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Abstract: Several control strategies have been proposed for the trajectory tracking problem of Au-
tonomous Underwater Vehicles (AUV). Most of them are model-based, hence, detailed knowledge
of the parameters of the robot is needed. Few works consider a finite-time convergence in their
controllers, which offers strong robustness and fast convergence compared with asymptotic or expo-
nential solutions. Those finite-time controllers do not permit the users to predefine the convergence
time, which can be useful for a more efficient use of the robot’s energy. This paper presents the
experimental validation of a model-free high-order Sliding Mode Controller (SMC) with finite-time
convergence in a predefined time. The convergence time is introduced by the simple change of a
time-base parameter. The aim is to validate the controller so it can be implemented for cooperative
missions where the communication is limited or null. Results showed that the proposed controller
can drive the robot to the desired depth and heading trajectories in the predefined time for all the
cases, reducing the error by up to 75% and 41% when compared with a PID and the same SMC with
asymptotic convergence. The energy consumption was reduced 35% and 50% when compared with
those same controllers.

Keywords: AUV; SMC; finite-time; trajectory tracking

1. Introduction

Autonomous Underwater Vehicles (AUV) have permitted us to deepen the knowledge
of the oceans and seafloors. The use of AUVs in tasks such as structural inspection [1,2],
environmental risks detection [3], and mapping underwater structures [4], among others,
increases the safety of the mission and the reliability of their results [5], and reduces
the operational costs considerably [6]. However, due the challenging conditions in the
underwater environment, a high precision autonomous navigation is difficult to achieve [7].
Autonomous navigation can be performed by different methods such as waypoint tracking,
path following, and trajectory tracking [8]. In the waypoint tracking method, the vehicle
navigates throughout a set of pre-defined waypoints. This is the easier method to be
implemented, however, it could result in some uncertainty in the trajectory followed by
the vehicle between two waypoints [9]. The path following navigation ensures that the
vehicle follows a desired path to reach its destination, which is geometrically defined in
Cartesian coordinates [10]. In the trajectory tracking problem, the vehicle must follow a
time-parametrized path, meaning it must go to a certain point in a given time [11]. The
integration of time and space restrictions makes trajectory tracking the most complex of
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the referred autonomous navigation methods. Considering this, the highly non-linear
dynamics of the AUV and the presence of external disturbances demands the development
of new control methods to fulfill the extremely challenging problem of trajectory tracking
in AUVs.

Proportional Integrate Derivative (PID) control was extensively used at the early stages
of AUV tracking control [12–14]. PID controllers have a simple structure that allows an
easier implementation. They are tuned to deal with very specific conditions and any change
on them will cause a performance drop. Additionally, they do not consider non-linearities,
which are highly present in the AUVs dynamics and the underwater environment. An alter-
native to deal with traditional controllers’ issues is to include an intelligent algorithm [15,16]
in the control law to achieve an adjustment of the controller parameters or self-tuning. This
is known as adaptive control, which does not require an exact model of the vehicle and
only a small amount of prior knowledge suffices. Backstepping control [17] and Sliding
Mode Control (SMC) [18] are other common control methods widely used in the trajectory
tracking of AUVs. The control methods used for AUVs trajectory tracking discussed before
have an asymptotic or exponential convergence to the trajectory. A finite-time convergence
controller would have many advantages such as faster convergence time, higher accuracy,
and better anti-disturbance capability [19].

