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Abstract: Due to its increasing incidence, skin cancer, and especially melanoma, is a serious health
disease today. The high mortality rate associated with melanoma makes it necessary to detect the
early stages to be treated urgently and properly. This is the reason why many researchers in this
domain wanted to obtain accurate computer-aided diagnosis systems to assist in the early detection
and diagnosis of such diseases. The paper presents a systematic review of recent advances in an area
of increased interest for cancer prediction, with a focus on a comparative perspective of melanoma
detection using artificial intelligence, especially neural network-based systems. Such structures can
be considered intelligent support systems for dermatologists. Theoretical and applied contributions
were investigated in the new development trends of multiple neural network architecture, based
on decision fusion. The most representative articles covering the area of melanoma detection based
on neural networks, published in journals and impact conferences, were investigated between 2015
and 2021, focusing on the interval 2018–2021 as new trends. Additionally presented are the main
databases and trends in their use in teaching neural networks to detect melanomas. Finally, a research
agenda was highlighted to advance the field towards the new trends.

Keywords: skin lesion; image processing; machine learning; deep learning; neural networks; image
classifiers; image segmentation; melanoma detection; statistic performances; review

1. Introduction

Melanoma (Me) is known as the deadliest type of skin cancer [1], the incidence of its
occurrence increasing for both men and women worldwide every year [2,3]. According to
Sun X. et al. [4] the main cause of Me occurrence is exposure to ultraviolet radiation. Due
to this excessive exposure, some mutations that occur at the level of melanocytes can lead
to Me genesis. Even though it is one of the deadliest types of skin cancers, many studies
showed that early detection of Me leads to its treatment in 90% of cases [5]. Currently, the
standard method of Me diagnosis is visual analysis by a specialist. However, this method
can be time-consuming. Moreover, it can lead to misdiagnosis due to the complexity of
providing the diagnosis. The following aspects need to be considered: the number of
parameters that need to be analyzed (color, shape, texture, edge, asymmetry, etc.), the
fatigue, and the lack of experience of the specialist [6–8]. In most cases, the dermoscopic
images are acquired and analyzed by the dermatologist, thus achieving a maximum of
84% examination accuracy (ACC) [9,10], which is insufficient. Therefore, the help of a
computer-aided diagnosis (CAD) system for Me diagnosis from images is more than
necessary [11].

Over time, a lot of researchers have put their ideas together to try to develop an
automatic Me detection system based on machine learning (ML) that provides a quick
result with high ACC, even if the complexity of skin lesion (SL) images analysis presented
many problems [12,13]. In reality, it is a rather complex task to find a suitable diagnosis
algorithm due to the presence of artifacts, such as the presence of hair around or even in
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the lesion, different lesion dimensions, color and shapes, the presence of blood vessels, and
other artifacts [14], as seen in Figure 1.

Figure 1. Artifacts in Me images collected from the ISIC 2016 dataset [14]: (a–c)—presence of hair,
(d)—presence of blood vessels, (e,f)—presence of oil drops.

The inconveniences caused by these factors led the authors to expand their research
a lot but, in principle, most approaches use the same classical method in which the first
step is the preprocessing step, followed by segmentation, feature extraction, and then the
classification step. The main workflow of the classical method is as shown in Figure 2.

Figure 2. Methods workflow for Me detection: (a) classical method, (b) NN approach.

The preprocessing step consists of applying primary operations such as the following:
noise removal, data augmentation, resizing, brightness grayscale transformation or bright-
ness corrections, binarization, and, mainly, intensity and contrast enhancement [15]. As
the Me images have a high variability of content, the segmentation step is a much-debated
topic and a difficult task. This step represents the part of the algorithm that makes pos-
sible the image splitting into several sets of pixels [16], with the extraction of regions of
interest (RoI) by an automatic or semiautomatic process as the end result [17]. Among
the most commonly used techniques for Me detection and segmentation are artificial
neural network-based methods (NNs). Considering the variability of Me images, the first-
mentioned method (Figure 2a) cannot provide the best results. After the segmentation, the
feature extraction step is usually applied. This task consists of reducing the dimensions of
the data representation such that this becomes more administrable. Thus, data processing
becomes faster and easier, without losing important information. Even so, it is known as a
large consumer of resources due to the high number of variables. Generally, if the feature
extraction is well done, the detection ACC will increase significantly [16]. In the past, most
authors [18–20] used the ABCD (Asymmetry, Border, Color, Differential structure) rule as a
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feature extraction-based method for Me detection, while presently others use deep learning
(DL) techniques to make the feature extraction better. The last, and the most discussed step
in our review, is the classification step. The goal of this step is to assign a class to an RoI
from an image. Manual classification is hard and time-consuming and therefore the interest
for developing an accurate automatic classification algorithm increased in last years.

Nowadays, whether it is about segmentation, feature extraction, or classification, the
tendency is to use the benefits of Artificial Intelligence (AI) using NN and DL techniques to
obtain more accurate results. The main goal of AI is the reproduction of human intelligence,
with applications in domains such as autonomous vehicles, search engines, art creation,
or medical diagnosis. In the case of Me detection by applying AI, promising results were
obtained, reaching a level where only visual inspection of SL is no longer a reliable solution.
Known as a subset of the AI, the classical ML algorithms were proposed first as a solution
for automatic Me detection. Mainly, ML uses the previous experience to improve the
given results [21]. The system first extracts the needed features to create the training data.
After the training data are obtained, supervised or unsupervised learning is used in the
learning process. Generally, most papers used the supervised learning models, being more
accurate. As has been observed also in other areas in which it is applied, the classical
ML-based methods showed promising results, but also some limitations. For example, a
large amount of data are needed to train the system, the learning phase takes a long time,
and ML presents a high error-susceptibility. Thus, the authors turned their attention to NN
and DL techniques.

NNs consist of a collection of neurons that simulates the function of neurons in a
human being. In such a network, the neurons are connected to each other, each connection
being assigned a weight, helping the neurons to give the necessary output. The authors
prefer the NNs because they present benefits, such as distributed memory, the possibility
of giving good results with a small amount of information, or the possibility of parallel
processing. For training, the system error is calculated by taking the difference between the
predicted value and the output target. Using this calculated error, the system adjusts its
weights until the error is minimized.

Most Me detection papers used the feedforward and the recurrent NNs to obtain a
high ACC result. Better results were obtained by the authors by using DL models such as
CNN or Recurrent NN. The CNNs are NNs with at least one convolution layer. At present,
different applications including Me detection systems obtain the best results.

The main aim of this work is the analysis of new trends of approaches used in the
automatic SL detection field (especially Me). The paper focuses on presenting the growth
trend of using NN techniques when developing such a system. The rest of the paper is
organized as follows. Section 2, named Materials and Methods, presents the search strategy
for motivation and selection of the recent relevant papers to establish the new trends in the
Me detection by NN. Section 3 addresses the main DSs used in the selected articles, focusing
on public DSs. The most important NNs used today for Me detection, classification, and
segmentation are described and analyzed in Section 4. Section 5 presents the new directions
of NN implementation in Me detection, taking into consideration individual NNs, multiple
NN configurations based on decision fusion, and hybrid configurations consisting of NNs
and other intelligent classifiers. Finally, a Discussion section (Section 6) compares the
results of this paper with other similar review/survey papers highlighting the novelties.

2. Materials and Methods

Although the papers that addressed Me detection and NN use separately are older and
their research is well-established, the study of Me detection by NN algorithms is relatively
recent (Figure 3a). As we considered the new trends in Me detection using NNs, we searched
the following DSs: Web of Science, Scopus, and PubMed between 2015 and 2021 considering
the following topics: melanoma, skin lesions, artificial intelligence, machine learning, deep
learning, and convolutional neural networks. The search was split between combinations of
keywords using the “AND” connector: CNN AND Me (Figure 3a), DL AND Me (Figure 3b),
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ML AND Me (Figure 3c), and AI AND Me (Figure 3d). It can be observed that the increase in
research is exponential in the cases of CNN AND Me, DL AND Me, and AI AND Me and
quasilinear in the case of ML AND Me. The number of publications identified according to
the search in the database is labeled on the y-axis in Figure 3.

Figure 3. Searches for important terms in the Web of Science, Scopus, and PubMed DBs between
2015 and 2021 with the AND connector: (a) CNN AND Me, (b) DL AND Me, (c) ML AND Me, and
(d) AI AND Me.
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As many as 300 full-text papers were analyzed from Web of Science, Scopus, and
PubMed, of which we selected 134 research papers for this review. The main criteria for pa-
per selection were: the recent period, new trends in Me detection by the aid of NN, visibility,
and impact of contributions (publishing in high-rank conferences and journals, number of
citations). The most representative articles covering melanoma detection based on neural
networks, published in journals and impact conferences, were investigated between 2015
and 2021 (92% of references), focusing on the interval 2018–2021 (80% of references) as
a recent period. In terms of new trends of using NNs for detection, segmentation, and
classification of Me, we noticed the following directions: systems using one single CNN
most often modified and adapted for Me, systems using multiple CNNs, and systems using
CNN combined with other classifiers. Details will be given in Section 5. Although the
number of citations is relative, in general for older papers it is higher than for new ones
(2021). However, obviously, there are exceptions. Due to this, we did not set a threshold
for the number of citations. We had in mind that most papers follow what we have stated
as new trends and obviously have a reasonable number of citations. The high-rank of the
journal refers to Category Quartile Q1, Q2, and the Journal Impact Factor greater than
2.2 in Web of Science 2020. About 50% of the total references meet this criterion. For the
systematic review and meta-analysis, we used a PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram (Figure 4).

