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Abstract: Internet of Things (IoT) technology has recently been applied in healthcare systems as an
Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of
heart disease. The main objective of the proposed research is to classify data and predict heart disease
using medical data and medical images. The proposed model is a medical data classification and
prediction model that operates in two stages. If the result from the first stage is efficient in predicting
heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors
affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification
was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified
ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a
hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification.
Both classification methods were carried out, and the classification findings were consolidated
and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in
detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed
hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying
echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score,
and maximum accuracy of 99.15%.

Keywords: Internet of Medical Things; cloud; heart disease prediction; hybrid linear discriminant
analysis with modified ant lion optimization; hybrid Faster R-CNN with SE-ResNet-101; medical image

1. Introduction

Smart healthcare provides healthcare platforms that use gadgets such as wearable
appliances, the IoT, and the mobile Internet to conveniently enter health documents and
connect resources, individuals, and organizations. Smart healthcare involves a wide
range of operatives, including physicians, nurses, hospitals, and research organizations. It
consists of a dynamic framework with numerous dimensions, such as disease detection
and prevention, evaluation and assessment, decision-making, healthcare management,
and medical research. Smart healthcare includes automated networks, such as the IoT,
the Internet, artificial intelligence (Al), Big Data, cloud networking, and 5G, as well as
advanced biotechnology. The application of developing technology in protective policies
and behavioral systems can aid in the early detection of possible health concerns and allow
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for the scheduling of relevant measures, such as monitoring treatments and developing
new evaluations. The global smart health industry was worth USD 143.6 billion in 2019,
and is expected to increase at a 16.2 percent annual pace between 2021 and 2027 [1].

Telemedicine systems, on the other hand, are quite diverse and are often designed
to address a particular therapeutic purpose, such as remote heart monitoring and stroke
rehabilitations. This feature of telemedicine systems makes them effective in terms of
minimizing expenses and healthcare infrastructure overload, but it is a disadvantage when
the number of patients and diseases increases. The IoMT can address the demand for
improved scalability and genericity. Indeed, it combines the dependability and safety of
conventional medical equipment with the genericity, dynamicity, and scalability of typical
IoT capabilities [2]. It is a smart system platform that consists primarily of electronic circuits
and sensors that gather biological signals from patients. To process the signals, a processing
unit is used to transmit data over a network system, which is a permanent or temporary
storage unit and a visual representation platform with Al techniques is used to make
decisions at physicians’ convenience [3]. In the framework of body area networks, medical
sensors and actuators are employed as wearable devices in the IoMT. Instead of admitting
patients to hospitals, these technologies can continuously monitor patients” health in real
time, while also providing them with greater mobility and physical flexibility [4].

The IoMT is the medical field’s focused manifestation of IoT technology. Figure 1
depicts the conventional three-tier design of an IoT application, called the application,
network, and perception layers. The IoMT focuses on the perception layer, which is
primarily separated into two sublayers: data access and data acquisition.

Application Layer

Network Layer

Perceptual Layer

Figure 1. General architecture of the Internet of Medical Things.

In the IoMT, to accomplish the identification and perception of nodes, and to gather
data about people and objects, the sublayer of data acquisition operates via various types of
signal acquisition equipment and medical perception equipment. The data access sublayer
connects the data acquired by the data acquisition sublayer to the network layer, using
short-range transmission technologies such as Bluetooth, Wi-Fi, and ZigBee [5,6].

The network layer is also subdivided into two sublayers: the service and network
transmission sublayers. The network transmission sublayer iss the IoMT’s backbone,
somewhat like the brain and nerves of humans. It makes use of the mobile communications
networks, the Internet, and various specialized networks for transferring data gathered
through the perception layer in synchronous, precise, reliable, and barrier-free modes. The
service sublayer is primarily responsible for the combination of heterogeneous networks,
as well as the combination of multiple data types, data warehouses, descriptions, and
other data.

There are also two sublevels in the application layer: medical data and medical
data decision-making applications. Patient data management, medical devices, material
data management, and other medical data applications are examples of medical data
applications. Patient data analysis, disease analysis, pharmaceutical analysis, diagnosis,
therapy analysis, etc., are examples of applications of medical data decision-making [6].
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The main motivation of this work is to develop a heart disease prediction model. Most
of the previous research is based on either sensor-based data (medical signals) or medical
images for classification and prediction. In the proposed model, instead of using sensor
data and image data separately, sensor data and image data are combined as two stages of
input. In the first stage, sensor data is used for prediction and classification. If the result is
not satisfactory, based on the significance of the disease or the generated output, the second
stage, using medical image data, will be used for accurate classification and prediction of
disease. By implementing this two-stage classification model, precise predictions can be
made for the benefit of both patients and doctors.

The proposed research provides a model for medical data classification and prediction
that employs artificial intelligence and machine learning techniques. Sensors (wearables)
and datasets are essential components of the proposed model. As noted, the proposed
model operates in two stages. The classification of sensor data generated by medical sensors
placed on a patient’s body is the first stage, followed by the classification of echocardiogram
images in the second stage. Both classification methods are carried out, and the classification
results are validated to predict heart disease.