Related Work

Limited literature can be found related to control methods with finite-time conver-
gence for AUV trajectory tracking. Ramezani-al et al. [20] proposed an SMC with an
adaptive gain to eliminate the effects of external chattering and noise vulnerability. In nu-
merical simulations, the proposed controller drives the vehicle to the desired trajectory in a
limited time. Yu et al. [21] achieved finite-time convergence trajectory tracking of AUVs
in presence of model parameter perturbation and ocean currents. The controller is based
on a PID-SMC combination that globally stabilizes all tracking errors in a finite-time. Nu-
merical simulations showed absolute tracking errors up to 20 cm in the absence of external
disturbances. Qiao et al. [22] used two adaptive integral terminal SMC schemes to achieve
trajectory tracking on AUVs. This controller yields finite-time convergence while dealing
with dynamic uncertainties and external disturbances. The performance of the proposal
was tested by numerical simulations resulting in robustness of 2% in position tracking. In
those works, the controlled trajectory converges to the reference in a time that depends
either on the vehicle parameters, its initial position, or the own controller parameters and
gains. Therefore, prior knowledge of the vehicle is required to estimate the convergence
time, and a different initial position and changes on the controller parameters will affect
it. González-García et al. [23] presented a model-free high-order SMC with finite-time
convergence aiming for cooperative AUVs missions. On contrary to previous works, the
finite-time for the convergence can be predefined by the user through the time-base param-
eter tb, the value of which—in seconds—is only limited by the thruster’s capabilities. The
arbitrary setting of the time-base parameter does not affect the robustness and performance
of the controller once it meets the desired trajectory and can be used to demand a faster or
slower response from the vehicle depending on what the mission requires. Numerical sim-
ulations were performed and results showed an outstanding performance when compared
with traditional controllers. Even in the presence of strong ocean currents, the error was
zero in the predefined time in all the cases simulated.

All of the works discussed before were limited to numerical simulations. However, due
to the limitations present in real experiments, such as sensor resolution, measurement rate,
processor speed, and so, it is quite possible that a controller does not perform as expected
when programmed in a real system. The performance of a model-free high-order SMC with
finite-time convergence in a predefined time is validated by real experiments in this paper.
Being able to arbitrarily select the convergence time for the controller opens the options for
better management of the vehicle energy consumption. It would also be an advantage to
coordinate a group of AUVs in cooperative tasks. The performance of the controller was
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compared with a PID and an asymptotic 2nd-order SMC. The experiments were performed
using the BlueROV2 robot which was modified to be able to follow predefined trajectories
autonomously. The experiments consisted of a depth and heading control to follow a
predefined sinusoidal trajectory and were carried out in a pool with 1 m depth

The rest of the document is structured as: Section 2 describes the generalities of
underwater vehicles, the control algorithm to be validated, and the BlueROV2 vehicle
configuration. Section 3 describes the experimental set up including the BlueROV2 modifi-
cations and controller’s laws and parameters. Section 4 shows the results of the experiments
performed and their discussion, and Section 5 contains the concluding remarks.

2. Materials and Methods

General equations for kinematics and hydrodynamics of the AUVs are introduced
in this section along with the particularities of the robot used in the experiments. After
that, the model-free high-order SMC with finite-time convergence in predefined time is
also introduced.

2.1. Autonomous Underwater Vehicles Kinematics and Hydrodynamics

Fossen [24] describes the kinematics of underwater vehicles using two reference frames:
an Earth-fixed frame and a Body-fixed frame. As shown in Figure 1, the orthonormal axes
are denoted as x, y, and z for the Earth-fixed frame and xb, yb, and zb for the Body-
fixed frame.

Figure 1. Reference frames for an AUV.

There is a convention for the notation of underwater vehicle’s position, orientation, and
velocities accepted by the Society of Naval Architects and Marine Engineers (SNAME) [24],
which also defines the forces and moments applied to the vehicle. Considering this nomen-
clature, the vehicle’s position regarding the Earth-fixed frame (η) and its velocities regarding
the Body-fixed frame (ν) can be described as

η = (x, y, z, φ, θ, ψ)T , (1)

ν = (u, v, w, p, q, r)T , (2)

and the forces and moments with respect to the Body-fixed frame (τ) as

τ = (X, Y, Z, K, M, N)T . (3)
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The hydrodynamical model for underwater vehicles, as described by Newton–Euler
equations [24], is given by

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + ω, (4)

τ = Btut, (5)

where

MεR6×6 is the inertial and added mass matrix,
CεR6×6 is the rigid body and added mass centripetal and Coriolis matrix,
DεR6×6 is the hydrodynamic damping matrix,
gεR6×1 is the restitution forces vector,
τεR6×1 is the control signal vector,
BtεR6×6 is the thruster allocation matrix,
utεR6×1 is a vector containing the force generated by the thrusters, and
ωεR6×6 represents environmental disturbances.