Figure 4. PRISMA flow diagram of our research.

Most relevant papers concerning the aspects of new trends in the last period (related
to Me, DSs, NNs, decision fusion, and combined networks) are detailed in Sections 3–5. To
compare every analyzed paper, the important statistical performances are presented. The
performance evaluation metrics most used in SL detection, segmentation, and classification
are the following: Accuracy, Precision, Sensitivity, Specificity, F1-score, and Jaccard index.
The formulas are listed in Table 1, where TP is true positive, TN—true negative, FP—false
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positive, and FN—false negative cases. The emphasis was on accuracy (ACC), F1 score
(F1—Dice Coefficient), and Jaccard index (IoU—Intersection over Union).

Table 1. Performance indicators used in the review.

Indicator Formula Indicator Formula

Accuracy TP+TN
TP+TN+FP+FN Sensitivity TP

TP+FN
Precision TP

TP+FP Specificity TN
TN+FP

Dice Coefficient 2�TP
2�TP+FP+FN Jaccard index TP

TP+FN+FP

3. Datasets Used in Melanoma Detection

The systems presented in this study are based on AI, which means that they are
meant to learn from one or more DSs (both small and large ones). The DSs were built in
collaboration with doctors/medical specialists. These DSs are composed of high-quality,
well-selected images, previously analyzed, labeled, and potentially segmented by medical
specialists from the respective domain. Our study aims to present the growth trend of such
automated systems able to diagnose, segment, or detect certain SLs (especially Me) based
on existing papers in the literature. The outcome of these papers was possible because of
some existing public DSs. In this section, we will present some of the popular DSs which
were used in a lot of papers from the SL domain. Among these DSs, we can find PH2,
ISIC 2016, 2017, 2018, 2019 challenge DSs, HAM10000, DermNet Atlas, Dermatology Atlas,
DermIs, and MED-NODE (Table 2).

One of the most used dermoscopic databases (DB) in certain papers is PH2. As
specified in [22], this DB was built in Portugal at Hospital Pedro Hispano as a collaboration
between multiple medical entities. The images from this DB contain a total number of
200 dermoscopic images (80 common nevi, 80 atypical, and 40 Me). The images are 8-bit
RGB color images with a resolution of 768 × 560 pixels, carefully selected by taking into
consideration the quality, resolution, and dermoscopic features. For each image in the DB,
the manual segmentation and the clinical diagnosis of the SL as well as the identification of
other important dermoscopic criteria are available.

Other important DSs used in this area are provided by ISIC (International Skin Imaging
Collaborative) which provides expertly annotated DSs containing digital SL images of
different versions (2016, 2017, 2018, 2019, and 2020) to facilitate CAD of multiple SL
diseases [23,24]. These DSs were used at the International Symposia in Biomedical Imaging
(ISBI).

ISIC 2016 DS [14] contains 900 dermoscopic lesion images in JPEG format, with EXIF
data stripped as training data and 379 images with the same format as testing data. The
images from this DS have a resolution between 576 × 768 and 2848 × 4288, which means
that, in some cases, resizing operations might be needed.

ISIC 2017 [25] contains a total number of 2750 SLs where 2150 can be used as training
data and 600 can be used for testing data. The resolutions of these images are between 540
× 722 and 4499 × 6748. Like in the previous DS, in some cases, resizing operations might
be needed.

The ISIC 2018 challenge DS [25] was used for Skin Lesion Analysis towards the
Melanoma Detection challenge [26]. The DS is quite large (about 10.4 GB), and it contains
2594 images and 12,970 corresponding ground truth response masks (5 for each image) as
training data and 1000 images (about 2.2 GB) as testing data. The SL are RGB images in JPG
format and the masks are grayscale images in the PNG format [27]. The ISIC 2018 challenge
was composed of three challenge tasks. Within the first two tasks, the participants were
using 2594 images already presented, while, within the last task, representing a classification
task, the participants used HAM10000 DS, which of course is another very popular DS,
publicly available through ISIC archives. HAM10000 is composed of 10,015 images out of
which 1113 are Me. All images in the DS are in JPEG format (8-bit color depth) and were all
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manually cropped with the lesion centered to 800 × 600 px at 72DPI and manual histogram
corrections applied to enhance visual contrast and color reproduction [28]. ISIC 2019 and
ISIC 2020 are new variants of ISIC DSs with more and more images in comparison with
previous ones [23].

Another popular DS used in skin cancer detection systems is MED-NODE DS, which
contains 70 Me and 100 nevus images from the digital image archive of the department of
dermatology, University Medical Center Groningen [29].

Dermofit image library is a DS, property of the University of Edinburgh, which can
be used only in medical imaging research. The DS is composed of 1300 high-quality SL
images and contains ten different classes including Me (76), Melanocytic Nevus/Mole
(331), Seborrhoeic Keratosis (257), Basal Cell Carcinomas (239), etc. [30]. Each image in
this DS is a normal RGB captured with a quality SLR camera under controller (ring flash)
indoor lighting. The images were labeled based on expert opinion (dermatologists and
dermatopathologists) and binary segmentation masks, marking the lesions themselves, are
also included. To access this DS, there is a need for a one-time purchase-only license.

DermNet Skin Disease Atlas is another DS used in research related to skin lesions detec-
tion, segmentation, and classification problems. This DS is composed of over 22,000 images
(only 21,844 found as relevant) divided into 23 types of skin diseases (superclasses) [31].
The images are of the RGB type in JPEG format and the resolutions vary from image to
image [32].

DermIS is also a publicly available dermoscopic image DS, widely used in the literature
for SL detection, segmentation, and classification purposes and it is composed of a total
number of 300 Me images [33]. The DS is available on [34] and provides the ability to search
for dermoscopic images by category (face, hands, legs, etc.).

Another popular DS used for SL detection, segmentation, and classification was
Dermquest which is an online medical atlas for dermatologists and dermatologist-based
healthcare professionals [35]. The DS was publicly available (it is not currently) and
contained over 22,000 clinical images.

Table 2. Skin lesions DSs frequently used in Me detection.

DS Name Reference Availability SL Me

PH2 [22] Publicly available 200 40
ISIC 2016 [14] Publicly available 900 273
ISIC 2017 [25] Publicly available 2000 374

ISIC 2018, HAM10000 [25,28] Publicly available 10,015 1113
ISIC 2019 [23,26,36] Publicly available 25,333 4522
ISIC 2020 [23] Publicly available 33,126 584

DERMQUEST [37] Publicly available 126 66
MED-NODE [29] Publicly available 170 100
DERMNET [31] Publicly available 22,500 635

DERMIS [33,34] Publicly available 397 146
DERMOFIT [30] Purchase only 1300 76

Table 2 gives a summary of the properties of the DB/DS used in the studied references
and illustrates the availability of the discussed and primarily used DSs identified in our
study/survey.

The ISIC archives, PH2, HAM10000, MED-NODE, DermIS, and Dermquest DSs are
free and publicly available for SL diagnosis research. Watermarks usually mean noise in the
images when it comes to DL systems which are oriented towards learning different patterns.
Therefore, researchers willing to access the high-quality images without watermarks from
DermNet will need to purchase a license. This is one of the reasons we observed that
DermNet is not widely used (it can be seen in Figures 5 and 6), even if it is a large data
set where the non-watermarked, high-quality images might make the difference in the DL
process.
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Figure 5. Frequently DSs used in Me detection between 2018 and 2020.

Figure 6. The four most used DSs for Me detection in 2021 (percentage).

According to our study, as can be seen in Figure 5 (focusing on the period 2018–2020,
as new trends) and Figure 5 (for 2021), the most widely used DSs in SL diagnosis research
are the ones included in ISIC archives (containing also H10000). The first reason is that
these DSs are quite consistent and very well labeled by domain experts, and the second
reason might be the annual challenges posed by consistent prices. The second place is
occupied by PH2, which is a small DB but, according to our study, the trend is to use
small DSs for system/solution validation and to use large DSs for learning such as with
DL and TL (transfer learning) systems. As can be seen in Section 4, data augmentation is
frequently used. For the year 2021, a separate evaluation (based on percentage) is presented
in Figure 6. It can be observed that the trend is maintained (54% ISIC and 30% PH2).

4. Neural Networks Used in Melanoma Detection, Segmentation, and Classification

According to the current study related to SL detection, segmentation, and classification
papers in the literature, it turned out that the majority of these kinds of tasks used NNs,
CNNs, DCNNs (Deep Convolutional Neural Networks), and TL for NNs. It can be observed
that the trend throughout the years, in general, and not strictly related to SL diagnosis
systems, is that researchers used to design deep networks with a lot of hidden layers (either
convolutional or fully connected layers) to obtain better results. It is normal that, when this
happened at first, the time complexity for training, classification, detection, or segmentation
was somehow neglected, all works being more focused on better statistical performance
(required by diagnostic specialists). As a consequence, the majority of works related to Me
detection, segmentation and/or classification systems are based on NNs. Table 3 illustrates
the most used NNs in such applications. As we are mostly interested in the usage trend of
NNs used in Me diagnosis, this section presents the architecture of the basic NNs widely
used in these kinds of applications.
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Table 3. Family of NNs used for Me diagnosis used in references.