A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-
MALOQ) technique is used to classify sensor data. The hybrid Faster R-CNN with SE-ResNet-
101 model is used for echocardiogram image classification.

This paper is organized as follows: Section 2 presents related works; Section 3 contains
the proposed methodology; Section 4 provides the results and discussion; and Section 5
provides a conclusion and suggestions for future studies.

2. Related Works

A modified salp swarm optimization (MSSO) and an adaptive neuro-fuzzy inference
system (ANFIS) were used in [7] to develop the IoMT system for the detection of heart
diseases. Using the Levy flight method, this MSSO-ANFIS enhanced search capabilities.
The common learning procedure in ANFIS is gradient-based and has a proclivity for being
caught in local minima. MSSO has been used to enhance learning parameters to offer
better outcomes for ANFIS. Using a deep learning modified neural network (DLMNN),
a patient-monitoring method for heart patients that uses the IoT to aid in the diagnosis
and treatment of heart disease, was proposed in [8]. In that work, a heart patient of the
specified hospital was authenticated using the substitution cypher in conjunction with
SHA-512. Next, the IoT sensor wearable gadget was attached to the patient’s body and
sensor data was simultaneously relayed to the cloud. Using the PDH-AES approach, the
sensor data was encoded and safely transferred to the cloud. Eventually, the encrypted
data was decrypted, and the classification was completed.

A modified deep convolutional neural network (MDCNN) was used in [9] for heart
disease prediction. In that work, a patient’s blood pressure and ECG were tracked using
a smartwatch and an ECG device. The MDCNN was used to classify the received sensor
data as normal or abnormal. For better results, the performance of this model might have
been improved by applying a feature selection strategy.

In [10], an autoencoder-based medical decision support system for cardiovascular
disease diagnostics was proposed. PASCAL B-training and Physiobank-PhysioNet A-
training heart sound datasets were used to construct the AEN’s diagnosing infrastructure. A
learning-aided enhanced deep convolutional neural network (EDCNN) was used in [11] to
help enhance prognostics of heart diseases. This model was designed with deep architecture
in mind, encompassing an MLP model with regularization learning techniques. As a result,
the reduction in features had an impact on the performance of classifiers, related to accuracy
and processing time.

In [12], an improved classifier, optimal deep learning, was used to classify cancer,
brain imaging, and Alzheimer’s diseases. An optimal feature selection-based medical
image classification was implemented, using a deep learning model that incorporated
preprocessing, feature selection, and classification. The opposition-based crow search



Sensors 2022, 22,476

40f19

(OCS) method was employed to improve the classifier’s performance. The OCS approach
chose the best attributes from pre-processed images for analysis; in that case, grey level
and multi-texture features were chosen. Segmentation and feature reduction techniques
might have been considered for better performance.

The convolutional neural network (CNN) was used in [13] for the detection of cardio-
vascular disease in a patient. In its early stage, the proposed technique was focused on
temporal data modelling by using CNN for heart disease prediction. A feature extraction
and selection method could be applied to improve performance.

In ref. [14], a hybrid fuzzy-based decision tree method for early detection of cardiac
disease, using a continuous and remote patient monitoring system, was proposed. If
irrelevant and redundant structures are eliminated from the data, the structure chosen
would aid in the improvement of model presentation for the classification of reduced data.

A deep learning neural network heart disease prediction model using the Talos opti-
mization technique was proposed in [15-19]. This model was evaluated using the medical
data classification. With an ensemble of a deep learning model and feature fusion methods,
a smart healthcare monitoring model was developed in [20] to predict heart disease. In that
study, electronic health records and sensor data were used to predict heart disease.

A back propagation neural network, with a maximum-relevance-minimum-redundancy
feature extraction technique, was used in [21] to develop a heart disease prediction model.
A numerical medical dataset was used for the evaluation of classification and prediction. A
semi-supervised generative adversarial network was used in [22] to predict heart disease.
In that study, echocardiogram images were used for the evaluation of heart disease.

This review of related works shows that almost all previous studies on heart disease
prediction were based on either medical data classification or medical image classification.
No previous work combined both medical data classification and medical image classi-
fication. Although these previous studies were carried out to predict heart disease, the
concept of combining both medical data and medical image will improve the performance
of classification and prediction and be useful in the prediction of several diseases.

3. Hybrid Classification Model for Heart Disease Prediction

The proposed model developed for medical data classification and prediction employs
artificial intelligence and machine learning techniques. Sensors (wearables) and datasets are
essential components of the proposed research. The proposed model operates in two stages.
In the first stage classification of sensor data is generated by medical sensors affixed to a
patient’s body, followed by the second stage, which is the classification of echocardiogram
images. After each of these classification methods is carried out, the classification findings
are aggregated and validated to forecast heart disease. This classification model is binary,
and the findings are expressed as either the presence or absence of disease.

In the study, sensor data was captured and sampled, with the ECG sensor data
taken at 100 Hz. Data were sent to the system via Bluetooth and stored as binary and
comma-separated value (.csv) files. The customized echocardiogram image data, gathered
privately under the supervision of a doctor, was used for the image classification experiment.
These files were kept in a cloud database. A hybrid linear discriminant analysis with the
modified ant lion optimization (HLDA-MALO) technique was used to classify sensor
data. The hybrid Faster R-CNN with SE-ResNet-101 model was used for echocardiogram
image classification.