According to Fossen [24], the model given by Equation (4) can be expressed in the
Earth-fixed frame applying kinematic transformations as follows

η̇ = J(η2)ν←→ ν = J−1(η2)η̇, (6)

η̈ = J(η2)ν̇ + J̇(η2)ν←→ ν̇ = J−1(η2)[η̈ − J(η2)ν], (7)

where

J(η2) =

[
J1(η2) 03×3
03×3 J2(η2)

]
, (8)

with

J1(η2) =

cψcθ −sψcφ + sφsθcψ sψsφ + sθcψcφ

sψcφ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ sφcθ cφcθ

, (9)

J2(η2) =

1 sφtθ cφtθ
0 cφ −sφ

0 sφ/cθ cφ/cθ

, and (10)

η2 = [φ, θ, ψ], (11)

cangle, sangle, and tangle are abbreviations for cos(angle), sin(angle), and tan(angle), respectively.
After some mathematical manipulation, the resulting expression for the hydrodynami-

cal model in the Earth-fixed frame is

Mη(η)η̈ + Cη(ν, η)η̇ + Dη(ν, η)η̇ + gη(η) = τη , (12)

where

Mη(η) = J−T(η)MJ−1(η), (13)

Cη(ν, η) = J−T(η)[C(ν)−MJ−1(η) J̇(η)]J−1(η), (14)

Dη(ν, η) = J−T(η)D(ν)J−1(η), (15)

gη(η) = J−T(η)g(η), (16)

τη(η) = J−T(η)τ. (17)

2.2. Finite-Time Controller with Convergence in a Predefined Time

The High-order SMC with finite-time convergence used in this work is based in the
proposal by García-Valdovinos et al. [25–27] and was adapted for trajectory tracking of
AUVs in [23] as follows:
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Consider that Equation (12) is linearly parametrizable by the product of a regressor
Y(η, η̇, η̈)εRn×p, which is composed of known nonlinear functions and a vector θεRp with
constant parameters. The parametrization of Equation (12) can be rewritten in terms of a
nominal reference η̇r and its derivative η̈r as

Mη(η)η̈r + Cη(ν, η)η̇r + Dη(ν, η)Sr = τη −Y(η, η̇, η̈)θ. (18)

Subtracting Equation (18) from both sides of Equation (12) leads to the open-loop error
dynamics expression

Mη(η)Ṡr + Cη(ν, η)Sr + Dη(ν, η)Sr = τη −Y(η, η̇, η̈)θ, (19)

where Sr is known as the extended error computed as

Sr = η̇ − η̇r, (20)

considering the nominal reference

η̇r = η̇d − αη̃ + Sd − Ki

∫ t

0
sign(Sη)dσ, (21)

where the tracking error of the position is given by η̃ = η − ηd, ηd is the desired position, α
and Ki are diagonal positive definite n× n gain matrices, sign(x) is the signum function of
the x vector, and

S = ˙̃η + αη̃, (22)

Sd = S(t0)e−kt, (23)

Sη = S− Sd, (24)

with k > 0. The extended error can be now rewritten as

Sr = Sη + Ki

∫ t

0
sign(Sη)dσ, (25)

resulting in the model-free second-order SMC which control law is defined as

τη = −KdSr. (26)

A stability analysis of the controller just described can be found in [27]. To achieve
finite-time convergence with this model-free high-order SMC, a Time-Base Generator (TBG)
is used as described in [25,26]. This TBG is a scalar function providing a smooth 0 to 1
transition. The duration of that transition is controllable by a predefined time-base tb. The
derivative of this function provides a bell-shaped speed profile. The functions used for the
TBG are

ξ(t) = 10
(t− t0)

3

(tb − t0)3 − 15
(t− t0)

4

(tb − t0)4 + 6
(t− t0)

5

(tb − t0)5 (27)

and

ξ̇(t) = 30
(t− t0)

2

(tb − t0)3 − 60
(t− t0)

3

(tb − t0)4 + 30
(t− t0)

4

(tb − t0)5 , (28)

where t0 represents the initial time. Equations (27) and (28) are subjected to the following
conditions: ξ(t0) = ξ̇(t0) = ξ̇(tb) = 0. Then, ξ(t) is used to parameterize the gain α in
Equation (22) as time-varying as follows



Sensors 2022, 22, 488 6 of 17

α(t) =

{
α0

ξ̇
(1−ξ)+δ

0 ≤ t ≤ tb

αc t > tb
, (29)

with α0 = 1 + ε, 0 < ε � 1, 0 < δ � 1, and αc > 0. A diagram of the complete control
scheme is showed in Figure 2.