NN family Representatives References

ResNet
ResNet 34, ResNet 50,

SEResNet 50, ResNet 101,
ResNet 152, FCRN

[5,6,31,38–50]

Inception/GoogLeNet
GoogLeNet (Inception v2),

InceptionResNet-v2, Inception
v3, Inception v4

[5,36,40–43,45,46,49–52]

U-Net U-Net [43,49,53–63]

GAN GAN, SPGGAN, DCGAN,
DDGAN, LAPGAN, PGAN [6,52,56,64–71]

DenseNet DenseNet 121, DenseNet 161,
DenseNet 169, DenseNet 201 [1,31,40,41,49,50,52,67,71,72]

AlexNet AlexNet [6,12,45,46,73–76]

Xception Xception [40,42,43,46,49,52,67]

EfficientNet EfficientNet, EfficientNetB5,
EfficientNetB6 [47,77–83]

VGG VGG 16, VGG 19 [40,43,45–47,54,84,85]

NASNet NASNet, NASNet-Large [5,31,42,86]

MobileNet MobileNet, MobileNet2 [40,43,47,87]

YOLO YOLO v3, YOLO v4, YOLO v5 [88–90]

FrNet FrNet [91]

Mask R_CNN Mask R_CNN [92]

Following the investigation of the Web of Science DB between the years 2018 and 2020
(Figure 7), it can be found that the most used NN in the detection of Me were those in the
family ResNet, followed by the families: VGG, GoogLeNet, and AlexNet. For the year 2021,
the tendency is for ResNet and VGG networks (Figure 8). Figure 7 marks the number of
appearances in the years 2018, 2019, and 2020, and Figure 8 the percentage of appearances
in 2021 (unfinished year).

Figure 7. Frequently NNs used in Me detection between 2018 and 2020.
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Figure 8. The most used NNs for Me detection in 2021 (percentage).

4.1. AlexNet

AlexNet [93] is one of the first CNNs widely used in SL classification tasks via TL. The
basic architecture (Figure 9) is composed of eight layers, out of which five are convolutional
layers (Conv) and three are fully connected layers (FC). The first and second layers are
followed by Max Pooling layers (MPX) and Local Response Normalization (LRN), while
the third, fourth, and fifth are followed by ReLU (Rectified Linear Units) [94]. The last layer
(Softmax layer) has 1000 neurons and is used for the classification task (1000 classes). The
number of layers specified in the above architecture is not what makes AlexNet special.
AlexNet replaced the Tanh function with ReLU for speed enhancement in terms of training
time. In Figure 9, at each layer, the number of neurons is specified.

Figure 9. AlexNet basic architecture.

For example, in 2018, the authors in [45] trained AlexNet using TL, together with three
other architectures: GoogLeNet, ResNet, and VGGNet to achieve a better ACC in such
classification tasks. By training AlexNet to classify SL, the authors obtained an average
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ACC of about 85%. Other research papers such as: [12,73,74] used the trained AlexNet for
SL diagnosis.

4.2. GoogLeNet/Inception

GoogLeNet, also named Inception v1, is a CNN proposed by researchers at Google in
2014 [95]. Its architecture was the winner of the ILSVRC 2014 image classification challenge
(ImageNet Large Scale Visual Recognition Challenge 2014) and performed better in terms
of error rate compared with previous winners: AlexNet in 2012 and ZG-Net in 2013. New
features of GoogLeNet are the following: 1 × 1 convolution, global average pooling, an
Inception module, and an auxiliary classifier for training. The 1 × 1 convolution blocks
were introduced to decrease the number of parameters in general (weights and biases),
which of course led to a depth increase of the architecture. The network’s basic block is
the Inception module, where 1 × 1, 3 × 3, 5 × 5 convolutions, and 3 × 3 Max Pooling
blocks perform in parallel. The outputs of these blocks are concatenated and fed to the next
layer. The Inception module was introduced since different convolutions blocks of different
sizes handle objects better at multiple scales. Figure 10 illustrates the components of the
Inception module used in GoogLeNet.

Figure 10. Inception module used in GoogLeNet.

A simplified architecture of GoogLeNet is 22 layers deep (Figure 11). The network
takes a color image (RGB) of size 224 × 224 pixels as input and provides the classification
result (out of 1000 classes) as output, using a Softmax layer of 1000 neurons. Another
important aspect to mention is that all convolutions inside the architecture use ReLU as an
activation function.

For example, the authors in [45] used the first version of GoogLeNet (Inception v1) as
the basic CNN from which they started TL for SL diagnosis. Additionally, the authors in [5]
(published in 2020) trained Goog-LeNet for the Me classification task, which shows that
this architecture added a lot of value with its newly introduced features. Recently, a series
of published SL diagnosis systems used newer versions of GoogLeNet. For instance [43]
related to Me and the nevus SL classification task uses the Inception v3 NN [96] with 42
layers deep. Figure 12 illustrates the overall architecture of the Inception v3 network.
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Figure 11. GoogleNet architecture’s simplified block diagram.

Figure 12. Inception v3 basic architecture.

An important observation is that Batch Norm (Batch Normalization) and ReLU blocks
are used after each convolution. The basic idea of Inception v3 NN and what makes it
more special than the first version (GoogLeNet—Inception v1) is to reduce the number
of connections/parameters without decreasing the network efficiency. This is one of the
reasons why researchers also investigate the performance of this CNN in their applications.
Inception v3 uses “Factorizing convolutions” by replacing the 5 × 5 convolution filter
represented in Figure 10 with two convolution filters 3 × 3. This procedure reduces the
number of parameters from 25 to 18. The same technique was also used in VGG Net [97].
Another important novelty introduced by Inception v3 is related to factorization into
asymmetric convolutions which means that a 3 × 3 convolution filter will be replaced by
one 3 × 1 convolution filter followed by one 1 × 3 convolution filter.
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4.3. VGG Networks

VGG is a NN family with the first representative VGG 16, which is widely used in SL
diagnosis. VGG16 [98] is slightly similar to, but larger, than AlexNet, being 16 layers deep
and containing only small 3 × 3 convolution filters (Figure 13). For instance, the authors
in [45,47,53] used a TL technique to train VGG 16 to achieve SL diagnosis.

Figure 13. VGG 16 network architecture [98].

VGG 16 model achieves a 92.7% top-5 test ACC in ImageNet BD (14 million images
belonging to 1000 classes) and was the winner of ILSVRC-2014. With this model, an
improvement can be seen over AlexNet, since it replaces large filters such as 11 × 11 and 5
× 5 with multiple smaller 3 × 3 filters, making the network deeper (ascending trend for
obtaining a better ACC). The same behavior of “Factorizing Convolutions” was also used
in GoogLeNet Inception v3.

VGG 19, shown in Figure 14 [98], is another VGG network used in SL (especially
Me) diagnostic research papers in the literature. This time, the model becomes deeper (19
layers, out of which 3 are fully connected layers). According to our survey, examples of
paper works related to SL diagnosis are [43,47]. Both papers mentioned as examples were
published in 2020 and represent comparative studies between multiple networks to find the
most accurate and precise ones for SL diagnosis tasks. What can also be noticed is that, in
terms of compared networks, apart from VGG 16 and VGG 19, other deeper networks such
as ResNet-50 (50 layers deep) and DenseNet-201 (201 layers deep) are involved. This means
that the trend in using NNs for SLs diagnosis is to use deeper networks to achieve better
ACC and precision. Of course, this can lead to more and more network parameters and
large computation time in terms of the learning task, which will continue to be a subject of
research.

Figure 14. VGG 19 network architecture [98].

4.4. ResNet

As we mentioned in the previous sections, the general trend for segmentation, detec-
tion, and classification tasks is to use deeper NNs. However, it was demonstrated that, as
we go deeper with more and more layers with “plain” networks, the training error will
start to increase over time. Therefore, very deep NNs are in general hard to train because
of vanishing and exploding gradients kind of problems. To avoid this issue, researchers
introduced “skip connections” in the networks which allow them to take the activation
from one layer and feed it to another layer, even much deeper in the NN. This allows
building “Residual” networks, instead of “Plain” networks, thus building very deep NNs
(over hundreds of layers deep). The newly introduced “Residual” network [99] solves
the problem of the vanishing gradient in deep NNs by allowing the shortcut presented
in Figure 15. In this way, the gradient can flow through. With this new feature, ResNet
won first place in the ILSVRC 2015 competition with an error rate of 3.57%. It also won the
COCO 2015 competition for detection and segmentation problems.
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Figure 15. Residual block.

