, have been more and more favored
by researchers and field engineers because they only need process data and quality data
to build models, and they have unique advantages in processing high-dimensional and
highly coupled data.

Compared with successive industrial processes, the process characteristics of batch
production are more complex. Batch process data usually form a three-dimensional matrix.
In order to effectively utilize the unique advantages of multivariate statistical methods in
processing high-dimensional and highly coupled data, it is necessary to extend multivariate
statistical process modeling methods to batch processes according to the data characteristics
of batch processes. Multiway PCA (MPCA) and multiway PLS (MPLS) were first applied
to batch processes by Nomikos and MacGregor [13,14], which led to a series of upsurges in
research based on multiway statistical analysis. Many international research groups have
invested a lot of manpower and material resources to carry out the research work for batch
processes. The latest research applied various methods to the quality prediction and fault
detection of batch processes, such as multi-mode batch process fault detection based on
statistical difference LPP [15], and the fault detection of multiphase batch processes based
on SVDD [16].

The above methods were originally developed to focus on the static relationship rather
than the time-varying relationship between process variables. However, batch processes are
essentially time-varying processes, and time-varying behaviors may exist not only in the
within-batch operations but also between batches. To describe this kind of batch process, it
is necessary to capture two kinds of time-varying characteristics of batch processes, that is,
intra-batch time-varying, which occurs along the time direction within a batch, and inter-
batch time-varying, which occurs along the batch direction through the whole process. For
intra-batch time-varying, the most typical methods are based on phase division. Initially, a
new phase-based sub-PCA modeling method was proposed by Lu, Gao, and Wang [17].
After phase division, a two-way PCA model was built within each phase. Thus, different
phase characteristics were captured by different models and, accordingly, different process
monitoring control limits were calculated for different phases. Superior monitoring results
were obtained compared with the traditional MPCA. Furthermore, Zhao, and Wang [18]
proposed the multiphase quality residual recursive model for the quality prediction of batch
processes where the relationship between phases was analyzed to investigate the intra-
batch characteristic. In their work, phases were considered to contribute to the final quality
together, and each phase contributed one part of the final quality. The predicted quality
residuals of the first phase are considered as the object used to predict the second phase, and
this procedure is repeated phase by phase. For inter-batch time-varying, multiple modes
can be divided along the batch direction and different models can be established for process
analysis and quality prediction. Zhao and Gao [19] tracked the inter-batch evolution in their
work. According to different batch characteristics, a few modes were separated, modeled,
and monitored along the batch direction. In order to analyze the change between batches,
sliding window models were established. Based on the comparison between reference
windows and sliding windows, different process modes were separated in order along the
batch direction. Zhao and Yuan [20] mainly analyzed the multi-mode characteristics of the
injection molding process. The intermodal quality analysis was carried out to judge the
relationship between the new mode and the historical mode in the modal library, and then
it was determined whether the new mode was needed to update the modal library.

Recently, the impact of the previous batches on the quality of the current batch has
excited the attention of researchers. In the traditional methods, only the process data within
the current batch is responsible for the quality of this batch [21]. However, it has been
found that some phases of the batch before the current batch may have a greater impact on
the final quality of the current batch than the phases of the current batch, which should be
considered in the regression modeling. Based on this find, Zou [22] established multiple
sliding window models in the batch direction for quality prediction of the injection molding
process. In their work, based on the process knowledge that the plasticizing phase should
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have a bigger influence on the next batch than the current batch, the plasticizing phase
was moved down by one batch when establishing the regression model; that is, in order
to build the regression model of the current batch, the relationship between the process
variables of the plasticizing phase of the previous batch and the final quality of the current
batch was analyzed. Compared with the traditional method, their method improved the
accuracy for quality prediction. However, obviously, this kind of movement is based on the
process knowledge and the impact is arbitrary to some degree. In most cases, it may not be
enough to consider moving the concerned phase by only one batch.