Remark 1. The time-base parameter tb can be chosen arbitrarily and does not depends on the initial
conditions or controller parameters. The convergence of the controlled trajectory will occur at the
selected tb, which means that a smaller value for tb will produce a faster convergence, and a bigger
tb value will produce a slower convergence.

Figure 2. Model-free high-order SMC with finite time convergence block diagram.

2.3. BlueROV2 Robot

The BlueROV2 from Blue Robotics® is a Remotely Operated Vehicle (ROV) with a
6-Thruster vectored configuration as shown in Figure 3. It has an open-source software and
hardware configuration, which make it suitable for research purposes.

Figure 3. BlueROV2 thruster configuration. (Left) Top view. (Right) Front view.

A complete set of the BlueROV2 physic and hydrodynamic parameters is listed in [23].
However, this work considers a model-free control algorithm, which means that only the
thruster allocation matrix Bt is needed. From the BlueROV2 thruster distribution, Bt is
defined as
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Bt =



0.7071 0.7071 −0.7071 −0.7071 0 0
−0.7071 0.7071 −0.7071 0.7071 0 0

0 0 0 0 −1 −1
0 0 0 0 0.115 −0.115
0 0 0 0 0 0

−0.1773 0.1773 −0.1773 0.1773 0 0

. (30)

2.4. Exact Differentiatior

The tracking error derivative is needed to compute the control signal. That means that
the velocities of the robot need to be estimated. The easiest way to do that is through a
simple Euler differentiatior. However, this differentiatior is quite sensitive to noise and will
produce an inaccurate estimation of the robot velocities. An alternative is to use an exact
differentiatior as the proposed by Davila et al. [28].

3. Experimental Set-Up

The BlueROV2 was modified in its hardware and software to be able to autonomously
follow predefined depth and yaw trajectories. The proposed model-free high-order SMC
with finite-time convergence was tested in different experiments and its performance was
compared with traditional PID and 2nd-order SMC. The experimental set up can be ob-
served in the Figure 4.

Figure 4. Experimental set-up at Tecnologico de Monterrey, Campus Querétaro. (a) Ground control
station at a side of the semi-Olympic pool. (b) BlueROV2 deployed into the water. (c) Autonomous
trajectory tracking mission.

The experiments were performed in the Tecnologico de Monterrey, Campus Queretaro
semi-olympic swimming pool. All the runs were made in the same robot—BlueROV2—using
three full-charged batteries—one for every control scheme—from 9:00 a.m. to 12:00 p.m. This
with the aim of perform the experiments under the same conditions. No external disturbances
were introduced to the experiments. An OMEN O15 Laptop with a Intel CORE i7 processor
running UBUNTU 16 as operative system was used as ground control station.

3.1. Hardware

Inside the BlueROV2, a Raspberry Pi® 3 (RPi) acts as the processor, and it is in charge of
running the control algorithms and managing the different sensors. The Rpi runs Lubuntu
as operative system, and it is connected to a control station through a tether. A BAR-30
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high-resolution pressure sensor from BlueRobotics® is connected to the robot through an
I2C port in the RPi to measure the depth z of the vehicle. A Smart sensor BNO-055 from
Bosh® is connected to a serial port of the Rpi and is used to estimate the orientations φ, θ, ψ.
The thruster’s speeds are controlled by Pulse Wide Modulation (PWM) signals from the
RPi, which goes through a set of 30 A Electronic Speed Controllers (ESC). Finally, a 14.8 V,
18A Ah battery supplies energy for the whole electronics. A diagram of the hardware
configuration in the BlueROV2 used for the experiments is shown in Figure 5.

Figure 5. BlueROV2 hardware configuration.

3.2. Software

The Robot Operating System (ROS) in its Kinetic version was used to program the
algorithms to manage the sensors, thruster’s speed, and control schemes. Five nodes were
used in total (shown in Figure 6).

Figure 6. BlueROV2® software configuration.