According to our search related to SLs diagnosis (Table 3), in terms of the ResNet
family, the most used NNs for detection, segmentation, and classification task, are ResNet-
34, ResNet-50, ResNet-101, and ResNet-152. As can be seen in Figure 16, ResNet-152 is a
152-layer-deep CNN composed of residual blocks which solve the vanishing gradient issue
when training deep NNs. An example of an SL diagnosis paper that uses ResNet-34 is [47].
Another residual network used in SL diagnosis tasks is ResNet-50 (50 layers deep), which
was used for instance in [41,43,47,50], all published in 2020. A residual network 101 layers
deep, used in SL diagnosis, is ResNet-101 ([5,42,43,50], all published in 2020). Of course,
there are also other studies, such as [38,39,48,96], that use a deeper “residual” network
(representing the trend of using more deeper networks for better ACC) called ResNet-152
(152 layers deep).

Figure 16. ResNet-152 basic architecture.

4.5. YOLO Networks

YOLO (You Only Look Once) is a CNN widely used in real-time object detection tasks
and commonly used network in Me detection papers (usually YOLO v3 and YOLO v4).
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According to [100], YOLO is a “new approach to object detection” by using a single NN to
“predict bounding boxes and class probabilities directly from full images in one evaluation”.
YOLO is composed of 24 convolutional layers followed by two fully connected layers which
were pre-trained on ImageNet DB, similarly to other commonly used networks. As can
be seen in Figure 17 [101], the network contains some alternating 1 × 1 convolution filters
which are mainly used to reduce the features space from the preceding layers. This looks
similar to what GoogLeNe—Inception v3 introduced. There are multiple versions of YOLO,
out of which, according to our research, the most used CNNs for Me detection tasks are
YOLO v3 and YOLO v4 [88].

Figure 17. YOLO v3 architecture [101].

YOLO v3 is an incremental improvement of the previous YOLO v2 which was based
on DarkNet-19 network. According to the authors in [102], the network is bigger than
YOLO v2, with increased ACC, and is fast enough. The authors proposed a hybrid approach
between DarkNet-19 and a residual network (inspired from ResNet). The new architecture
is based on 53 convolutional layers called DarkNet-53. As we already mentioned, YOLO
v3 is used in Me detection tasks. For instance, the authors in [89,90] used YOLO v3 for
benign/malignant Me or seborrheic keratosis detection. There is also the YOLO v4 version
with an increasing speed, used in Me detection and segmentation [88].

4.6. Xception Network

Xception is another CNN used in SL diagnosis tasks. For instance, new related papers
are [42,43], both being published in 2020. According to [103], this network was inspired by
GoogLeNet Inception NN also developed by Google researchers and was meant to obtain
better performance by replacing the standard Inception modules with depthwise separable
convolutions. The Xception architecture (Figure 18), which outperforms Inception v3,
contains 36 convolutional layers structured in 14 modules, all with residual connections
around them [104].
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Figure 18. Xception network architecture.

4.7. MobileNet

MobileNet is a type of NN designed for mobile and embedded vision applications [105].
Since this CNN is deployed on mobile devices, memory usage should be taken seriously
into consideration. Therefore, to decrease the complexity and to reduce the model size, the
architecture is based on depthwise separable convolution blocks, as in the case of Xception
NN described in the previous section.

There are multiple versions of MobileNet, out of which, according to this research,
MobileNet-v1 and MobileNet-v2 are the most used in SL diagnosis papers. For instance [43,47],
both published in 2020, use MobileNet-v1; meanwhile, newer papers such as [87] use
MobileNet-v2 (deeper and improved version of MobileNet-v1) in such applications.

As we already mentioned, MobileNet NN reduces the complexity and number of
network parameters using depthwise separable convolutions (1 × 1 convolution applied
on each of the RGB channels). However, it also uses pointwise convolution with a 1 ×
1 kernel (depth equal to the number of channels of the image) which iterates through
every single point. To this end, MobileNet-v1 uses 13 blocks composed of depthwise
separable convolution and pointwise convolution. However, researchers were focused
on obtaining better results. Therefore, MobileNet-v2 came about as an improved version
of MobileNet-v1. The first important change was marked by the fact that the network is
now composed of 17 bottleneck blocks, each of them containing an expansion module, a
depthwise separable convolution, and a pointwise convolution. The expansion block was
introduced to increase the size of the representation within the bottleneck block to allow
the NN to learn a richer function. The pointwise convolution will then “down” project the
data so that they reach the initial size. Another important issue introduced in MobileNet-v2
is the residual connections around the bottleneck blocks, to solve the “vanishing gradient”
problem, as in the case of ResNet. Of course, both versions end with a Max Pooling layer,
followed by Fully Connected layers, and finally followed by a Softmax layer.
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4.8. EfficientNet

As we have already mentioned in previous sections, researchers tend to obtain better
results in terms of ACC and other performance metrics. For this to happen, the trend is to
design deeper CNNs. For example, ResNet can be scaled up to ResNet 200 by increasing
the number of layers. Authors in [106] propose a novel model scaling approach that
uses compound coefficients to scale up CNNs in a more structured manner. This method
uniformly scales each dimension with a fixed set of scaling coefficients. The authors also
demonstrated the effectiveness of the proposed method on scaling up MobileNets and
ResNets. In the same paper, they also build different versions of EfficientNet (EfficientNet
B0–B7), all of them with better ACC than the networks with which they were compared.
Another example of a recent paper [47] used EfficientNet to improve ACC for pigmented
SL classification. The architecture (Figure 19) is based on MBConv blocks (inverted residual
blocks), originally applied on MobileNet-v2 [107].

Figure 19. EfficientNet architecture [107].

4.9. DenseNet

DenseNet is a CNN family often used in SL diagnosis. Examples of papers using
DenseNet (especially DenseNet-201) are ([1,41,47], all of them published in 2020). Therefore,
DenseNet represents a trend for recently published papers because of its efficiency and
better ACC. The reason is that, in the initial paper [108], the authors introduced densely
connected layers, thus modifying the standard CNN architecture as in Figure 20. In
DenseNet, each layer is fed with additional inputs from all preceding layers and provides its
own input/feature map to all subsequent layers. In this way, each layer obtains knowledge
from previous layers. Therefore, it is obvious that this becomes more powerful than ResNet,
obtaining a stronger gradient flow, more diversified features, and a smaller network size.
DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264 are DenseNet networks
presented in different works.

Figure 20. Five-layer DenseNet architecture [108].
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4.10. U-Net

Recent papers such as [58] used U-Net CNN for SL segmentation. As can be seen
in Figure 20, U-Net has a “U” form, being composed of 23 convolutional layers. After
each max pooling operation, the number of feature channels is increased by the previous
number of feature channels, multiplied by two. The number of channels is increased until
it reaches 1024 and then starts to decrease (dividing by 2, after each 2 × 2 up-conv block).
This architecture contains four sections: the encoder, the bottleneck, the decoder, and the
skip connections (Figure 21). The bottleneck layer is a section between the down-sampling
path (encoder) and up-sampling path (decoder), containing the smallest size of the feature
map and the biggest number of filters. The skip connections are between the corresponding
blocks of the encoder and decoder.

According to the original paper [109], U-Net achieved very good performance on very
different biomedical segmentation applications. This is one of the important reasons why
researchers tend to use it in Me detection and segmentation-related papers.

Figure 21. U-Net architecture [110].

4.11. Generative Adversarial Network

The Generative Adversarial Network (GAN) is another type of artificial NN that
was used in the design of Me and SL diagnosis and segmentation systems. The GAN is
composed of two different networks (main blocks), as can be seen in Figure 22. The first
one is the generator network which learns how to generate real-like data, while the second
one is a discriminator network which learns how to detect fake data and not to classify
them as real data. Both networks are competing and playing an adversarial zero-sum
game [111]. The main blocks try to optimize objective functions. GAN was proposed for
image synthesis tasks. Starting from this idea, the GAN is used in melanoma segmentation
as a generative model based on supervised learning.

According to our research, examples of research papers in this domain are [64–66,112], all
of them proposing modified variants of GANs, such as SPGGAN (Self-attention Progressive
Growing of Generative Adversarial Network), DCGAN (Deep Convolutional Generative
Adversarial Network), DDGAN (Deeply Discriminated Generative Adversarial Network),
LAPGAN (Laplacian Generative Adversarial Network), etc. There were other research
papers involving the combination of GANs with other CNNs, such as Xception, Inception
v3, etc. One example is [52], which presents an ensemble strategy of group decision for an
accurate diagnosis.
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Figure 22. GAN standard network architecture.

5. Current Trends in Designing Skin Lesions Diagnosis Systems

As we mentioned earlier SL and, especially, Me are frequent and dangerous diseases.
Simple and early detection might represent an important aspect for treating Me. That is
why researchers are still looking for new, more effective methods for the early detection of
melanoma. Therefore, this study tries to concentrate on the trends in designing systems
dedicated to SL/Me detection, segmentation, and classification. Most of the recent papers
are based on NNs but there are also other studies based on classic classifiers such as
KNN and SVM. In terms of new trends of using NNs for detection, segmentation, and
classification of Me, we noticed the following: systems using one single CNN most often
modified and adapted for Me, systems using multiple CNNs, and systems using CNN
combined with other classifiers. Figure 23 illustrates the percentage of research papers per
year, between 2017 and 2021 which had the highest impact in terms of designing future
such systems. It can be seen that most of the important papers related to SL/Me detection,
segmentation, and classification were released in 2020. The year 2021 is also promising,
since, even if it is not over, with an indexing delay, it captured our attention in terms of
importance.

