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Abstract: High deployment costs, safety risks, and time delays restrict traditional track detection
methods in high-speed railways. Therefore, approaches based on optical sensors have become the
most remarkable strategy in terms of deployment cost and real-time performance. Owing to the large
amount of data obtained by sensors, it has been proven that deep learning, as a powerful data-driven
approach, can perform effectively in the field of track detection. However, it is difficult and expensive
to obtain labeled data from railways during operation. In this study, we used a segment of a high-
speed railway track as the experimental object and deployed a distributed optical fiber acoustic
system (DAS). We propose a track detection method that innovatively leverages semi-supervised
deep learning based on image recognition, with a particular pre-processing for the dataset and a
greedy algorithm for the selection of hyper-parameters. The superiority of the method was verified
in both experiments and actual applications.

Keywords: semi-supervised learning; CNN; track detection; deep learning; high-speed railway; DAS

1. Introduction

Track defect detection: As a result of the high frequency and intensity of track operation
in open air, track defects occur constantly. There are four typical defects in track detection:
crevice, beam gap, cracking, and bulge, as shown in Figure 1. It should be noted that
in the horizontal direction, we did not draw under the actual size. For actual track, the
length of the track slab is 6450 mm. Bulges can be divided into multiple states according
to their severity, such as slight bugles, mortar layer outflow, and empty [1]. Since the
monolithic concrete structure of the track and the reinforcement are densely distributed, it
is difficult to identify the defects inside. In traditional detection, in addition to the lack of
real-time performance, the track detection vehicle has a long operating period and high
deployment cost, and manual detection is restricted by the high error rate [2,3]. Therefore,
approaches based on optical sensors have become the most remarkable methods in terms
of deployment costs and real-time performance.
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limited volume of training images. Based on the YOLO V3 method, Wei et al. [18] pro-
posed a fast detection model for exterior substances. Wang et al. [19] proposed a scheme 
for rail track state detection with a deep convolutional network as the core. Fan et al. [20] 
has shown how DAS system can be used for crack detection without the use of deep learn-
ing. They used vibration pulses to locate cracks on the track. However, many track defects, 
such as bulge, do not cause obvious vibration pulses, so it is difficult to detect them by 
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Figure 1. Typical defects in track detection.
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Optical sensors in track detection: Bao et al. [4] monitored the temperature and strain
of joints by pulse-pre-pumped Brillouin optical time-domain analysis (PPP-BOTDA) with a
single-mode fiber as a distributed sensor. Kang et al. [5] developed an FBG sensing system
and graphical user interface (GUI) to monitor the wheel thickness changes in real time,
which has been verified through the 1/6th sub-scale model test. Zhang et al. [6] proposed a
track temperature prediction system based on FBG sensors and relevance vector regression
theory, developed a real-time online monitoring system for railway track temperature,
displacement, and strain, and deployed it as a Guangzhou–Shenzhen–Hong Kong high-
speed railway track state warning system. Buggy et al. [7] monitored the condition of
fishplates, stretcher poles, and switch blades using FBG strain sensors. However, due to
broken bare fibers and low-strain-sensitivity jacketed fibers, the high cost and difficulty of
deployment cannot be avoided [8]. In this case, in terms of deployment, DAS is considered
the most suitable optical sensing system for track detection. However, DAS is mostly
applied to detect train locations, speeds, and track incidents, but it has not yet been
applied to multi-type minor defects detection [9–11]. Furthermore, the existing methods
often provide a particularly determined output (so-called hard decision), which strongly
depends on human knowledge, and the unique characteristics of the defects are required.
Unfortunately, the unique characteristics of many defects have not been clearly defined.

Deep learning-based methods: As a result of the high-frequency sampling and low
deployment cost, DAS is considered a data collection method that is perfectly suitable
for various track detection technologies, especially deep learning methods. As a soft-
decision method, deep learning provides a probability for each possible decision. An
increasing number of researchers are focusing on deep learning for track detection. Based
on deep learning, Wang et al. [12] pre-processed training data and defined the severity
level to classify different severity levels for cracks in ballast-less tracks. ENSCO’s RIS
(Railway imaging systems) has advanced high-resolution image acquisition systems and
image processing algorithms, which can continuously detect fasteners during the day and
night [13]. In [14], 2D images are transformed into 1D signals by Gabor filter, and then, the
multiple signal classification (MUSIC) algorithm is used to detect the 1D signals, which can
classify the signals produced by different track components. Yao et al. [15] used an artificial
neural network (ANN) and a long short-term memory (LSTM) network to predict the frost
heave deformation of a railway subgrade with four sections of data. Wei et al. [16] used
Dense-SIFT, CNN, and R-CNN to detect defects in fasteners. Zheng et al. [17] developed
a deep transfer learning (DTL) framework for rail surface crack detection using a limited
volume of training images. Based on the YOLO V3 method, Wei et al. [18] proposed a fast
detection model for exterior substances. Wang et al. [19] proposed a scheme for rail track
state detection with a deep convolutional network as the core. Fan et al. [20] has shown
how DAS system can be used for crack detection without the use of deep learning. They
used vibration pulses to locate cracks on the track. However, many track defects, such
as bulge, do not cause obvious vibration pulses, so it is difficult to detect them by Fan’s
method. In addition, there are many kinds of track defects (event) that may lead to vibration
pulses, such as switch, crack, and corrugation, and Fan’s method cannot distinguish them.
Therefore, deep learning is a reasonable solution for multi-type defect detection.