The IMU sensor node (1) manages the BNO-055 sensor and it is able to obtain a new
set of φ, θ, and ψ orientations at a 100 Hz rate. The Pressure Sensor node (2) manages
the Bar-30 sensor and obtains a new z position at a 10 Hz rate. Both nodes publish the
estimated positions so they can be used as inputs to the Control Algorithm node (3). In this
node, the different control algorithms were programmed along with a user interface to
provide the user the option of selecting between the PID control, 2nd-Order SMC, and the
model-free high-order SMC with finite-time convergence. The user can also modify the
controller parameters and gains from this interface. In the algorithm, the desired position
is generated as defined by the user throughout the user interface—either as a set point or
as time-variant—and compared with the actual position estimated by the sensors. Then,
the selected control law is applied and a thruster’s coefficients vector is computed and
published as a result. The Thruster Managment node (4) reads the thruster’s coefficients
vector and converts it to the proper PWM signal for each thruster to be generated by the
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RPi peripherals. The Manual Control node (5) is used prior to the experiment to position the
BlueROV2 in its initial position.

3.3. Time-Parameterized Trajectories

A sinusoidal trajectory was chosen for the vehicle to track both depth (zd), and yaw
(ψd). Those trajectories are given by

zd = zi + Azsin(ωt), and ψd = ψi + Aψsin(ωt), (31)

where zi and ψi are the initial desired position or offset, Az and Aψ are the desired ampli-
tudes, and ω is the frequency for the signal. Then, the desired velocities żd and ψ̇d are

żd = −ωAzcos(ωt), and ψ̇d = −ωAψcos(ωt). (32)

3.4. Control Algorithms

Experiments were carried out using three different control laws for the trajectory
tracking of the robot. The aim was to compare the performance of the proposed algorithm
with other common controllers used for this purpose.

3.4.1. PID Control

The control law used for this controller is

τη = −kpη̃ − ki

∫
η̃dt− kd ˙̃η, (33)

where kp, ki, and kd are the proportional, integral, and derivative gain matrices, respectively.
For the experiments on this work, the gain matrices that gave the best results are

kp = diag[0, 0, 100, 100, 0, 100], ki = diag[0, 0, 1, 1, 0, 1], and

kd = diag[0, 0, 80, 10, 0, 80]. (34)

3.4.2. Model-Free High-Order SMC (Asymptotic)

The control law used for this controller is

τη = −KdSr, (35)

with

Sr = Sη + Ki

∫ t

0
sign(Sη)dσ, Sη = S− Sd,

Sd = S(t0)e−κt, and S = ˙̃η + αη̃. (36)

where α > 0, κ > 0, Ki, and Kd are constant gains, t0 is the initial time, and sign(Sη) is
the sign function of Sη . For the experiments on this work, the gain set that gave the best
results is

α = 10, κ = 5, Ki = diag[0, 0, 0.05, 0.005, 0, 0.001], and

Kd = diag[0, 0, 100, 0.1, 0, 0.1]. (37)

3.4.3. Model-Free High-Order SMC (Finite-Time)

The control law used for this controller is the same as the previous section (Equation (35)).
To achieve finite-time convergence, the α gain in Equation (36) is substituted by the time-
variant gain α(t) defined in Equation (29), with αc = 10 for depth control, αc = 5 for
heading control, and, in both cases, α0 = 1.005 and δ = 0.001. The rest of gain parameters
(κ, Ki, and Kd) stays as defined in Equation (37).
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3.5. Exact Differentiator Algorithm

The algorithm proposed for the exact differentiator is given by

j̇0 = w0,

w0 = −λ1(j0 − f (t))1/2 × sign(j0 − f (t)) + j1, and

j̇1 = −λ2 × sign(j0 − f (t)), (38)

where λ1 = 1.5 and λ2 = 1.1 are constant, f (t) is the signal we want to differentiate,
and sign() stands for the sign function. After a brief adjustment time, the following is
considered as true

j0 = f (t), j1 = ḟ (t), (39)

j0 = 0 and j1 = 0 were considered as initial values for the algorithm.