Figure 23. Percent of research papers per year with the highest impact for the new trends in Me
detection by NN.

It can be observed the fact that almost all important CNNs were learned with TL
techniques using different DSs already mentioned in previous chapters. There were also
some studies in which the authors designed their own CNNs or modified existing ones. Our
review shows the fact that researchers in this domain were interested in almost all important
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CNNs including the state-of-the-art: AlexNet, GoogLeNet, VGG, ResNet, Xception, U-Net,
DenseNet, MobileNet, YOLO, different types of GANs, and others.

The trend is that researchers, similar to the case of other domains, experimented
with different small CNNs and then transited to more complex and deep ones; for exam-
ple, a transition to ResNet and to other networks using residual connections to improve
performance-related indexes.

As we already mentioned, such systems are designed using:

• One CNN, most often modified and using TL technique;
• Multiple CNNs (combined CNN by data fusion into a global classifier);
• One or multiple CNNs combined with other classifiers;
• Other techniques/classifiers.

5.1. Melanoma Detection Using One Convolutional Neural Network

Many papers present Me and other SL detection systems designed using only one
CNN. Most of them studied different CNNs to compare the obtained results and then to
select the one matching the best performances. For instance, in [45] a DL-based approach for
SL classification via different individual CNN architectures such as AlexNet, GoogLeNet,
VGG, and ResNet, on ISIC 2017 DS is illustrated.

An example of a support system based on NN to help physicians improve their
results in categorizing the seven most common pigmented SLs is described in [47]. The
paper compares eight deep NNs (VGG16, VGG 19, ResNet 34, ResNet 50, SEResNet
50 (Squeeze-and-Excitation ResNet 50), ResNet 101, EfficientNet B5, and MobileNet) in
different training conditions, using images randomly taken from ISIC and HAM1000 DSs.
The authors in [113] proposed a method for automated Me detection and segmentation
using a modified deep regional convolutional NN to reduce the investigation area and the
fuzzy C means algorithm for precise segmentation. The dermoscopic images were from
ISIC 2016 DS.

Existing networks modified to achieve a more accurate one are presented in [114].
The authors proposed a modified U-Net version. This new structure took advantage by
combining DenseNet and ResNet to improve the performance of U-Net in SL segmentation.
The convolutional layers of the encoder are intercalated with context modules containing
dense connections. These modules are residual blocks. Similarly, the up-sampling layers of
the decoder are intercalated with Localize modules. The new skip connection between the
decoder and encoder is named the Dense Skip Connection.

A new trend in designing such systems with more accurate results in SL detection is
represented by 3D CNN. For example, the authors in [115] proposed a 3D fully CNN named
Hyper-net to achieve a more accurate segmentation of Me from hyperspectral pathology
images. The hyperspectral images, as input for Hyper-net, are represented by cubes of size
256 × 256 × 16. The authors combine the dilated convolution for multi-scale features with
the standard convolution. Between encoder and decoder blocks there is a fusion path. The
output of the decoder is a 3D cube with the same size as the input 3D cube. To enhance the
training efficiency, residual learning was inspired by V-net [116].

Another new direction in the use of NN for Me detection is the preprocessing tasks. An
example of such a network can be seen in [117], a recently published paper that proposed
an encoder–decoder CNN for hair removal (Figure 24).



Sensors 2022, 22, 496 21 of 41

Figure 24. The schematic architecture of the proposed system for hair removal from skin lesion
images from [117].

5.2. Melanoma Detection Using Multiple Convolutional Neural Networks (Combined)

Combining multiple networks into a complex system can lead to improved SL de-
tection and classification performances. From this point of view, we distinguish two
tendencies: (i) the use of several networks, separately, for different functions (detection,
segmentation, and classification), either in cascade or in parallel, and (ii) the use of several
networks for the same function and the combination of individual decisions, by fusion,
for the final decision. For instance, the authors in [50] provided a solution for precise SL
analysis by proposing a multi-task DL framework based on a Feature Pyramid Network
(FPN), Region Proposal Network (RPN), and three subnets (for classification, detection, and
segmentation). The subnets are fed with the outcomes from FPN and RPN (determining
the RoI) and they run in parallel to obtain a combined and more precise result for skin
lesions analysis and prediction. The framework is based on the design of a loss function
based on focal loss (RPN loss function) and the Jaccard distance to solve the SL classes
imbalance issue for the image DS. The ISIC 2016 and ISIC 2017 challenge DS were used.

The new diagnosis system presented in [38] is a solution for Me detection based on DL
techniques. The system contains two main modules: (RoI detection using Mask R_CNN
and RoI classification, using TL for ResNet152 which was previously trained with ImageNet
DB).

Two CNNs are also combined in [1] to perform an accurate classification (95% ACC)
of SL. As can be seen in Figure 25, the image containing an SL flows through the first
CNN (encoder–decoder type) designed for segmentation purposes, and afterwards, the
segmented SL is considered as the input in the next CNN composed of merged dense
blocks, for classification. The experiments were conducted using the HAM10000 DS.

Figure 25. The architecture of the proposed system for skin lesion classification [1].

A similar system design was proposed in [41], a recent paper proposing a combination
of two modules: a segmentation module used as a pre-requisite and a classification module.
The difference here is that, first, the authors experimented with multiple DSs such as ISIC
2016, ISIC 2017, and ISIC 2018, and second, multiple CNNs were involved and analyses
were conducted for each of them. The SL segmentation is performed by FrCN and the
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classification is performed by the following NN: Inception v3, ResNet 50, Inception-ResNet
v2, and DenseNet 201. Case studies of two, three, and seven classes are considered.

The authors in [42] proposed a generalized architecture for multi-class classification of
skin cancer. This paper covers five convolutional NN architectures for different experiments,
such as: Xception, NASNet-Large, Inception-RestNet v2, Inception v3, ResNeXt101 and the
ensembles: Inception-ResNet v2 + Xception, Inception v3 + Xception, Inception-ResNet v2
+ ResNetXt 101 + Xception and Inception-ResNet v2 + ResNetXt 101. Experiments were
performed using the HAM10000 DS and the best ACC was obtained for ResNetXt 101 +
Inception-ResNet v2 (92.83%).

Creating a complex multi-network system based on the fusion of decisions of individ-
ual NNs with the help of a final NN can increase the detection performance of Me. For
example, the authors in [5] proposed a Me detection system characterized by the following
new aspects: (a) use of multiple CNN as individual classifiers, (b) use of a hybrid structure
which makes a decision fusion between four CNN-based classifiers and a classifier based
on texture features, (c) use of another CNN considered as a global classifier having as input
the probabilities of individual classifiers (considered as weights). The CNNs used were: a
custom NN, GoogLeNet, ResNet-101, NasNet-Large, and a Perceptron (Figure 26).

Figure 26. Multi-network system architecture based on decision fusion for Me detection [5].

Similar to the authors of [5], the authors in [45] proposed an ensemble of CNNs
(GoogLeNet, AlexNet, ResNet, and VGGNet) for SL classification based on the CNN
output interpretation, demonstrating that it is a meaningful approach.

A complex system for Me and SL diagnosis based on multi-CNN and a voting scheme
is proposed in [52]. As seen in Figure 27, the classification system is based on multiple
sub-modules, each of them voting a single dermoscopic image and providing a value. The
maximum value is then compared with a threshold. In case it is smaller than the threshold,
the classification will be performed by a group decision conducted by a large module (Vote)
composed of other CNNs. Thus, a final, more accurate decision related to the classification
is obtained.

Through the appropriate use of several NNs, it is possible to move from subjective
classification decisions of individual networks to a decision considered more objective of
the global classifier also represented by an NN [6]. In this specific research paper, as can be
seen in Figure 28, the authors proposed a system based on a decision taken from multiple
NNs. This system is based on six classifiers (NN-based) connected to two operational levels.
The first level contains five subjective (individual) classifiers, while in the second level, there
is a Perceptron-type classifier that decides whether the final decision is a Me or not. The
final decision is based on the learning-adjusted weights from the first level. In the learning
phase, a weight is assigned to each subjective classifier, according to the classification
accuracy. In the testing phase, the outputs of these classifiers are the probabilities offered.
The convolution law of the final classifier is made up of the weights and probabilities
of the subjective classifiers. It is considered that the final classifier is an objective one.
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The subjective classifiers are the following: (a) two NN namely ResNet 101 and AlexNet,
(b) two perceptrons having as inputs LBP histogram and HOG, respectively, and (c) an
ABCD-based classifier with a GAN for primary segmentation.

Figure 27. Ensemble strategy of the group decision [52].