In this paper, focusing on the slow time-varying characteristic, a series of works have
been conducted to implement an accurate quality prediction for batch processes. Based on
the mechanism characteristics of batch processes, this paper puts forward the conjecture that
the quality of the current batch is not only related to this batch but also related to previous
batches. Therefore, in this paper, the regression method based on the batch augmentation
analysis is proposed to predict the final quality of slow time-varying batch processes by
extracting more process data information corresponding to the process quality. To analyze
the inter-batch time-varying and include all related process data in the process regression
model, sliding windows are built and the concerned process variables are extended to the
process data in previous batches. Thus, the process data of the previous batches, which
have an important influence on the quality of the current batch, are identified and form a
new batch augmentation matrix for quality prediction. Firstly, to deal with the time-varying
characteristics along the batch direction, the sliding windows are constructed to analyze
several batches in the direction of the current batch, where different batches are covered by
different sliding windows, and multiple continuous models are established to capture the
relationships between the different process variables and quality, respectively, in order to
predict the final quality. Then, the start-up process is identified and the whole process is
divided into two modes according to the steady-state identification. The most important
mode in this work, the process data matrix used to establish the regression model of the
current batch, is expanded to involve the process data of the previous batches. The idea of a
support region can be found in reference [23]. This method includes the previous data in the
analysis of the current batch. However, the traditional support region is fixed and does not
change with the processes’ time-varying characteristic. It is necessary to judge the process
variables’ influence on the quality by a novel method based on the inter-batch time-varying
characteristic analysis. Using an algorithm, all the process data from this batch and the
process data from previous batches, which have an important influence on the final quality
of the current batch, will be included in the regression model to obtain the correlation
between the process data and the current batch quality and provide a better prediction of
the quality. Moreover, considering the multiphase characteristic, the batch augmentation
analysis and modeling is conducted within each phase of the process. Finally, the proposed
method is applied to a typical batch process, the injection molding process. The quality
prediction results are compared with those of the traditional quality prediction method
based on PLS and ridge regression under the proposed framework of batch augmentation
analysis. The influence on the model of faults from external sources in the batch process is
also considered in this paper. T2 and SPE statistics are used to monitor the current model.
When the test batch is faulty, an alarm is generated [24].

The rest of this paper consists of the following parts: First, Section 2 mainly introduces
the proposed method: the PLS method, slow time-varying batch process quality prediction
based on batch augmentation analysis, including the establishment of the sliding window
model, start-up process identification, critical-to-quality phase and batch identification, and
batch augmentation modeling. In Section 3, the method proposed in this paper is applied
to a practical injection molding start-up process. The results are compared with those of the
traditional methods and discussed based on the graphical results. Finally, the conclusion
is drawn.
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2. Methodology
2.1. Partial Least Squares Method (PLS)

Partial least squares method is a mathematical optimization technique, which finds the
best function match of a group of data by minimizing the sum of squares of errors. Some
absolute unknowable truth values can be obtained by the simplest method, and the sum of
error squares can be minimized. The object of partial least squares is two data matrixes
X(n×mx) with Y(n×my). Partial least squares can solve the problems of collinearity [25]
and insufficient samples [26] in traditional multivariate regression methods.

A partial least squares model can be shown as below

X = TPT + E =
A
∑

a=1
tapT

a + E

Y = UQT + F =
A
∑

a=1
uaqT

a + F
(1)

The PLS model will be used in this paper to analyze the relationship between the
process variables within critical-to-quality phases of critical-to-quality batches and the
concerned product quality variable.

When only one quality index is considered, the predicted quality can be calculated as

ŷ = Xβ (2)

where β is the regression parameter.

2.2. Sliding Window Model Establishment

The relationships between process variables and quality variables of each batch in the
start-up process of one batch process are not constant but is constantly changing from batch
to batch, reflecting the slow time-varying characteristic. In view of the slow time-varying
characteristic, it can be approximated that the relationships between process variables
and quality variables are the same in adjacent batches, while those of distant batches
are different. The sliding window method is adopted to capture the slow time-varying
characteristic. The relationship between the process variables and quality variables among
batches covered in one window can be captured by one model, and a series of models will
be built according to different windows. The development of the sliding window is shown
in Figure 1.
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In the batch process, each batch has a final quality. In this paper, the width of the
sliding window is set as Iw, and the window slides downward along the direction of batch
by L batch each time. Therefore, from the first window, which has the batches 1 to Iw, to
the last window, which has the batches (I − Iw) + 1 to I, a total of (I − Iw) + 1 windows are
generated. The data size of each window is Iw × J × K, and the corresponding quality data
Y is Iw × 1.