4. Results and Discussion

The functions in Equations (31) and (32) were programmed in the BlueROV2 as desired
trajectories for depth and heading, respectively, meanwhile the desired roll was set to φ = 0.
The initial desired positions were set to zi = 0.50 m and ψi = 270 °, the desired amplitudes
were Az = 0.25 m and Aψ = 30 °, and the period was set to T = 1

ω = 20 s. Results for
different runs with the PID controller implementation are shown in Figure 7.
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Figure 7. Controlled trajectories with the PID controller. (Left) Depth. (Right) Heading.

The best result for the PID controller is shown in Figure 8, a significant error can be
observed in the depth trajectory control meanwhile the heading trajectory control error is
significantly minor, but there is an overshoot in its transitory response.

0 5 10 15 20 25 30 35 40

 time (s)

0

0.5

1

 p
o

s
it

io
n

 (
m

)

z - depth

Controlled

Desired

0 5 10 15 20 25 30 35 40

 time (s)

200

250

300

350

 p
o

s
it

io
n

 (
°

)

 - heading

Controlled

Desired

Figure 8. Controlled trajectories with the PID controller.

The same experiment was performed applying the model-free 2nd-order SMC with
asymptotic convergence. Results for trajectory tracking of z and ψ in different runs of the
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experiment are shown in Figure 9. The graph in Figure 10 includes the best performance of
the asymptotic 2nd-order SMC, there is a faster response compared with the PID controller,
and the error once the robot meets the trajectory is smaller.
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Figure 9. Controlled trajectories with the asymptotic model-free 2nd-order SMC. (Left) Depth.
(Right) Heading.
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Figure 10. Best controlled trajectories with the asymptotic model-free 2nd-order SMC.

Results for the trajectory tracking by the model-free high-order SMC with finite-time
convergence in a predefined time-base of 5 s are shown in Figure 11. Note that, at the
beginning of the controlled trajectory, the BlueROV2 approaches slowly to the desired
trajectory and then accelerates to reduce the error to practically zero in the selected time-
base of 5 s. After the time-base is reached, the controller maintains the robot in the desired
trajectory with a minimum Root Mean Square Error (RMSE) (<1 cm and <2.3°) as can be
seen in Figure 12. Those errors can be attributed to hardware limitations such as sensor
accuracy, resolution, and measurement rates, processor speed, communication baud rates,
etc., which limits the control cycle frequency to a maximum of 10 Hz compared with a
frequency 100 to 1000 times higher in simulations.
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Figure 11. Controlled trajectory with the model-free high-order SMC with finite-time convergence in
a 5 s predefined-time.
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Figure 12. Tracking error for depth and heading control.

The resulting TBG for this experiment is shown in Figure 13. As described in
Equations (27) and (28), there is a smooth transition from zero to one which is completed
exactly at the given time-base. The resulting time-varying gain α(t) is shown in Figure 14,
as described in Equation (29). Several runs of the same experiment were performed with
the model-free high-order SMC with finite-time convergence defining different time-bases.
Results of the controlled depth and yaw trajectories are shown in Figure 15. It can be
observed that the controller drives the robot to the desired trajectory to match it in the
desired time-base for all cases.
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Figure 13. Time base generator results for tb = 5 s.
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Figure 14. Time-varying gain α(t) result for tb = 5 s.
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Velocities estimations are another source of noise and, therefore, errors in the trajectory
tracking problem for the SMC. To reduce these errors, the exact differentiator described in
Equation (38) was used for the experiments in both the asymptotic and finite-time SMC.
The results of the ż and ψ̇ estimations for a finite-time controlled trajectory are shown in
Figure 16. As can be observed, the uncertainty in the estimations was reduced significantly
by the use of the exact differentiator.
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Figure 16. Velocities estimations by Euler and Exact differentiators.

The RMSE was computed as a performance indicator of the different controllers
applied. As the error varies during the convergence, the RMSE was calculated after the
robot is in the desired trajectory. For the finite-time controller, the robot is considered in
the trajectory when t > tb. For the PID and the asymptotic SMC controllers, the robot is
considered in trajectory once the controlled trajectory intersects with the desired trajectory.
Results for the different control approaches are shown in Figure 17.
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Figure 17. RMSE comparison for the trajectory tracking with the different controllers. (Left) Depth.
(Right) Heading.