Deep networks often achieve their strong performance through supervised learning,
which requires labeled datasets. Therefore, the performance benefit conferred by the use of
a larger dataset can come at a significant cost, because labeling data often requires human
labor [21]. On the other hand, for track detection, there are many hidden defects that are
difficult to be found or labeled, such as crack and bulge, which occur frequently during
daytime operation and gradually disappear at night as the temperature drops. Therefore,
we considered realizing track detection in a semi-supervised deep learning method. Semi-
supervised learning (SSL) often achieves outstanding performance in the extremely scarce-
label regime, with the efficient leveraging of unlabeled data [22–24]. In SSL models, decision
boundaries are reinforced by unlabeled data, which enables the use of large, powerful
models [25]. Owing to the fact that there are more unlabeled data than labeled data in
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actual conditions, the application of SSL in engineering has become a hot research field.
Summarizing the previous work, the current DAS-based track defect detection system
can be roughly divided into three categories: amplitude visualization, methods based on
traditional machine learning, and methods based on deep learning. The existing deep
learning-based methods mostly extract features from single-point vibration data and use
MLP models to build classifiers. In this paper, we propose a track detection system that
innovatively leverages semi-supervised deep learning based on image recognition. The
innovation of this article is as follows:

(1) To increase the sample information density, we use multi-point amplitude rather than
single-point;

(2) To alleviate the impact of the lack of high-frequency components caused by an insuf-
ficient sampling rate, we use amplitude rather than frequency features to train the
model;

(3) We convert the data into images and classify the samples through a CNN network to
achieve better convergence speed and capacity;

(4) We use the deep network to adaptively extract the sample features rather than manu-
ally extract them;

(5) We use semi-supervised learning to efficiently leverage unlabeled data to further
improve the performance of the model.

Through the above-mentioned innovations, we successfully implemented a real-time
track defect detection system and achieved superior performance, especially for multi-type
minor defects. The structure of this paper is as follows. In the Section 2, we describe the
deployment of the DAS and the distribution of defects on the experimental track. In the
Section 3, we introduce the mechanism of SSL and several SSL models for comparison in
the experiment. In the Section 4, we present a particular dataset pre-processing for our
semi-supervised learning model, and we validate it in the Section 5. In the Section 6, we
summarize our work and future research.

2. Sensor Deployment

Due to the security policy, experimental deployment along the railway track is not
allowed. So, the existing backup fiber for video along the track is used as sensors, which
means that additional installation is not needed. The fiber joint was connected to the DAS
in the computer room. We deployed the commercial DAS with 5.8 m spatial resolution,
measurement frequency range <5 kHz, and the fiber is G652D type. The DAS we used is an
intensity-based DAS capable of only detecting vibrations. The vibration amplitude of the
measurement points at each moment is buffered in the DAS in the form of a line of data;
then, it is received and stored in a PC, as shown in Figure 2. The length of the optical path
was measured to be 3000 m. By knocking around the fiber and observing the pulse position,
we determined that the length of the optical path corresponding to the experimental track
segment was approximately 1500 m, and the sampling rate is 2 kHz (2000 rows/s). The
spectrograms of the measured points in the raw data are shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16 
 

 

position, we determined that the length of the optical path corresponding to the experi-
mental track segment was approximately 1500 m, and the sampling rate is 2 kHz (2000 
rows/s). The spectrograms of the measured points in the raw data are shown in Figure 3. 

There are four typical defects to be recognized in our work including crevice, beam 
gap, cracking, and bulge, and in order to facilitate the analysis, two events causing pecu-
liar vibrations serve as ‘defects’ for experimental object expansion, including switches and 
highway below. The distribution of defects is shown in Table 1. In actual conditions, 
events are difficult to locate accurately, so we roughly estimate it at 10 m intervals, which 
has been approved by maintainers. For ease of analysis, positions without events will be 
labeled ‘no-event’ in the experiment, but we did not list them in Table 1. 

 
Figure 2. DAS deployment. The backup optical fiber for video is used as a sensor for DAS, which 
means that additional installation is not needed. 

 
Figure 3. The spectrograms of the measured point with train passing through (right) and without 
train passing through (left). 

Table 1. Event distribution without ‘no-event’. (Position of 0 m: the end near the computer room; 
Position of 1500 m: the other end). 

Event Location 
Crevice 120 m, 790 m, 830 m, 1010 m, 1270 m 

Beam Gap 400 m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m, 
1200 m, 1300 m, 1400 m 

Cracking 100 m, 480 m, 650 m, 1050 m 
Bulge 420 m, 560 m, 730 m, 1030 m, 1420 m 

Switches 200 m, 350 m, 450 m, 1350 m 
Highway Below 300 m, 750 m, 1250 m 

3. Data Representation 
Most of the existing methods are based on values, and our method focuses on the 

pattern behind them, which is called feature representation in deep learning methods. 