2.3. Start-Up Process Identification

Slow time-varying characteristic is obvious in the start-up process. To focus on the
start-up process, it is necessary to analyze the successive batches to distinguish the start-up
process from the steady process and further divide the process into modes. In this part,
the stability of the final product quality is used to identify the start-up process. Steady-
state identification [27,28] (SSID) method is applied to analyze the stability of the final
product quality.

Let y1, . . . , yn represent n consecutive measurement values, then the calculation for-
mula of the variance is as follows

s2 =

n
∑

i=1
(yi − y)2

n− 1
(3)

where y is the average of the n measurements, and s2 is the variance independently of the
order of the observations. If there is a trend in an observation, then s2 will include the effect
of the trend.

Another calculation method of variance can be derived from the mean square continu-
ous difference

δ2 =

n−1
∑

i=1
(yi+1 − yi)

2

n− 1
(4)

δ2/2 is the calculated value of the variance to minimize the influence of trend.
Von Neumann [29] proposes that the ratio of variance η = δ2/s2 of mean square

continuous difference is suitable as a basis to judge whether a trend exists. What needs
to be satisfied is that the data in a moving window has no change trend, and the value
of Q = 2/η is expected to be close to 1; on the other hand, if the data follow a curve,
Q = 2/η is statistically greater than 1. The critical value of trend detection can be obtained
in reference [30].

2.4. Critical-to-Quality Phase and Batch Identification

Traditionally, critical-to-quality phases and critical-to-quality batches mean the phases
and batches have an important impact on the quality of the current batch. Thus, the
identification is conducted by R2, which reflects the goodness of fit of the regression model
between the predicted value and the actual quality of each sampling point. R2 is used to
measure the importance of quality variables to the quality variables of the quality prediction
model. That is, if a prediction model has a larger R2, it means the process variables of this
model have an important influence on the final quality and can be identified as critical
to quality. It is easy to apply this idea to phases. That is, the phase that has the process
variables that are critical to quality would be identified as critical-to-quality phase.

To analyze the impact of previous batches on the final quality of the current batch, it
is necessary to propose a strategy to conduct critical-to-quality batch identification. Thus,
in this paper, within a sliding window, starting from the current batch, 1 to N batches
are pushed forward one by one to build regression models between the moved process
variables, and the final quality of the current batch and R2 values are calculated. In the same
way as critical-to-quality phases, the batch which has highest R2 is identified as a critical-to-
quality batch. That is, among the analysis of N batches, if the highest R2 is obtained when n
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batches are pushed forward, then it can be concluded that the n-th previous batch should
be identified as the critical-to-quality batch and involved in the regression model later.

The prediction accuracy R2
k,c,n of the quality prediction model of the k-th sampling

time within the c-th phase of the n-th previous batch is as follows

R2
k,c,n =

I
∑

i=1
(ŷi,k,c,n − y)2

I
∑

i=1
(yi − y)2

(5)

where yi is the measured value of the quality variable of the i-th batch, ŷi,k,c,n is the predicted
value of the quality variable of the k-th time slice within the c-th phase of the n-th previous
batch, and y is the average value of the quality variable measurement value of the i-th
batch. The value range of R2

k,c,n is 0–1. When R2
k,c,n approaches 1, this indicates that the

precision of the quality prediction model is high, so the influence of this phase on quality
variables is great. On the contrary, when R2

k,c,n approaches 0, this means that the change
in this phase cannot explain the change of quality index well and the influence on quality
variable is small.

When the sampling times in phase c are from kstart to kend, R2
c,n is proposed to indicate

the final impact of the c-th phase of the n-th previous batch to the current batch

R2
c,n =

kend

∑
k=kstart

R2
k,c,n/(kend − kstart) (6)

Thus, the critical-to-quality phase and batch can be determined by observing the value
of R2

c,n.

2.5. Batch Augmentation Modeling

Based on the analysis above, the critical-to-quality phases are not limited to the current
batch; that is, not only the process data of the current batch but also the process data of
previous batches, which have important impact on the final quality, are identified and
included in the quality prediction model, so as to obtain the meaningful information
between the quality and the process data as much as possible, and, thus, the quality
prediction will be improved.

In this part, for quality prediction based on inter-batch time-varying characteristic
analysis, a novel method of data window construction method based on batch augmen-
tation PLS is proposed, where the previous batches are included in the data window for
quality regression of the current batch. For the applied window model, it is equivalent to
augmenting n previous batches for the current batch analysis. For multiple phase processes,
the number of augmented batches for each phase could be different according to different
phase characteristics, which could be decided by the critical-to-quality phase and batch
identification method proposed in last part. In this way, the development of the sliding
window with augmented batches is shown in Figure 2.