ECG, pulse oximeter, temperature, and blood pressure sensors, in the form of wear-
ables, were used to collect medical data. These sensors recorded ECG data, heart rate,
blood pressure, and body temperature by being placed on the human body. The data were
captured and saved in the cloud using IoT technology.

This research was conducted in two stages, each with its own set of challenges. The
outcomes of the two stages were validated to predict heart disease. Users will be able
to determine the impact of a condition by monitoring ECG, heart rate, and BP from the
findings of stage 1.
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Users must have echocardiogram imaging to receive a complete diagnosis, as well as
a doctor’s opinion. A doctor will evaluate the results of stage 1 and advise the patient of
additional diagnostics that may be required in stage 2. Both the doctor and the user may
monitor the data remotely. In the event of an emergency, a user must visit the hospital for
medical support.

Figure 2 represents the proposed model, which operates in the following manner: first,
sensors (ECG, BP, and pulse oximeter) are placed on the human body to measure medical
data. The sensor data obtained from patients are relevant to heart disease. The ECG sensor
detects the direction of electrical impulses as they travel through the heart muscle. An
abnormal heart rate is outside the range of 60 to 100 beats per minute. (Bradycardia is
defined as a heart rate that is less than 60 beats per minute; tachycardia is defined as a
heart rate of more than 100 beats per minute.) An arrhythmia is present if the cycle space is
not even. Furthermore, if the PR interval is more than 0.2 s, the atrioventricular node is
considered to be blocked.

. . Cloud Data Storage
Mobile Gateway IoT Gateway €

T

Customized
Echocardiogram
Dataset

STAGE-1 STAGE-2
Body
o < Middleware Middleware
Sensor Preprocessing [+ (User) — (User)
Feature Selection Feature Selection
using MALO usxpg}l.-
ResNeXt-101
Classification ('h'lSSifiNlﬁﬂn
using LDA using F‘,‘s,“""
RCNN
Normal/Abnormal | R““BS Verified |, | Normal/Abnormal
by Doctor

Figure 2. Workflow of the two-stage classification model.

A temperature sensor, which is an adhesive patch-based sensor with Bluetooth con-
nectivity, was used in this research. A TMP117 high-precision digital temperature sensor
combined with CC2640R2F wireless MCU reliably detects skin temperature. The aver-
age body temperature is 98.6 °F (37 °C). A temperature of more than 100.4 °F (38 °C) is
considered abnormal.

Honeywell’s 26 PC SMT pressure sensor was used in this research to assess blood
pressure. Normal blood pressure is less than 120 in the systolic range and less than 80 in the
diastolic range (120/80). Elevated blood pressure is defined as a systolic value greater than
120 and/or a diastolic value of less than 80. In stage 1 high BP, the systolic BP is between
130 and 139 or the diastolic BP is between 80 and 89.

A pulse oximeter measures the SpO, in the range of 70-99 percent with £2 percent
accuracy. In healthy people, the percentage saturation of oxygen assessed by a pulse
oximeter ranges from 95 to 100 percent. Below 95 percent, the condition is abnormal.

The medical data collected by the sensors was transferred to the system via Bluetooth
and stored as binary and comma-separated value (.csv) files. The medical data was kept
in the cloud for evaluation by users and doctors. Using the stage 1 HLDA-MALO model,
data stored in the cloud was accessed and processed for medical data classification. If the
results of the first stage were accurate in predicting heart disease, the second stage was
unnecessary. Otherwise, an echocardiogram diagnose was recommended. A heart disease
dataset in the form of echocardiogram images gathered under the supervision of a doctor
was also saved in the cloud for stage 2.

For this echo image classification, a hybrid Faster R-CNN with SE-ResNet-101 model
was used. Both modules were trained and evaluated using publicly available datasets from
the UCI repository. During testing, the stage 1 module classified medical data and the stage
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2 module separately classified medical images. The classified data and the images were
finally validated by a doctor to determine whether the patient was affected by heart disease.

The first stage in the classification model is preprocessing, which is divided into three
steps: replacement of missing attributes, removal of redundancies, and separation. After
assessing the entirety of a patient’s age category, blood pressure, and cholesterol, the miss-
ing values of the specified attributes were added. The value was amended appropriately if
the majority of a patient’s feature values matched.

Redundancy removal minimizes data by removing irrelevant features. Patients were
classified into four groups, based on the type of chest pain they were experiencing:
(1) typical, (2) atypical, (3) non-anginal, and (4) asymptomatic. In stage 1, the hybrid
technique (linear discriminant analysis with modified ant lion optimization) was used to
classify the medical sensor data. For feature selection, the modified ant lion optimization
was used, while LDA was used for classification. This research dealt with two different
types of medical data, signal and image. Both types of data were analyzed independently,
and the findings were validated to assess the prediction of heart disease.

This method differs from previous efforts at predicting heart disease. The fundamental
relevance of this research is that most of the previous studies focused solely on either
medical image or medical signal classification. However, this research cross-validates the
classification of sensor data and medical image data for the prediction of heart disease.
Classification findings were verified for the purpose of predicting the presence or absence
of heart disease.