In the depth trajectory tracking, the mean RMSE—considering all the runs of the
experiment—is 4.07 cm for the PID control (PID), 1.68 cm for the asymptotic 2nd-order
SMC (SMC), and the best was the high-order SMC with finite-time convergence (SMC-FT)
with a value of 1.03 cm. For the yaw trajectory tracking, the mean RMSE was 6.29° for
the PID control, 4.58° for the asymptotic 2nd-order SMC, and, again, the best was the
high-order SMC with finite-time convergence with a value of 2.72°.

Another performance indicator is the energy consumption in the thrusters. A control
coefficient of +1.0 represents the maximum thrust in one direction and a control coefficient
of −1.0 represents the maximum thrust in the opposite direction, in both cases, the power
consumption is 625 W approximately. A higher magnitude of this coefficient means a
bigger energy consumption from the corresponding thruster. The control coefficient for the
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different thrusters as result of the experiments shown in Figures 8, 10 and 11 are shown in
Figure 18.
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Figure 18. Control coefficients on the thrusters for the different control approaches.

The resulting control coefficients for thrusters 1, 2, 3, and 4 were identical in magnitude,
the same occurred for thrusters 5 and 6. The Root Mean Square (RMS) values of the control
coefficients were computed as performance indicator as follows

urms =

√√√√ 1
N

N

∑
i=1

u2
i , (40)

where N is the number of samples. Considering the six thrusters, the RMS value of the
control coefficient was 0.155 for the PID controller, 0.206 for the asymptotic SMC, and 0.101
for the finite-time SMC with tb = 5 s. The finite-time controller was able to drive the vehicle
to the desired trajectory with 35 % less energy demanded than the PID controller, even
when they reach the desired trajectory at the same time. The asymptotic SMC was faster in
its approach to the desired trajectory, resulting in an energy demand twice as bigger as the
demanded by the finite-time controller.

As can be observed in the different performance indicators, the finite-time SMC
proposed outperforms the asymptotic SMC even when, as stated in previous sections, they
were programmed with the same parameters and gains—except for α(t)—which is a clear
example of the advantages of using a finite-time convergence solution. Performing a tuning
on the PID or asymptotic SMC to achieve a faster or slower convergence will also modify
the performance of the controller in the trajectory tracking. This does not happen with the
finite-time controller, where a simple change in the tb parameter will lead to a faster or
slower convergence maintaining its performance and robustness. The user can benefit from
this to obtain the best performance of the controller according to the needs demanded by
the task.

5. Conclusions

In this work, a model-free high-order SMC with finite-time convergence in a prede-
fined time was tested and validated through experimentation in a water pool, using the
BlueROV2 robot. This robot was modified and instrumented to be able to follow time-
parametrized trajectories at depth and orientation. Results showed that the finite-time
convergence controller was able to drive the robot to the desired trajectory in a desired
predefined time and maintain it there with a small error for all of the experiment runs. The
performance of the controller was then compared with a PID controller and an asymptotic
2nd-order SMC in terms of the RMSE. The mean depth error after the total of the experi-
ments was 75% smaller for the finite-time convergence controller compared with the PID



Sensors 2022, 22, 488 16 of 17

control. Additionally, it was 38% smaller compared with the asymptotic 2nd-order SMC
which kept the same parameters and gains of the finite-time controller with the exception
of the α gain. Regarding the yaw trajectory tracking, the same indicator was 57% and 41%
smaller for the finite-time controller when compared to the PID and asymptotic SMC, re-
spectively. Although it was expected that the finite-time controller outruns the PID control
performance, the fact that it also outperformed its asymptotic equivalent demonstrates the
advantages of a finite-time convergence controller in the AUV navigation problem. Another
advantage of the use of this finite-time controller is the smaller energy consumption. The
RMS thruster coefficient was 35% smaller when compared with the PID solution with both
controllers converging at the same time. It was also half of the RMS coefficient computed
for the asymptotic SMC. Future work will expand the experimentation to x and y axes.
Additionally, this controller will be implemented and tested for cooperative intervention
missions of AUVs, where it is important that the vehicles can reach a desired position
or trajectory at a predefined time. This controller will be especially useful considering
scenarios where the communication between AUVs is limited or does not exist at all.
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The following abbreviations are used in this manuscript:
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