In the traditional method [21], the window constructed in each operation phase is
from the I batch to the I + Iw − 1 batch and, for all phases, the length of the window is
the same, so the modeling data of phase c are Xc (Iw × J × K), c = 1, 2, . . . , C. While, for
the proposed method, the maximum number of correlation batches of the current window,
Lc, is obtained according to R2 in each phase to form new modeling data, which will be
different for different phases. For example, within phase 1, L1 batches are pushed forward
in the window, then the start batch of phase 1 window is I − L1 and the end batch is I +
Iw − 1 − L1, forming the data matrix X1 (Iw × J × K1), where K1 is the number of sample
points of phase 1. For phase c, the start batch is I − Lc and the end batch is I +Iw − 1 − Lc,
forming the data matrix Xc (Iw × J × Kc), where Kc is the number of sample points of phase
c. Finally, the C phases windows are combined to form new modeling data Xa (Iw × J × K).
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Each time slice of Xa (Iw × J × K), Xk (Iw × J), is regressed with the quality Y to obtain
the regression coefficient, and then the batch quality can be predicted by applying the
PLS method.
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The time slice PLS model is as below

Xk = TkPk
T + Ek =

A
∑

a=1
tk,apT

k,a + Ek

Y = UkQk
T + Fk =

A
∑

a=1
uk,aqT

k,a + Fk

(7)

When only one quality index is considered, the predicted quality can be calculated as

ŷk = Xkβk (8)

where βk is the regression parameter for the k-th time slice, k = 1, 2, . . . , K.
For process monitoring, the Hotelling-T2 and SPE statistics for the current time k are

Tk
2 = xk

TRk(
Tk

TTk
Iw − 1

)
−1

Rk
Txk (9)

SPEk = ‖x̃k‖2 = ‖(IJ − PkRk
T)xk‖

2
(10)

where x̃k is the residual vector at the current time.
The corresponding control limits are

δTk
2(α) =

H(Iw
2 − 1)

Iw(Iw − H)
Fkα(H, Iw − H) (11)

SPEk(α) = gkχ
2
h,α (12)

where Fkα(H, Iw − H) is the F distribution with α confidence and H and Iw − H are the
degrees of freedom, and H is the number of retained latent variables. The four-fold cross-
validation method is used to determine the number of retained latent variables in this
work [31,32]. gkχ

2
h,α is the χ2 distribution with the same confidence level of α and the

proportional coefficient of gk = s/2µ; h = 2µ2/s; µ is the mean value of SPE; s is the
variance of SPE.
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3. Illustration and Discussion
3.1. Injection Molding Process

As the most typical batch process, the injection molding process is mainly composed
of mold closing, injection, packing-holding, plasticizing, cooling, mold opening, and part
ejection. The injection phase, packing-holding phase, plasticizing phase, and cooling phase
are the four most important operation phases that determine the quality of parts. At
the same time, the production settings in the injection molding process cause multiple
production modes.

A schematic diagram of the injection molding machine is shown in Figure 3. A general
injection molding machine mainly comprises an injection system, a mold locking system, a
hydraulic control system, and an electrical control system. The injection system has the
main functions of plasticizing and fusing polymer granules or powder in the cylinder
into polymer melt in the front of the cylinder, injecting the melt into the mold cavity at
high pressure and high speed, and providing holding pressure in the subsequent packing-
holding phase to make the polymer enter the mold cavity continuously to fill the shrinkage
caused by cooling. The mold locking system has the function of opening or locking the
mold by moving the movable mold plate to open or close the mold. The hydraulic system is
an oil circuit supply and circulation system of the injection molding machine and provides
pressure and speed loops for each actuating mechanism of the injection molding machine.
The electric control system is responsible for various programs of the injection molding
machine, and mainly controls various actions of the injection molding machine and various
process variables of the injection molding process, including time, position, pressure,
velocity, and the like.
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3.2. Variable Analysis of Injection Molding Process and Experiment Condition

Injection molding is a complex process with multiple variables. In the process of
injection molding, there are many factors that affect the quality of products, and there
is a close relationship between the variables and each other. In addition, the process
characteristics of the four main phases of the injection molding process are analyzed.
It can be seen that various parameters in different phases have different effects on the
product quality.