3.1. Hybrid Linear Discriminant Analysis with Modified Ant Lion Optimization
3.1.1. Modified Ant Lion Optimization

The ant lion optimizer (ALO) is a heuristic search algorithm with no parameters,
replicating the hunting approach of the ant lion in nature. Using a random walk and a
“roulette wheel,” the ALO offers considerable potential for avoiding local optima stagnation.
Exploration of the search space in the ALO is assured by the random selection of ant lions
and the random travel of ants around them, while exploitation is guaranteed by the
adaptive decreasing bounds of ant lion traps. The mathematical model of the ALO may be
explained by the steps below [15]. Because ants travel in nature in a stochastic manner in
search of food, the ant’s random walk may be defined in Equation (1):

7K =10, cumsum(2s(ky) — 1), cumsum(2s(ky) —1),..., cumsum(2s(k,) —1] (1)

where Zk represents the ant’s random walk, 7 is the maximum number of iterations, cumsum
represents the cumulative sum, k represents the random walk step (iteration), and s(k) is a
stochastic function as defined in Equation (2):

_J Yifrdm>05
s(k) = { 0if rdm <05 @

where rdm is the random number generated using a uniform distribution within the range
[0,1]. The location of each ant was normalized using a min-max normalization equation to
maintain the random walk of ants inside the search space, as defined in Equation (3):

-l ®

]

where p; is the lowest random walk of the variable j, g; is the maximum random walk of
the variable j, r}‘ is the minimum of the variable j at kth iteration, and t;? is the maximum of
the variable j at kth iteration. By these processes, an ant lion may construct a trap that is
proportionate to its fitness, whereas ants must move randomly. When an ant lion detects
an ant in the trap, it shoots sand outwards from the pit’s center, which cascades below the
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imprisoned ant that attempts to move out. To mimic the approach quantitatively, the ant’s
random walk radius was reduced appropriately, as shown in Equations (4) and (5) below:

=

r=5 @
P .
# = ©)

where | = 10“’5, K is the maximum number of iterations, and w is a constant specified
by the current iteration (w = 2 when k > 0.1K, w = 3 when k > 0.5K, w = 4 when
k > 0.75K, w = 5 when k > 0.9K, and w = 6 when k > 0.95K). Essentially, the constant w
may be used to control the exploitation accuracy.

Levy flight (LF) distribution is a biological theory that can improve search efficiency.
It was an approach to random walk with a heavy-tailed probability distribution for step
lengths. The distribution of LF was used widely in evolutionary computations for tackling
complicated optimization issues, due to LF’s random and dynamic features. Assume, for
example, that an ant’s location is denoted by Z;, and the distribution of LF changes it to new
condition GZ;. As aresult, the LF distribution creates MALO, as defined in Equation (6):

GZj=Zj+a® Levy(A) (6)

where GZ i identifies the ant’s new state, « is the step size connected to the problem’s scales,
and « is set to = 1.

To enhance the optimization capabilities of conventional ALO, the local search was
added to the ALO by applying the distribution of LF for the present global best ant Z;,
and the range over Z; was the most successful region for discovering optimum solutions.
The fundamental approach for conducting a local search was applied initially to establish
the condition, with the distribution of LF specified by Z;. Then, using Equation (6), the
mapping value of the solution space was computed for the present iteration to improve
the count of ants. Finally, each ant’s fitness value was computed, and the best ants were
selected for the iterations that followed.

Feature selection is understood as a discrete optimization issue that cannot be handled
directly with decimal coding. A binary coding version turns populations into the value of
probability for all individuals in the binary vectors, forcing the variables to assume a value
of 1 or 0. As a result, the total of ants in the ALO was based on the binary coding scheme.
Each dimension in the discrete binary condition may only be represented by 0 or 1. When
moving across a dimension, the relevant variables convert from 1 to 0, or vice versa.

To implement the binary mode for the ALO, each ant’s updating mechanism was
considered as being comparable to the continuous algorithm. The fundamental variation
among normal and binary ALO was updating ants in the binary method, which involved
switching between 0 and 1. Specifically, the coding considered the location of a new ant
to be 0 or 1 with the provided probabilities, which was then updated by a condition as
described in Equation (7).

S;‘ _ { lif rdm < ‘tanh(GZ}“)‘ @)
0 otherwise

where tanh denotes the hyperbolic tangent functions and S¥ is the binary coding form of an
ant’s location. Elitism is a significant feature of the swarm intelligence algorithm because it
facilitates the best solution at any step of the optimization procedure; however, that feature
was not suitable for binary coding.

Crossover requires many parent solutions and generates child solutions from entire
populations. It is a comparison of the two solutions of binary coding, derived from a
random move. In each iteration, the best ant lion was retained as elite. Because elite
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describes the fittest and best ant lion, that factor must have influenced the movement of
each ant in an iteration. As a result, it appeared that ants moved around the elite and other
ant lions concurrently. This is shown by way of a “roulette wheel” in Equation (8):

Antt = Crossover(Sllg, s’g) ®)

where S is the random walk around the ant lion picked by the roulette wheel at iteration
k, and S’(‘: is the random walk around the elite at iteration k. In this paper, the MALO was
presented as a solution to the problem of selecting features and obtaining the ideal combina-
tions for medical data classifications by integrating Levy flight distribution, crossover, and
binary coding operations. Using Equation (6), the present global best ants were randomly
dispersed in the local space, every ant was binary-coded and its location was updated, and
elitism with crossover operations occurred as per Equations (7) and (8). To increase the
original algorithm’s local optimization capabilities, the LF approach was merged with the
ALO to form a modified ALO.