Figure 28. The architecture of the Me classification system proposed in [6], based on several NNs
connected on two levels of classification.
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5.3. Systems Designed Using Convolutional Neural Networks Combined with Other
Classifiers/Techniques

As we mentioned earlier, there are SL diagnosis systems designed using CNNs
combined with other techniques/classifiers to obtain better results in terms of statistic
performance-related indexes. An example of this is [118], which aims to provide two solu-
tions (benign/malignant) for a precise and optimum classification of SL by proposing two
corresponding systems. The architecture of both systems specifies a lesion segmentation
block based on HLPSO (Hybrid Learning Particle Swarm Optimization) and modified
K-means as a common initial block. The first system is then composed of other two blocks:
feature selection block (based on HLPSO, KIRSCH, and SLBP) and SL classification block
(based on KNN and SVM). The second system is an adaptive one, based on evolving DCNN
(CNN driven by HLPSO for parameters/hyper-parameters optimizations).

Another example of such a diagnosis system is [90], which aims to provide a solution
for the SL detection and segmentation system based on YOLO v3 for SL detection and
GrabCut algorithm for accurate segmentation. YOLO v3 was chosen for the detection part
since it already proved to be much faster and has better precision and accuracy in detection
than other methods such as RCNN (region-based convolutional neural network)/Fast-
RCNN/Faster-RCNN. The system being proposed also contains a preprocessing module
able to process the image (e.g., hair removal) before the SL detection phase and the segmen-
tation phase.

The authors in [119] aim to provide a solution for designing a Me classification system
based on CNN and a custom new regularizer for controlling the complexity of the classifier
and thus making it more accurate. The results are indeed more accurate and precise
when compared with other works from the existing literature. Similarly, another research
paper [59] proposed a Me diagnosis system based on a combination between CNN and
intelligent classifiers based on texture features. As seen in Figure 29, this paper presents an
architecture based on a segmentation block using U-Net, a feature extraction block using a
color feature, HOG, LBP, and a classification block using RF (random forest), SVM, KNN,
and NB (Naive Bayes).

Figure 29. The schematic architecture of the skin lesion classification system based on CNN for the
segmentation, feature extraction, and intelligent classification [59].

The authors in [43] proposed a new solution for SL classification system based on
handcrafted features (color, texture, etc.) fused with features learned by TL on pre-trained
CNNs such as VGG 16, VGG 19, MobileNet, ResNet 50, Inception v3, Xception, DenseNet
201, MobileNet v1, and MobileNet v2. The fusion block identifies the most important
features and passes them to the classification block which is based on Linear Regression,
SVM, and a Relevant Vector Machine. Experiments on the system proposed in Figure 30
were conducted on ISIC 2018 DS and performance results were analyzed for each mentioned
CNN. The best results were obtained by the one using MobileNet v2 (about 90% ACC in
the testing phase).
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Figure 30. The architecture of the SL classification system proposed in [43].

In terms of Me detection and segmentation systems, a recent important paper is consid-
ered [88], where YOLO v4 was used for Me detection and an Active Contour Segmentation
approach for Me segmentation. As DSs, ISIC 2016 and 2018 were used. It can be seen that
recent papers aim to use real-time object detection methods such as YOLO v3 and YOLO
v4 to achieve Me detection.

A synthesis of the characteristics of the most important papers regarding the trends of
using NN in Me and SL detection is presented in Table 4.

5.4. Systems Designed Using Other Techniques

Our study of course identified Me and other skin lesion diagnosis systems using other
techniques apart from convolutional NNs. An example of such a paper would be [33],
which aims to provide a solution for designing an SL segmentation system based on the
Artificial Bee Colony algorithm for obtaining an optimum threshold value for Me detection
for the segmentation phase. From an architecture point of view, the system is composed
of three modules: the preprocessing (applying median filter), the application of the ABC
algorithm for finding the optimum threshold value to be used for Me detection, and the
segmentation module.

Another example of such a paper is [120], which tries to provide a solution to the
problem of having multiple small skin lesion DSs (less training data towards the classifica-
tion of Me) by introducing a TL framework called TrCSVM (Transfer Constituent Support
Vector Machine) which can transfer knowledge retrieved from a source training set to
multiple target training sets, thus obtaining a more efficient classification model capable
of classifying various SLs. This framework is based on FBDA (Feature-Based Domain
Adaptation) and uses SVM and TrAdaBoost (Transfer AdaBoost).
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Table 4. Synthesis of the most important papers regarding the trends of using NN in Me and SL detection.

Ref/
Year

Goal/Novelty Description NN
Type/Function Data Set Me or SL +

Me
Data Aug.

Performance Indicators (%)

ACC F1 IoU

[45]/
2018

DL-based approach for SL
classification via the fusion of

different individual CNN
architectures.

Ensemble of CNNs with different
fusion-based methods and selection

of the best performing one.

GoogLeNet,
Alexnet, ResNet,

VGGNet/
classification

ISIC 2017 SL + Me Yes 90.30 NA NA

[90]/
2019

Pipeline architecture for SL
segmentation, combining

YOLO v3 and the GrabCut
algorithm.

Combining YOLO v3 and the
GrabCut Algorithm for SL

segmentation.

YOLOv3/
detection and
segmentation

PH2, ISIC 2017 SL + Me NA 92.99 to 97.00 84.26 to 88.13 74.81 to 79.54

[113]/
2019

A DL method is proposed for
automated Me detection and

segmentation using
dermoscopic images.

Skin refinement, localization of Me
region, and, finally, segmentation of

Me (fuzzy C means).

Deep region-
CNN/detection

and segmentation
ISIC 2016 Me NA 94.80 95.89 93.00

[121]/
2019

New FCNN architecture for SL
segmentation—DermoNet.

FCNN contains densely connected
convolutional blocks and skip

connections.

FCNN—
DermoNet/

segmentation

PH2, ISIC 2016,
ISIC 2017 SL + Me Yes NA 89.40 to91.50 82.50 to 85.30

[53]/
2019

Model enhanced by employing
a multi-stage segmentation

approach.

FCNN based on U-Net with batch
normalization.

FCNN/
segmentation ISIC 2018 SL + Me Yes NA 90.00 83.00

[122]/
2019

Encoder–decoder structure
with an intermediate module

(attention module).

The architecture contains three
modules: the encoder that extracts

features from a raw image; the
decoder that generates the SL classes;
the attention module for guiding the

decoder to attend at different
locations.

Encoder–Decoder ISIC 2017 SL + Me NA 72.3 NA NA

[39]/
2020

New deep CNN-based model
for face skin disease

classification using a triplet
loss function.

Fine-tuning layers of ResNet152 and
InceptionResNet-v2.

ResNet152,
Inception ResNet-
v2/classification

From a hospital in
Wuhan China SL + Me NA 87.42 NA NA

[123]/
2020

A new method called a
“Lesion classifier” is derived
from pixel-wise classification.

Encoder–Decoder Network
Connected through skip pathways.

Softmax modules for output.

Encoder–
Decoder/

detection and
segmentation

ISIC 2017, PH2 Me Yes 95.00 92.00 NA
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Table 4. Cont.

Ref/
Year

Goal/Novelty Description
NN

Type/Function Data Set Me or SL +
Me

Data Aug.
Performance Indicators (%)

ACC F1 IoU

[124]/
2020

New skin image
classification method using

multi-tree genetic
programming.

Various local and global features
are extracted from skin cancer

images. The classification
method uses genetic

programming.

NA/
classification PH2, Dermofit SL + Me NA 96.42 to

80.64 NA NA

[88]/
2020

New scheme for Me
localization and

segmentation using
YOLOv4 and active

contour segmentation.
Detecting multiple Me

presented in a single image.

The skin refinement step
removes the unnecessary
artifacts automatically. A

framework consisting of three
phases: skin enhancement, Me

localization, and Me
segmentation.

YOLO v4/
detection and
segmentation

ISIC 2016, ISIC
2018 SL + Me Yes 94.00 92.00 96

[41]/
2020

DL-based CAD system
with precise SL boundary
segmentation and accurate

classification for clinical
diagnosis of SL

Cascaded full resolution CNN
for segmentation and

Inception-v3, ResNet-50,
Inception-ResNet-v2, and

DenseNet-201 for classification.

DCNN/
segmentation

and
classification

ISIC 2016, ISIC
2017, ISIC 2018 SL + Me Yes 87.74 to89.28 77.84 to

81.28 NA

[125]/
2020

Me detection using an
optimized set of

Gabor-based features and a
fast MNN classifier.

Gabor features combined with a
fast (Multi-Level Neural

Network) MNN.

MNN/
classification PH2 Me NA 97.50 NA NA

[89]/
2020

YOLO v3 algorithm
combining with two-phase
segmentation based on the

graph theory using
minimal spanning tree

concept and L-type
fuzzy-based

approximations.

YOLO v3 for Me detection and
segmentation based on graph

theory.

YOLOv3/
detection and
segmentation

PH2, ISIC 2017,
ISIC 2019 Me NA 93.38–97.50 87.89–93.97 79.84–88.64
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Table 4. Cont.

Ref/
Year

Goal/Novelty Description
NN

Type/Function Data Set Me or SL +
Me

Data Aug.
Performance Indicators (%)

ACC F1 IoU

[43]/
2020

Fusing method that
employs relevant mutual

information obtained from
handcraft and DL features

obtained from DCNN.

ABCD rule combining with
DCNN features employing

mutual information
measurements.