In the process of injection molding, temperature and pressure are two important state
variables throughout the whole molding process. Their values directly determine the
properties of polymer melt material and the flow behavior in the mold cavity. Therefore,
in each phase of the injection molding process, temperature and pressure are important
factors to determine the quality of products, and they are the preferred process variables in
the process quality prediction.
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In the injection phase, the screw velocity is the most important process, determining
the melt flow velocity and affecting the product quality. When the mold is full, the injection
cylinder continues to maintain a certain pressure. In this phase, the holding pressure is the
most important process variable, which is generally achieved by controlling the pressure
of the cylinder or nozzle. In the plasticizing phase, the plasticizing pressure is also an
important variable. It helps to compact the material in the screw groove and empty the gas
in the material. In addition, in order to better understand the material state, temperature
and pressure sensors can be installed at the nozzle to directly measure the temperature and
pressure of the melt in the nozzle.

In addition, the start-up process of the injection molding process has slow time-varying
characteristics. Thus, the injection molding process is an ideal process to apply and verify
the proposed modeling method for batch process quality prediction. Critical-to-quality
process variables such as temperature, pressure, valve opening, and speed can be measured
online by corresponding sensors, while quality variables can only be measured after each
batch operation.

The material used in this experiment was high density polyethylene (HDPE). The
weight was selected as the final prediction criterion, and the selected process variables are
shown in Table 1, which are used to establish the model. The variable data shown in the
table were collected by sensors and the operating conditions are shown in Table 2.

Table 1. Process variables of injection molding process in start-up process.

Number Variable Description Unit

1 Screw speed Mm/s
2 Plasticizing pressure Bar
3 Nozzle temperature ◦C
4 Cylinder pressure Bar
5 SV2 valve opening %
6 SV1 valve opening %

Table 2. Operating condition settings for injection molding process.

Operating Parameter Set Value

Material High density polyethylene (HDPE)
Packing pressure 200 Bar

Packing time 3 s
Mold cooling water temperature 25 ◦C

Injection velocity 24 mm/s
Barrel temperature 230 ◦C

Cooling time 15 s

3.3. Start-Up Process Identification

A total of 100 batches are obtained in the injection molding process, with 6 variables
and 919 sampling points in each batch. Therefore, the collected data are X (100 × 6 × 919)
and Y (100 × 1).

In the injection molding process, the product weights reflect the trend of the process.
All weights are plotted in Figure 4. The conventional SSID method based on the ratio of
variances method was used to analyze the quality change trend between batches. The
analysis result is shown in Figure 5. The window length was selected to be 30. L was
selected to be 1. The critical values for trend detection can be found in reference [29]. The
confidence level of the control limit was set to 95%, and the control limit is shown by
dotted line.
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It can be seen from the above figure that the control limit mainly divides these batches
into two parts, and the process becomes steady after batch 88. For the convenience of
further explanation, the first 88 batches with Q values above the control limit are called
mode 1; the 89 to 100 batches with Q values below the control limit are called mode 2. The
start-up process refers to mode 1. Mode 2 can be assumed to belong to the steady process.

3.4. Critical-to-Quality Phase and Batch Identification

According to the change of process correlation, a batch of injection molding process is
divided into four main operation phases by using a phase division method, which are the
injection phase, packing-holding phase, plasticizing phase, and cooling phase. Each phase
has similar process characteristics. Therefore, process characteristics are stable in the same
phase. The phase division method basically corresponds to the knowledge of the batch
process. For complex and unfamiliar batch processes, the phase division method can utilize
process knowledge more effectively and promote the understanding of industrial process.

The injection molding process is divided into phases by indicator variables. The phase
division result of the injection molding process is shown in Figure 6. The sample points of
the first phase, the injection phase, are 1–220; the sample points of the second phase, the
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packing-holding phase, are 221–519; the sample points of the third phase, the plasticizing
phase, are 520–729; the sample points of the fourth phase, the cooling phase, are 730–919.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19 
 

 

The injection molding process is divided into phases by indicator variables. The 
phase division result of the injection molding process is shown in Figure 6. The sample 
points of the first phase, the injection phase, are 1–220; the sample points of the second 
phase, the packing-holding phase, are 221–519; the sample points of the third phase, the 
plasticizing phase, are 520–729; the sample points of the fourth phase, the cooling phase, 
are 730–919. 