3.1.2. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is commonly utilized to classify patterns into two
categories, although it may be expanded to identify many patterns. LDA assumes that all
classes are separable linearly, and to separate the classes, a multiple linear discrimination
function representing numerous hyperplanes in the feature space is created. If there are
two classes, LDA draws one hyperplane and projects the data onto it in such a way that the
separation of the two classes was maximized. This hyperplane is generated by taking two
factors into account simultaneously, as in [16]:

e  maximizing the difference between the two classes” means; and
e  minimizing diversity within each category.

LDA is a prominent pattern identification approach. There are various medical appli-
cations for LDA classifiers, such as electrocardiogram (ECG) signal analysis, lung cancer
classification, and breast cancer classification. LDA seeks the optimal sets of discriminant
projection vector Y to map the actual data space onto a low dimensional features space,
by increasing the fisher criterion I(Y) that indicates that the overlap among the classes in
the low dimensional features space was minimal. The Y, Y’ and class distributions are
projected in two-dimensional space. While the projected space Y’ has significant class
overlap (classification error), the equivalent projection Y has much better class separation.
For example, let Z = {zj, zy,...,zN} represent the data collection of an N-dimensional
vector. Every data point is assigned to one of the R object types {Zl, ZyyooiZijye -, Zr}.
The scatter matrices (i.e., the between-class scatter matrix and the within-class scatter
matrix) are defined in Equations (9)—(12):

R
My =Y Oj(0j —0)(0j — o)k )
=1
R
My =)0, (10)
=1
where
0j=Y (z—u)(z—p)~ (11)
ZEZ]'

R
M, = 2 0; (o]- —0) (0j — o)K (12)
=1
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The mean of the samples in class j is denoted by o0;, while the mean of all samples is
denoted by 0. LDA as a function of Y can be expressed as in Equation (13):

_ YA Mgy

I(Y) = +*"———
) = Y&aty v

(13)

Y was chosen in such a way that I(Y) was maximized. The solution {y; li=12,...,N}
was the collection of generalized eigenvectors related to the standard eigenvalues A; >
Ay > ... > AN 2> 0in the generalized eigenvalue problem shown in Equation (14):

MQy] = AjMyyj (14)

The eigenvector columns of Y that correspond to the highest eigenvalue A; are repre-
sented by y; in this relationship. These eigenvectors are the columns of the transformation
matrix Y for the eigenvectors y;, and the dimensional reduction of the data point was
decreased using the transformation. The sensor data from the ECG sensors was sam-
pled at 100 Hz. Data were sent to the system via Bluetooth and stored as binary and
comma-separated value (.csv) files.

IoMT devices and sensors are part of the IoT system. They are designed to gather
medical data from remote areas. These data are collected as patient information, using IoT
sensors connected to the human body.

3.2. Hybrid Faster R-CNN with SE-ResNeXt-101

In stage 2, a Faster-RCNN with pretrained SE-ResNeXt-101 was implemented for
echo image classification. This SE-ResNeXt-101 model was built on deep transfer learning
and was designed to diagnose heart disease from classifying echocardiogram images. A
pre-trained SE-ResNeXt-101 model was utilized to extract features from the input image,
and the Faster-RCNN model was used for classification. The input image resolution
was 224 x 224 x 3. Figure 3 represents the proposed image classification model. The
SE-ResNeXt-101-32x4d was a ResNeXt101-32x4d variant with an additional squeeze-and-
excite module. A squeeze-and-excitation block was the computational unit that could
be formed from the transformation Ej, that translates the input Z € S B'xY'xR {4 feature
mapping V € SBXY*R_ In the characters that follow, Ey, was a convolutional operator
and U = [ug, uy,...,ug| was the learned sets of filter kernels, where up referred to the

Rth filter’s parameter. Thus, the output may be expressed as V = [vy, vp,..., 0] in
Equation (15):
R/
vr=uxZ =Y ulxZ" (15)
m=1

. !/ /
where * represents convolution, u, = [u}, u%, eeey uf }, Z = {zl,zz, ... zR }, and v, € SB*Y,

u;" is the 2D spatial kernel, representing a single u, channel that performs on the associated
Z channels.

Bias terms were deleted to simplify the notation. Because the output is a total of each
channel, channel dependencies were implicitly encoded in u,, but they were entangled with
the local spatial correlations collected by the filters. Squeezing global spatial data into the
channel descriptors could be used to address the issue of exploiting channel dependencies.
This was accomplished by employing global average pooling to create channel-specific
information. Formally, the statistic 2 € SR was produced by decreasing V across its spatial
dimensions B x Y, so that the rth element of 4 was determined in Equation (16):

1 B
ar:Emd(Ur) = BXYZ
j=1

vr(j 1) (16)

1

gl



Sensors 2022, 22,476

10 of 19

Input Image

To use the data gathered during the squeeze operations, a second operation was
performed with the goal of completely capturing channel-wise dependencies.