VGG-16,
VGG-19,

MobileNet v1,
ResNet-50,

Inception v3,
Xception,

DenseNet-201/
classification

HAM10000 SL + Me Yes 92.40 90.00 NA

[5]/
2020

Integration of different
NNs into a global

fusion-based decision
system. For the fusion

weights, there are used the
results, obtained by each

NN.

A global classifier is
implemented considering

individual classifiers as the
proposed NNs. The global

classifier used partial decision
fusion.

CNN,
GoogLeNet,
ResNet101,

NasNet-Large,
Perceptron/
classification

PH2, ISIC 2019 SL + Me Yes 88.33 to
93.33

86.79 to
92.31 NA

[126]/
2020

Optimal CNN to predict
skin cancer.

A new technique of using an
improved whale optimization
algorithm for optimizing the

structure of CNN for skin cancer
detection.

Optimized
CNN/

detection

Dermquest,
DermIS SL + Me NA 95 NA NA

[6]/
2020

An objective classifier
containing five subjective

classifiers (two
texture-based classifiers

with perceptrons and three
NNs end-to-end type) for

Me detection.

A multi-NN-based system
containing six NNs and feature
extraction algorithms. The final

classifier is also an NN.

Perceptrons
coupled with

feature
extraction, GAN,

ResNet,
AlexNet/

segmentation,
and

classification

PH2, ISIC 2019 Me Yes 97.50 97.40 NA
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Table 4. Cont.

Ref/
Year

Goal/Novelty Description
NN

Type/Function Data Set Me or SL +
Me

Data Aug.
Performance Indicators (%)

ACC F1 IoU

[47]/
2020

Establishing how DL
frameworks trained in

large DSs can help
non-dermatologists

improve their performance
in categorizing pigmented

SL.

The performances of eight
DCNNs are compared in

different training conditions.

VGG16, VGG19,
ResNet34, 50,

101 SEResNet50,
EfficientNetB5,

MobileNet/
classification

HAM10000 SL + Me NA 75.73 to
84.73 NA NA

[127]/
2020

New CNN architecture for
SL segmentation, with an
attention mechanism and

high-resolution feature
maps.

Proposed CNN with K
consecutive HRFB

(high-resolution feature block)
for SL segmentation with more

accurate SL boundaries.

CNN with
HRFB/

segmentation

PH2, ISIC 2016,
ISIC 2017 SL + Me Yes 93.80 to

94.90 86.20 to91.90 78.30 to
85.80

[58]/
2020

Improved U-Net for SL
segmentation.

The architecture is proposed
with a modified U-Net, in which
a bilinear interpolation method is

used for up-sampling with a
block of convolution layers

followed by parametric ReLU.

U-net/
segmentation NA SL + Me Yes 94.00 88.00 NA

[128]/
2020

A variant of the particle
swarm optimization

algorithm, HLPSO, for SL
segmentation and

classification.

Combining HLPSO with DCNN
and a K-Means clustering

algorithm.

DCNN/
classification

and
segmentation

ISIC 2017 SL + Me NA 91.37 NA 73.15

[118]/
2020

Global-Part CNN,
considering the local

information and global
information with equal

importance.

Ensemble of two CNNs for local
and global information, based on

data fusion.

Ensemble of two
CNN/

classification

ISIC 2016, ISIC
2017 SL + Me Yes 85.70 to

92.50 NA NA
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Table 4. Cont.

Ref/
Year

Goal/Novelty Description
NN

Type/Function Data Set Me or SL +
Me

Data Aug.
Performance Indicators (%)

ACC F1 IoU

[24]/
2021

New model, ASCU-Net
(Attention Gate, Spatial and
Channel Attention U-Net)
using convolutional block
attention modules for SL

segmentation.

Due to the attention module,
ASCU-Net accelerates the

learning phase.

ASCU-Net
based on U-Net

and triple
attention

mechanism/
segmentation

PH2, ISIC 2016,
ISIC 2017 SL + Me Yes 95.40 90.80 84.50

[129]/
2021

Design of a new DCNN
model with multiple filter

sizes—Classification of
Skin Lesions Network

(CSLNet).

Fewer filters, parameters, and
layers to improve SL

classification performances.

DCNN
(CSLNet)/

classification

ISIC 2017, ISCI
2018, ISIC 2019 SL + Me Yes 89.58 to93.25 89.75 to

93.47
81.50 to

88.20

[79]/
2021

New NN based on
Efficient-B5.

A deeper, wider and higher
resolution NN for Me
classification based on

fine-grained feature
representations.

Efficient-B5/
classification ISIC 2020 Me NA NA NA NA

[130]/
2021

Testing different NN for
recognition of pigmented

SL

Testing different NN for
recognition of pigmented SL

ResNet50,
DenseNet121,

VGG16/
classification

ISIC,
HAM10000,PH2,

BCN20000,
SKINL2

SL + Me Yes NA NA NA

[131]/
2021

An extensive analysis of
twelve CNN architectures
and eleven public images

DBs.

An extensive analysis of twelve
CNN architectures and eleven

public image DBs for automatic
Me automatic diagnosis.

DenseNet121,
169, 201,

Inceptionv3, v4,
ResNet50, Incep-
tionResNet v2,

Xception,
VGG16, 19,

Mo-bileNet, and
NASNetMo-

bile/detection

PH2, ISIC 2016,
ISIC 2017,

HAM10000,
MED-NODE,
MSK1, 2, 3, 4,

UDA 1, 2.

Me Yes NA NA NA
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Table 4. Cont.

Ref/
Year

Goal/Novelty Description
NN

Type/Function Data Set Me or SL +
Me

Data Aug.
Performance Indicators (%)

ACC F1 IoU

[87]/
2021

Combining the
MobileNetV2 with the

Spiking Neural Network
(SNN) into a DCNN for the

classification.

Three NNs connected into an
intelligent decision support

system for skin cancer detection.

Autoencoder,
MobileNetv2,

SNN/
classification

ISIC Me Yes 95.27 NA NA

[132]/
2021

New and efficient adaptive
dual attention module

(ADAM) for automated
skin lesion segmentation.

The proposed ADAM modules
are integrated into a dual

encoder architecture.

Dual encoder +
ADAM/

segmentation

ISIC 2017, ISIC
2018 SL + Me Yes 96.36 91.63 84.70

[133]/
2021

New Siamese NN and
architecture named

Tensorial Regression
Process to detect SL

evolution.

A pair of SL images are
compared to detect the possible
evolution of SL to Me. To this

end, a segmentation loss is
incorporated into NN as a

regularization term.

Siamese NN/
detection and
segmentation

Sydney
Melanoma
Diagnostic

Centre

SL + Me NA 74.10 NA NA

[71]/
2021

SL augmentation DS by
StyleGAN and

DenseNet201 for
classification.

Two NNs are used to improve SL
classification: a special GAN for

data augmentation and
DenseNet 201 for classification

with a special strategy of TL

GAN
(StyleGAN).

DenseNet201/
classification

ISIC 2018, ISIC
2019 SL + Me Yes 93.64 NA NA
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6. Discussion

The paper presented the most used techniques based on NN for detection, classi-
fication, and segmentation of SL and, especially, Me. The focus was on new trends in
such applications. To this end, we analyzed 134 references, most of them from the period
2017–2021. The most performant new systems for Me detection contain multiple DCNNs
selected on a performance criterion and grouped either with each other, based on the fusion
of decision, or with other classifiers based on texture, shape, and color features. In this
way, we move from subjective classifications, specific to individual classifiers (NN), to a
more objective classification, that of the global classifier. This classifier considers, according
to pre-established criteria, the decisions of the subjective classifiers, but makes its own
decision. The individual classifiers should be chosen so that the objective classifier can
compensate for possible individual classification errors. Another interesting combination
of NN would be the pipeline type, based on jobs; for example, the first network performs
primary processing, the second segmentation, and the third classification. There were also
implementations of new networks based on the introduction in the structure of a known
network, as intermediate modules, smaller networks. The performances obtained depend
both on the proposed network solution and on the DS used (including the selected images).

The vast majority of analyzed papers were selected from Web of Science as the most
trusted publisher global citation DB. Searches were focused on the following criteria: (a)
topics as Me and NNs, (b) new trends (papers between 2017 and 2021), (c) the number of
citations, (d) impact factors for journals, and (e) rate of ISI indexing for proceedings papers.
We identified eight review or survey papers between 2018 and 2021 [134–141]. Table 5
highlights the characteristics of these articles and the differences of our article, marked as
positive aspects or contributions.

As already mentioned above, over the years, numerous studies have been conducted
on this topic. In 2009, Fernandez Alcon et al. [18] analyzed the SL pigment and performed
Me diagnosis with an automatic imaging system proposed by the authors. The detection
ACC was improved by combining the classification results with information such as gender,
skin type, or the age of the patient. First, the segmentation, background correction, and
threshold-based segmentation are analyzed. Then, the ABCD-based method is used to
complete the feature extraction step. In the end, pattern recognition is used to perform the
classification in Me and non-Me lesions. From the Dermnet dataset (DS), 152 images were
used to evaluate the system, from which 107 were Me images and 45 benign SL images.
The ACC given by the system was 86% [18].