 
Figure 6. Final result of phase division in injection molding process. 

Since there are two different modes identified by SSID analysis, these two different 
modes should be considered separately.  

Firstly, 
2
,c nR

 of mode 1 is analyzed. According to the characteristics of the injection 
molding process, one window is selected for analysis as an example. The number of the 
starting batch I is 40, the window length wI  is set to 30, the number of the end batch is 
69, and the number of moving batches n is set to 10. According to the above conditions, 

the 
2
,c nR

 results are shown in Figure 7. The average 
2
,c nR

 of each batch and each phase 

is shown in Table 3. It can be seen from Figure 7 and Table 3 that the 
2
,c nR

 values of each 

phase first increase and then decrease, and the values of 
2
,c nR

 also achieve the maximum 
values between 2 and 3 batches before the current batch. It can be seen from Figure 7 that 

there is a maximum value of 
2
,c nR

 when the batch is recursed forward, followed by a 

significant decrease. From Table 3, the batch corresponding to the maximum 
2
,c nR

 value 
of each phase is selected. The following conclusions are obtained: within the first phase, 
three batches should be moved forward; within the second phase, three batches should be 
moved forward; within the third phase, two batches should be moved forward; within 
the fourth phase, two batches should be moved forward. According to the number of the 
batches that should be moved, the window for quality prediction would be rebuilt. 

100 200 300 400 500 600 700 800 900 1000
Samples

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Injection
phase

Plasticizing
phase

Cooling
phase

Packing-holding
phase

Figure 6. Final result of phase division in injection molding process.

Since there are two different modes identified by SSID analysis, these two different
modes should be considered separately.

Firstly, R2
c,n of mode 1 is analyzed. According to the characteristics of the injection

molding process, one window is selected for analysis as an example. The number of the
starting batch I is 40, the window length Iw is set to 30, the number of the end batch is
69, and the number of moving batches n is set to 10. According to the above conditions,
the R2

c,n results are shown in Figure 7. The average R2
c,n of each batch and each phase is

shown in Table 3. It can be seen from Figure 7 and Table 3 that the R2
c,n values of each

phase first increase and then decrease, and the values of R2
c,n also achieve the maximum

values between 2 and 3 batches before the current batch. It can be seen from Figure 7
that there is a maximum value of R2

c,n when the batch is recursed forward, followed by a
significant decrease. From Table 3, the batch corresponding to the maximum R2

c,n value
of each phase is selected. The following conclusions are obtained: within the first phase,
three batches should be moved forward; within the second phase, three batches should
be moved forward; within the third phase, two batches should be moved forward; within
the fourth phase, two batches should be moved forward. According to the number of the
batches that should be moved, the window for quality prediction would be rebuilt.

Table 3. Average R2
c,n of each batch and each phase of mode 1.

Batch Phase 1 Phase 2 Phase 3 Phase 4

n 0.8959 0.9120 0.9096 0.9078
n − 1 0.8977 0.9182 0.9157 0.9087
n − 2 0.9006 0.9159 0.9222 0.9176
n − 3 0.9051 0.9263 0.9197 0.9039
n − 4 0.8811 0.9185 0.9124 0.8953
n − 5 0.8782 0.9101 0.9018 0.8960
n − 6 0.8705 0.8918 0.9017 0.8912
n − 7 0.8654 0.8717 0.8861 0.8904
n − 8 0.8516 0.8738 0.8816 0.8795
n − 9 0.8354 0.8653 0.8767 0.8723
n − 10 0.8254 0.8711 0.8764 0.8717



Sensors 2022, 22, 512 12 of 18
Sensors 2022, 22, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 7. Results of mode 1. 

Table 3. Average 
2
,c nR

 of each batch and each phase of mode 1. 