Normal/
Abnormal
Feature Selection Feature Mapping
Excitation / : .
D e TR / / H 4 Softmax
/‘le \ » ¢ ) &
« s o
f Regressor
H
0

Figure 3. Architecture of proposed hybrid Faster R-CNN with SE-ResNeXt-101.

The ResNeXt module was a ResNet variation that was very similar to the inception
model. Both adhere to the split-transform-merge model, except that in this variation the
output of separate routes was merged by combining them, whereas in the inception model
they were depth-concatenated. Experiments revealed that increasing cardinality yielded
more accuracy than going deeper or broader. The split-transform-merge model was often
performed by a point-wise grouped convolutional layer, which divided its input into groups
of feature maps and performed normal convolution; their outputs were depth-concatenated
and then fed to a1 x 1 convolutional layer.

R
e(z) = )_K;(2) (17)
j=1

In Equation (17), K;j(z) was a function of any type. K; projects z into a (optionally
low dimensional), embedding and then altering it, analogous to a simple neuron. In
Equation (17), R denotes the size of the collection of transformations to be aggregated.
Cardinality is the term used to describe R. The number of more complex transformations
is determined by the dimension of cardinality. The residual function is the aggregated
transformation in Equation (18):

f=z+) Kiz) (18)

where f was the output.

Faster R-CNN is a region proposal network (RPN) designed for object identification
using region proposal methods to detect object positions. It employs the single network
for the RPN operation, which produces region proposal operations, and Fast R-CNN for
region classification. Faster R-CNN share whole-image convolutional features with Fast R-
CNN. The RPN was a fully convolutional network that predicts object limits and performs
simultaneously, making Faster R-CNN a total CNN-based model with no handmade
features. Fast R-CNN uses the higher-quality region proposals provided by RPN after they
have been trained end-to-end to find regions. The RPN accepted any size of input images
and output images in a series of rectangular object proposals, each with an object score.
The RPN first initialized n x n reference boxes (each sliding window) with distinct sizes
and aspect ratios at each conv feature map point. Every sliding window was assigned a
lower-dimensional vector, which was subsequently fed into two fully connected layers
(box classifications and box regression layers). ReLUs were applied to the output of the
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n x n conv layers. Faster RCNN could test, at all stages, the very deep SE-ResNeXt-101
model on the GPU while obtaining advanced object detection accuracy on the proposed
echocardiography dataset images [17,18].

The heart attack and echocardiogram datasets are collected from the UCI database.
These databases serve as a historical repository of hospital-based health knowledge. All
of these data sets were preserved on the cloud. The required data was processed on the
cloud for ease of access. Using an ML-based method, the proposed classification model
was developed to classify heart disease using two different types of medical data (signal
and image). Both types of data were analyzed independently, and the findings were used
to predict heart disease.

This work differs from previous efforts in predicting heart disease. This IoT-based
strategy was implemented in three phases. In the first phase, an IoT device gathered data
from a patient’s body, data from the data collection, and data from the patient’s record. In
the second phase, the complete cumulative knowledge was processed in the cloud. Data
classification completed the disease classification in the third and final phase. The method
next entered the testing phase, which entailed the use of the dataset to train the classifier
for disease diagnosis. As a result, the trained classifier was prepared to evaluate the input
patient’s data for accurate disease detection, and the results of the test could be made
available to the user and the doctor.

4. Results and Discussion

The proposed work was implemented on Amazon cloud. The proposed model was
tested using the MATLAB Simulink tool, version 2019a. The experiments were carried out
using a PC with an Intel Core i7-10700 CPU running at 2.9 and 4.8 GHz, with 8 GB of RAM
and a 64-bit Windows 10-OS. The classification and prediction of heart disease data was
the primary objective of this work and was critical in this research. The proposed classifiers
classified the data as indicating whether heart disease was present.

4.1. Dataset Description

The Cleveland dataset from the UCI repository, which is available on the Internet
at http:/ /archive.ics.uci.edu/ml/datasets.php (accessed on 21 July 2021), was used to
evaluate the proposed model. Each data collection has its own instances and attributes;
for example, the Cleveland dataset includes 76 characteristics and 303 records. However,
only 14 characteristics from the Cleveland dataset were used for training and testing, as
shown in Table 1. The entire dataset was used for training the proposed model, and the
sensor data collected was used for testing the proposed model. Based on the features of
the training dataset, all the information was collected using the sensor, which was used for
testing. The features used in the training data were also evaluated in the testing data.

Table 1. Descriptions of Cleveland dataset [7].

Name Type Description

Age Continuous Age

Sex Discrete 1 = male; 0 = female

Cp Discrete Chest pain t.ypes: 1.—typ1cal angina, 2.—atyp1cal angina,
3—non-anginal pain, 4—asymptomatic

Trestbps Continuous Resting BP

Chol Continuous Serum cholesterols

Fbs Discrete Fasting blood sugar > 120 mg/dL: 1—true; 0—false

Exang Continuous max. Discrete Exercises caused angina: 1—yes; 0—no

heart rates obtained
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Table 1. Cont.