In 2011, Capdehourat, G. et al. [19] proposed an ML-based approach that classifies
SL as malignant or benign. In the preprocessing step, the authors used the already well-
known Dullrazor algorithm, developed by Lee, T. et al. [142] to remove the hair present in
the lesion. In the segmentation step, the Otsu method, which performs automatic image
thresholding, was used with the specification from the authors that this method failed
in certain pathological cases. Texture, color, and geometrical features were extracted in
the feature extraction step. For the classification step, AdaBoost with C4.5 decision trees
was used. According to the authors, this system performance was analyzed by calculating
the specificity (77%) and sensitivity (90%). Two years later, Razmjooy, N. [143] et al.
proposed another ML-based system that helps with Me detection. In the preprocessing
step, a new algorithm for hair removal is used, other than Dullrazor. As specified by the
authors, the hair removal algorithm consists first in applying canny edge detection. Then, a
thicken operation, dilatation operation, and addition to the original image are used. The
segmentation step is based on morphological operations while, for the feature extraction
step, new features, based on asymmetry and irregular border quantification, are applied.
An ACC of 95% was given by the Support Vector Machine (SVM) used as a classifier.
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Table 5. Recent review/survey papers on similar topics.

Paper/Year Description Period No. of
References Our Differences

[134]/2018
A critical and analytical survey

of different algorithms for
performing segmentation of SL.

2007–2018 29

New period (2017–2021).
Focused on Me and NNs.

More references.
Focused on new trends

(including 2021).

[135]/2018
Medical (general) image

segmentation and classification
using CNN.

2010–2018 96
New period (2017–2021).
Focused on Me and NNs.

More references.

[136]/2018 SL classification using CNNs. 2012–2018 33

New period (2017–2021).
Focused on Me and NNs.

More references.
Focused on new trends

(including 2021).

[137]/2019

Different methods for cancer
detection including skin cancers:

classical methods (ABCD,
different features) and NNs.

1993–2019 167

A modern approach based on
ML and NNs.

New period (2017–2021).
Focused on Me and NNs.
Focused on new trends

(including 2021).

[138]/2020
Investigating: DBs, Me types, DL

techniques, reference sources,
and index.

2004–2020 95

Focused on Me and NNs.
More references.

Focused on new trends
(including 2021).

[139]/2020

Survey of the recent
architectures of deep CNNs

(general). Analysis of CNN’s
internal structures.

1982–2020 253
Focused on Me and NNs.

Systems of multiple NNs and
decision fusion as new trends.

[140]/2021 Methods for detecting skin
cancer from SL images. 2011–2020 135

Focused on Me and NNs.
More references.

Focused on new trends
(including 2021).

[141]/2021
A systematic review of DL

techniques for the early
detection of skin cancer.

1993–2021 82

Focused on Me and NNs.
More references.

Focused on new trends
(including 2021).

The authors in [20] developed a system based on the same classical method. They
preprocessed the images by applying noise removal techniques and used the threshold-
based method for image segmentation. ABCD rule and Principal Component Analysis
(PCA) are then used to extract the features. The classification made with the help of SVM
showed an ACC of 82.2%, a specificity of 86.93%, and a sensitivity of 77%. The evaluation
of the system was made on 282 images (133 Me images and 149 benign images) selected
from several DSs such as Dermquest, Dermnet, and Dermis.

Starting with 2015, the attention of most researchers turned to DL methods. Codella N.
et al. [144] combined the SVM algorithm with sparse coding and DL techniques to develop
a system that reaches a 93.1% ACC in the case of an Me class, an atypical class, and a benign
class. As for feature extraction, a pre-trained Caffe CNN (Convolutional Neural Network)
was used. The performance evaluation of the system was conducted on the International
Skin Imaging Collaboration (ISIC) DS.

The authors in [145], proposed a system based on two main steps: preprocessing and
classification. For the classification, a pre-trained CNN that contains two convolutional
layers was used. The system showed an 81% ACC on Me detection.
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Pomponiu V. et al. [146], just like in [144], developed an SL detection system that used
a CNN as a feature extractor showing an ACC of 93.64%, a specificity of 95.18%, and a
sensitivity of 92.1%. After the data augmentation was conducted, an AlexNet pre-trained
CNN was used to extract the features and a K-nearest neighbor (KNN) algorithm was used
for classification.

An NN ensemble method for Me detection was proposed by Xie F. et al. [147] in
2016. This paper presents a system that primarily has three steps. The first step is the
segmentation step that is conducted with the help of a self-generating NN. The second step
is the feature extraction step using PCA, followed by the classification step that is performed
by using the NN ensemble method. The proposed classifier refers to a combination of
Fuzzy NN and backpropagation NN. The performance evaluation on two different DSs
provided by a local hospital showed an ACC of 94.17% and a sensitivity of 95%.

Some authors, such as Attia M. et al. [148] have only addressed the subject of Me
segmentation. The authors used CNN and Recurrent NNs (RNN) to develop a high ACC
of Me segmentation system. The proposed architecture contains seven convolutional layers
that represent the autoencoder part and four recurrent layers. A total of 900 images obtained
from ISBI 2016 challenge [14] were used for evaluating the algorithm. A Jaccard Index of
93% and segmentation ACC of 98% were obtained.

Li Y. et al. [149] also used DL techniques to detect Me. Two fully CNNs, named the
Lesion Feature Network and Lesion Index Network, were used to complete the feature
extraction, segmentation, and classification steps. Calculation of the distance heat map is
then conducted to improve the detection. For the feature extraction step, a straightforward
CNN (Lesion Index Network) was used. The evaluation was performed on ISIC 2017
DS [25]. In the case of the Lesion Index Network, the obtained ACC for image classification
and segmentation was 91.2% while the obtained Jaccard index was 75.3%. Regarding
the Lesion Feature Network, the performance was evaluated in terms of sensitivity and
precision (69.3% and 42.2%) [149].

A study for CNN optimization study was performed by Zhang L. et al. [35] in 2019.
The purpose of this study was to improve the training of network weights and biases by
applying a meta-heuristic procedure. To minimize the learning error, the authors proposed
the whale optimization algorithm. To evaluate the system ACC (91%), Dermrequest and
Dermis DSs were used.

DL techniques were also used by Milton [25], where the following NNs: SENet154, In-
ceptionResNetV2, PNASNet-5-Large, and InceptionV4 were applied, tested, and compared.
The third mentioned one showed the best results (76% validation score) when applied on
ISIC 2018 DS [25,28].

A more complex system configuration containing a global decision system that in-
tegrates the most commonly used DL methods was proposed in [5]. So, an NN-based
method, three CNN-based methods, including NasNet-Large, GoogLeNet, and ResNet-101,
and a classical ML-based method were combined to set the fusion weights. The system was
evaluated on PH2 [22] and ISIC 2019 [25,28,150] DSs. The best ACC was obtained on PH2
DS (95%), while the ACC obtained on ISIC 2019 was 93%.

7. Conclusions

Neural networks as part of AI algorithms are increasingly being researched in imaging
applications as a support system for diagnosing SL and detecting Me. New DBs and even
challenges regarding the classification of SL are constantly appearing. That is why there is
interest in improving these classifiers for detecting and tracking the evolution of SL even
from a distance, with great accuracy. The best results were obtained using multiple NNs
for different functions and decision fusion. Observing the tendency for increasing use of
neural networks in detecting Me, we can say that this area of interest and the manner of
solving problems are objectives of great interest in the integration of artificial intelligence
in medicine. The use of NN in the detection of melanoma may be involved in a support
system for the dermatologist who ultimately has to decide to either indicate a biopsy if
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at least one of the dermatologist’s diagnoses and the support system (a helpful method)
indicates Me or to investigate if there is another type of cancerous lesion. In the latter case,
the system can be taught to detect other types of malignant SLs. However, the system
cannot make final decisions on its own. Given the evolutionary trends of neural networks, it
is expected that such systems will increase their performance by using improved, adapted,
and combined networks. A future direction to follow is the use of these systems to detect
Me that develops under the nails, which is currently a more complicated case of diagnosis.
We do not know of such an algorithm and we have not found it in the literature. If the nail
is still transparent, an image enhancement algorithm can be used to separate the Me from
the nail. If the Me has attacked the nail, the network must be learned with the nail.
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Abbreviations

Abbreviations Description
ABCD Asymmetry Borders-Colors-Dermatoscopic Structures
ACC Accuracy
CAD Computer Aided Diagnosis
CNN Convolutional Neural Network
DB Database
DCNN Deep Convolutional Neural Network
DL Deep Learning
DS Dataset
F1 Dice Coefficient (F1 Score)
FCN Fully Convolutional Network
FPN Feature Pyramid Network
HLPSO Hybrid Learning Particle Swarm Organization
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoU Intersection-Over-Union, Jaccard Index
ISIC International Skin Imaging Collaborative
KNN K-Nearest Neighbor
Me Melanoma
ML Machine Learning
MNN Multi-level Neural Network
NN Neural Network
PCA Principal Component Analysis
PSO Particle Swarm Optimization
RCNN Deep region based convolutional neural network
ReLU Rectified Linear Units
RGB Red-Green-Blue
RPN Region Proposal Network
SL Skin lesion
SVM Support Vector Machine
TL Transfer learning
YOLO You Only Look Once
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