Batch Phase 1 Phase 2 Phase 3 Phase 4 
n 0.8959 0.9120 0.9096 0.9078 

n − 1 0.8977 0.9182 0.9157 0.9087 
n − 2 0.9006 0.9159 0.9222 0.9176 
n − 3 0.9051 0.9263 0.9197 0.9039 
n − 4 0.8811 0.9185 0.9124 0.8953 
n − 5 0.8782 0.9101 0.9018 0.8960 
n − 6 0.8705 0.8918 0.9017 0.8912 
n − 7 0.8654 0.8717 0.8861 0.8904 
n − 8 0.8516 0.8738 0.8816 0.8795 
n − 9 0.8354 0.8653 0.8767 0.8723 
n − 10 0.8254 0.8711 0.8764 0.8717 

Since the system stabilized after 88 batches, the last window includes batches 58–87 
in mode 1. All the windows in mode 1 are analyzed, and the average numbers of the 
batches that should be moved forward for each phase are similar among the windows, 
which are used for all windows in mode 1. Here, the average numbers of the batches that 
should be moved forward are 3, 3, 2, and 2 for the four phases. 

For mode 2, which is in steady-state, because the process characteristics of the steady-
state change only a little, all running batches in the steady-state are taken as a window, 
i.e., batches 88–100, and no other windows of steady batches are analyzed since this is not 
the focus of this research.  

3.5. Quality Analysis and Prediction of the Start-Up Process 
After critical-to-quality phase and batch identification, for the quality analysis and 

prediction in mode 1, batch augmentation modeling is conducted for each window. The 
window of 40–69 batches is selected as an example for the comparative analysis, and 
batches 50, 55, 60, and 65, are taken as test batches. At the same time, because ridge re-
gression is a biased estimation regression method especially used for collinearity data 
analysis [33,34], in this paper, under the proposed batch augmentation framework based 

R
2

Figure 7. Results of mode 1.

Since the system stabilized after 88 batches, the last window includes batches 58–87 in
mode 1. All the windows in mode 1 are analyzed, and the average numbers of the batches
that should be moved forward for each phase are similar among the windows, which are
used for all windows in mode 1. Here, the average numbers of the batches that should be
moved forward are 3, 3, 2, and 2 for the four phases.

For mode 2, which is in steady-state, because the process characteristics of the steady-
state change only a little, all running batches in the steady-state are taken as a window, i.e.,
batches 88–100, and no other windows of steady batches are analyzed since this is not the
focus of this research.

3.5. Quality Analysis and Prediction of the Start-Up Process

After critical-to-quality phase and batch identification, for the quality analysis and
prediction in mode 1, batch augmentation modeling is conducted for each window. The
window of 40–69 batches is selected as an example for the comparative analysis, and batches
50, 55, 60, and 65, are taken as test batches. At the same time, because ridge regression is a
biased estimation regression method especially used for collinearity data analysis [33,34],
in this paper, under the proposed batch augmentation framework based on the process
data after batch augmentation analysis, the PLS method and ridge regression method are
used to predict, and predictions are compared with the traditional PLS modeling method.
The advantage of the strategy proposed is analyzed and compared in this paper. In the
analysis, the root mean square error (RMSE) is used to evaluate the prediction results.

Root mean square error (RMSE) can be used to test the accuracy of model prediction,
which can be expressed as

RMSE =

√
n

∑
i=1

d2
i /n (13)

where n is the number of sampling points and di is the difference between the actual value
and the average value of the predictions. For the prediction result, the larger the RMSE is,
the worse the prediction result is. Conversely, the higher the prediction accuracy is.

The proposed method based on the batch augmentation analysis is used for online
quality prediction of the four test batches by PLS and ridge regression, and, meanwhile, the
traditional time slice PLS method without batch augmentation is used for online quality
prediction of the four test batches. The online predicted quality for each test batch is shown
in Figures 8–11. It can be seen from the following four figures that the prediction results
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using the batch augmentation PLS are closer to the actual values than those made by the
traditional method and batch augmentation ridge regression.
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As can be seen from the figures, the prediction effects of the traditional method, the
batch augmentation ridge regression, and the batch augmentation PLS are similar. In order
to test the prediction accuracy, the RMSE is calculated based on the predicted results of
each time of the test data and the final actual quality. The predicted RMSE for the four test
batches are shown in Table 4.

Table 4. RMSE comparison of 4 test batches quality predictions.