Name Type Description
Thalach Continuous Max. heart pulse acquired
Old peak ST Continuous Depressions caused by exercises related to rest
Slopes Discrete The slopes of t.he peak exercise segment: 1—up sloping, 2—flat,
3—down sloping
Ca Continuous Total major vessel colored by fluoroscopy ranged from
approximately 0 to 3
Thal Discrete 3—normal, 6—fixed defects, 7—reversible defects
Class Discrete Diagnosis class: 0—no disease, 1—likely to have heart disease,
2—>1 3—>2 4—more likely have heart disease.
Resting electrocardiographic (ECG) results: value 0: normal; value
Restec Continuous 1: having ST-T wave abnormality (T wave inversions and/or ST
8 elevation or depression of >0.05 mV); value 2: showing probable or
definite left ventricular hypertrophy by Estes’ criteria.
The description of the echocardiogram image dataset is presented in Table 2 with
appropriate attributes. The UCI database was used to retrieve echocardiography images
with 66 normal images of 30 participants and 66 abnormal images of 30 subjects. Figure 4
represents the sample images from the dataset. The same procedure was followed in the
training and the testing processes. The dataset images collected from the UCI database
were used for training and the images collected in real time were used for testing.
Table 2. Descriptions of echocardiogram dataset.
Feature Description
The duration of months the patient lived (or survived, if the patient was still alive). Because
Survival all patients had suffered from heart attacks at various periods, it was likely that some of
them would have lived for less than a year but still be living. To validate this, please see the
second variable. Such patients cannot be considered for the above prediction task.
Still alive Binary variables: 0 = dead at the end of survival time; 1 = still alive.
Age at heart attack Age (in years) when the heart attack happened.

Pericardial effusion

Pericardial effusion was fluids over the heart: 1 = fluid; 0 = no fluid.

Fractional shortening

The measurement of contractility over the heart. Lesser numbers were very abnormal.

Epss

E-points septal separations, different measurements of contractility. Higher numbers were

more abnormal.

Lvdd

Left ventricular end-diastolic dimensions. This was the measurement of heart size at
end-diastole. A big heart tends to be a sick heart.

Wall motion score

The measurement of how the parts of the left ventricles are functioning.

Wall motion index

Wall-motions scores divided by numbers of parts seen. Normally, 12-13 segments were seen
in the echocardiogram. These variables were used instead of the wall motion scores.

Mult The derivative var that could be avoided

Name The patient’s name.

Group Meaningless, avoidable

Alive at 1 Boolean-values, extracted from the first two features: 0 = the patient was either died after

one year or was followed for less than one year; 1= the patient was alive at one year.
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Figure 4. Sample images from dataset.

4.2. Performance Metrics

Accuracy, precision, recall, and the F-score are the output metrics shown in
Equations (19)—(23). The following table compares the expected and real results, depending

on these metrics:
TRP + TRN

Aceuracy = G r b FLP + TRN + FLN (19)
Precision = TRP - FLP 1?; f_l; Ip (20)

Recall = TRPTJIEI;LN (21)
Specificity = %—I—I\;LP (22)

F — score = 2TRP (23)

2TRP + FLP + TRN

TRP: the true positive value, which was the total correct classification in normal classes.

FLP: the false positive value, which was the total incorrect classification in normal classes.
TRN: the true negative value, which was the total correct classification in abnormal classes.
FLN: the false negative value, which was the total incorrect classification in abnormal classes.

To assess the performance analyses of the dataset’s normal and abnormal type cases,
the HLDA-MALO algorithm was applied. Table 3 displays the accuracy, precision, recall,
specificity, and F-score values for the various normal and abnormal classes in the medical
data classification. In this stage 1 experiment, two distinct types of data were evaluated for
classification as normal (healthy) or abnormal (unhealthy).

Table 3. Comparison of normal and abnormal class subjects using hybrid LDA-MALO technique.

Data Class Accuracy Precision  Recall Specificity ~ F-Score
Sensor (collected) 96.85 95.10 97.04 94.46 95.23
Normal
Cleveland dataset 98.53 96.74 98.92 95.25 98.15
Sensor 98.31 96.48 98.83 97.52 97.98
Abnormal

Cleveland dataset 97.48 95.59 98.02 96.80 97.01
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The proposed model was tested in terms of accuracy, precision, recall, specificity,
and F-score based on this data. Using medical sensor data gathered by sensors, the pro-
posed HLDA-MALO technique obtained 96.85 percent accuracy, 95.10 percent precision,
97.04 percent recall, 94.46 percent specificity, and a 95.23 percent F-score in normal class
classification. The HLDA-MALO approach obtained 98.53 percent accuracy, 96.74 percent
precision, 98.92 percent recall, 95.25 percent specificity, and a 98.15 percent F-score on the
Cleveland dataset’s normal cases. Figures 5 and 6 represent the graphical plot for the per-
formance of medical data classification. Using medical signal data gathered by sensors, the
proposed HLDA-MALO technique obtained 98.31 percent accuracy, 96.48 percent precision,
98.83 percent recall, 97.52 percent specificity, and 97.98 percent F-score in abnormal class
classification. The HLDA-MALO approach obtained 97.48 percent accuracy, 95.59 percent
precision, 98.02 percent recall, 96.80 percent specificity, and a 97.01 percent F-score on the
Cleveland dataset’s abnormal cases.

W Accuracy M Precision ™ Recall Specificity —®F-Score
100

92"' HI

Sensor Data Cleveland Dataset

In Percentage
O Nel O o el Ne
S wn ()} ~ o] o

O
W

Figure 5. Classification of normal data.
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Figure 6. Classification of abnormal data.
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The performance study and comparison of the medical image classification model
hybrid Faster R-CNN-SE-ResNeXt-101 with other known transfer learning models is shown
in Table 4. The data revealed that the proposed hybrid Faster R-CNN with SE-ResNeXt-
101 transfer learning model outperforms other models in all parameters, with 98.06 per-
cent precision, 98.95 percent recall, 96.32 percent specificity, a 99.02 percent F-score, and
99.15 percent maximum accuracy.

Table 4. Comparison of image classification performance.

Algorithm Accuracy Precision Recall Specificity F-Score
VGG-19 95.23 93.96 94.80 93.19 95.58
ResNeXt-101 96.15 94.00 95.42 92.98 95.99
Inception-ResNet-v2 96.48 94.07 96.14 94.11 96.04
SE-ResNet-101 97.94 95.18 97.31 95.03 98.25
Proposed model 99.15 98.06 98.95 96.32 99.02

The proposed Faster R-CNN-SE-ResNeXt-101 model showed higher classification
accuracy for classifying echocardiography images for heart disease prediction, as shown in
Figure 7. The model achieved 99.15 percent accuracy, which is 1.2 percent to 3.9 percent
higher than other approaches, such as VGG-19, ResNeXt-101, Inception-ResNet-v2, and
SE-ResNet-101. The precision estimation was tabulated, indicating that the proposed
model attained a higher precision value of 98.06 percent. The precision performance of
the proposed model increased between 2.8 and 4.1 percent when compared to the other
models, as shown in Figure 8.

The proposed model achieved a recall or sensitivity rate of 98.95 percent as shown in
Figure 9, which is 1.6 percent to 4.1 percent higher than the comparison models. In terms
of performance evaluation, the proposed model outperformed the other deep learning
comparison models.

The model has a specificity of 96.32 percent, which is 1.2 percent to 3.1 percent higher
than the other models, as shown in Figure 10. The proposed model outperformed the other
models in terms of F-score performance with a 99.02 percent F-score, which is 0.7 percent
to 3.4 percent higher than that of the other models, as shown in Figure 11.

ACCURACY
100
99
98

97

93
VGG-19 RESNEXT- INCEPTION- SE-RESNET- PROPOSED
101 RESNET-V2 101

Figure 7. Comparison of image classification accuracy.
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Figure 8. Comparison of image classification precision.

RECALL
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Figure 9. Comparison of image classification recall.
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Figure 10. Comparison of image classification specificity.
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F-SCORE
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Figure 11. Comparison of image classification F-score.

Figure 12 provides a graph of overall performance analysis. The performance of the
SE-ResNet-101 and Inception-ResNet-v2 models was superior to that of other models, such
as VGG-19 and ResNeXt-101. Table 4 demonstrates that the proposed hybrid Faster-RCNN
with SE-ResNeXt-101 model is efficient for medical image classification. Both proposed
models, the hybrid LDA-MALO and the hybrid Faster R-CNN with SE-ResNeXt-101,

performed well in classifying heart disease data and were also appropriate for loMT-based
heart disease prediction.

B Accuracy H Precision m Recall Specificity mF-Score
100
99
98
97
96
95
9%
93
92
91
90
89
VGG-19 ResNeXt-101 Inception-ResNet-v2  SE-ResNet-101 Proposed

Figure 12. Comparison of entire performance analysis.
5. Conclusions

Using machine learning algorithms, an IoMT-based heart disease prediction model
was proposed in this research. The proposed model was tested in two stages. If the results of
the first stage are accurate and efficient in predicting heart disease, stage two is unnecessary.
In the first stage, medical data obtained from the patient’s body via sensors (wearables)
were used for classification; in the second stage, echocardiogram images were used for
classification. Both of these classification techniques were carried out, and the classification
findings were verified for heart disease prediction. A hybrid linear discriminant analysis
with modified ant lion optimization (HLDA-MALO) technique was used to classify sensor
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data. A hybrid Faster R-CNN with SE-ResNet-101 model was employed for echo image
classification. To train the models, UCI repository datasets pertaining to heart disease,
such as the Cleveland dataset and the echocardiogram dataset, were employed. The
hybrid LDA-MALO technique detected normal sensor data with 96.85 percent accuracy
and abnormal sensor data with 98.31 percent accuracy. The proposed hybrid Faster R-CNN
with SE-ResNeXt-101 transfer learning model outperformed other models in identifying
echocardiography images, with 98.06 percent precision, 98.95 percent recall, 96.32 percent
specificity, a 99.02 percent F-score, and 99.15 percent maximum accuracy. In the future,
Faster R-CNN may be enhanced with sophisticated deep transfer learning models such as
SqueezeNet and EfficientNet, and larger datasets can be employed for improved analysis.
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