Test Batch Traditional Method Batch Augmentation
Ridge Regression

Batch Augmentation
PLS

50 batch 0.0055 0.0078 0.0032
55 batch 0.0041 0.0042 0.0030
60 batch 0.0060 0.0029 0.0038
65 batch 0.0082 0.0031 0.0055

According to Table 4, it can be concluded that for the 50th and 55th batches, the PLS
modeling method based on batch augmentation analysis has the best prediction effect, and
the RMSE prediction results are 0.0032 and 0.0030, respectively. The RMSE of the traditional
method are 0.0055 and 0.0041, respectively, and the RMSE of the batch augmentation ridge
regression are 0.0078 and 0.0042, respectively. For the 60th and 65th batches, the ridge
regression modeling method based on batch augmentation analysis has the best prediction
effect, and the RMSE prediction results are 0.0029 and 0.0031, respectively. The RMSE
of the traditional method are 0.0060 and 0.0082, respectively, and the RMSE of the batch
augmentation PLS are 0.0038 and 0.0055, respectively.

Then, the online average RMSE values of the four test batches are calculated for the
three methods, respectively, and the results are shown in Figure 12. The overall RMSE
average values obtained are shown in Table 5. According to Table 5, the RMSE obtained
by the traditional method is 0.0056, and the RMSE obtained by the batch augmentation
ridge regression method is 0.0047, while the RMSE obtained by the batch augmentation
PLS method is 0.0036. It can be seen that the overall RMSE of the PLS modeling method
based on batch augmentation analysis is smaller than those of the batch augmentation
ridge regression and the traditional method, indicating that this method has the best
prediction effect.
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Table 5. Overall RMSE of online quality predictions.

Method RMSE

Traditional method 0.0056
Batch augmentation ridge regression 0.0047

Batch augmentation PLS 0.0036

In order to further verify the effectiveness of the method, eight test batches are ran-
domly selected in mode 1, and the quality prediction of each test batch is carried out in the
corresponding window model. The traditional method, batch augmentation PLS, and batch
augmentation ridge regression method are used to predict the quality, and the average
value of the predicted quality of each test batch is obtained as the final quality prediction.
The results are shown in Figure 13. The RMSE is calculated from the predicted results of
each batch of test data and the final actual quality. The RMSE values are shown in Table 6.
According to the above table, the RMSE obtained by the traditional method is 0.0042 and
the RMSE obtained by the batch augmentation ridge regression is 0.0061, while the RMSE
obtained by the batch augmentation PLS is 0.0026. The RMSE of the batch augmentation
PLS modeling method is the smallest. Therefore, it can be concluded that the quality predic-
tion method based on batch augmentation PLS has higher prediction accuracy than those
based on the traditional PLS and the batch augmentation ridge regression in offline state.

In addition, there are many kinds of faults in batch processing, and the influence of
faults on the model needs to be considered. For the problem of faults from external sources,
the monitoring process is added to determine if a fault does not match the current model.
It is necessary to identify if the process data belong to any other normal process and, if
it belongs to a normal process, apply the process model to predict the quality; otherwise,
a process fault is identified and an alarm should be raised. To illustrate this situation, an
external input fault is artificially added to a test batch, the input temperature is increased
by 5 ◦C after the 100th sampling point, and the current batch is monitored. The monitoring
effect of the fault batch is shown in Figure 14. It can be seen from the figure that T2 and
SPE of the fault batch are beyond the control limits. This shows that both the traditional
method and the batch augmentation PLS modeling model can monitor the fault batch well.
Especially for SPE statistics, when an error occurs at the 100th sampling point, SPE can
quickly monitor it and generate an alarm. After testing other process models, the data do
not belong to any normal process. Thus, no quality prediction will be carried out for this
batch and an alarm will be raised.
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Table 6. RMSE of final quality predictions.

Method RMSE

Traditional method 0.0042
Batch augmentation ridge regression 0.0061

Batch augmentation PLS 0.0026
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4. Conclusions

This paper proposes a new quality prediction method for slow time-varying batch
processes: quality prediction based on batch augmentation PLS modeling and analysis.
Firstly, sliding windows are adopted to capture the slow time-varying characteristics be-
tween batches. Then, according to the state characteristics, the start-up process is identified.
In addition, the index of goodness of fit is used to identify the critical-to-quality phases and
batches, where the previous batches are analyzed and judged for the quality analysis of the
current batch. Furthermore, the batches considered to be critical-to-quality are augmented
into the sliding windows, and, based on the proposed batch augmentation analysis, PLS
regression models are built for quality prediction. The application to the injection molding
processes showed that compared with the traditional quality prediction method and the
ridge regression under the batch augmentation framework, the proposed method is the
most accurate.
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