Reflector

PC

Demodulator

Laser

DASBackup fiber for video

1.5km

Figure 2. DAS deployment. The backup optical fiber for video is used as a sensor for DAS, which
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Figure 3. The spectrograms of the measured point with train passing through (right) and without
train passing through (left).

There are four typical defects to be recognized in our work including crevice, beam
gap, cracking, and bulge, and in order to facilitate the analysis, two events causing peculiar
vibrations serve as ‘defects’ for experimental object expansion, including switches and
highway below. The distribution of defects is shown in Table 1. In actual conditions, events
are difficult to locate accurately, so we roughly estimate it at 10 m intervals, which has been
approved by maintainers. For ease of analysis, positions without events will be labeled
‘no-event’ in the experiment, but we did not list them in Table 1.

Table 1. Event distribution without ‘no-event’. (Position of 0 m: the end near the computer room;
Position of 1500 m: the other end).

Event Location

Crevice 120 m, 790 m, 830 m, 1010 m, 1270 m

Beam Gap 400 m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m,
1200 m, 1300 m, 1400 m

Cracking 100 m, 480 m, 650 m, 1050 m
Bulge 420 m, 560 m, 730 m, 1030 m, 1420 m

Switches 200 m, 350 m, 450 m, 1350 m
Highway Below 300 m, 750 m, 1250 m

3. Data Representation

Most of the existing methods are based on values, and our method focuses on the
pattern behind them, which is called feature representation in deep learning methods.
Fitting the actual data into deep learning models is one of the most important steps in deep
learning. To make sure that the data values are comparable instances widely, Min–Max
normalization is performed in order to prevent neuron output saturation or small values
being ignored caused by excessive input absolute value:

x′ =
x− Xmin

Xmax − Xmin
(1)

where Xmin and Xmax are the maximum and minimum of the entire dataset, respectively.
An example of normalized data is shown in Figure 4.

Note that not all of the vibration data were added to the dataset. We filter the data
by amplitude and then concatenate the fragments from different moments to ensure that
the dataset is composed of vibrations caused by train passing. The train can be considered
a scanner, and when the train passes through the entire experimental track, the vibration
caused by the train will be recorded. To facilitate further descriptions, the t0 row of the
dataset can be considered a snapshot of the track at moment t0.
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Since data in the same row actually come from different moments and represent the
vibration amplitudes of the entire track, we divide the data into spatial fragments in rows.
In this way, the sampling rate requirement of the Nyquist criterion for DAS is avoided (only
if fsampling > 2· fsignal can the integrated information be retained), because it is unnecessary
to analyze the vibration modes of the measurement points in continuous periods in the
frequency domain. Instead of detecting all of the measurement points, we only need to
detect the fragments, thus reducing the computational cost.
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Figure 4. An example of normalized amplitude of the whole track at a certain moment.

In our scheme, an instance can only describe the amplitude of a fragment at a certain
moment, which is considered not comprehensive enough to represent the condition of the
fragment. According to the mutual reasoning relationship among the instances at different
moments, we merge the instances corresponding to the same fragment with a time interval
t into a qualified instance in the form of an RGB image. An example of merging instances
is shown in Figure 5. The time interval t is selected for validation as a hyper-parameter.
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4. Semi-Supervised Deep Learning

Semi-supervised deep learning (SSL) leverages unlabeled data to assist the training
under four basic assumptions: smoothness assumption, low-density assumption, mani-
fold assumption, and cluster assumption [26,27]. SLL reinforces the decision boundary
according to the distribution of unlabeled data, as shown in Figure 6. Figure 6 is a two-
dimensional schematic diagram, which abstractly describes the classification using the
deep learning method. Solid circles and hollow circles represent the labeled samples in
different classes respectively, smaller circles represent unlabeled samples, and the triangle
is a sample belonging to the solid class. In the supervised learning method, the samples are
represented in the form of vectors, and the model learns a decision boundary for dividing
vector clusters (as shown by the dotted line in Figure 6). Under the decision boundary,
the triangle sample will be determined to the hollow class. However, considering the
unlabeled samples, even if they have no labels, we can still obtain a more reasonable
decision boundary through their distribution (as shown by the solid line in Figure 6). Now,
the triangle sample will be correctly determined to the solid class. Figure 6 shows how
semi-supervised learning helps the model establish a more reasonable decision boundary
leveraging the unlabeled samples.



Sensors 2022, 22, 413 6 of 15

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16 
 

 

4. Semi-Supervised Deep Learning 
Semi-supervised deep learning (SSL) leverages unlabeled data to assist the training 

under four basic assumptions: smoothness assumption, low-density assumption, mani-
fold assumption, and cluster assumption [26,27]. SLL reinforces the decision boundary 
according to the distribution of unlabeled data, as shown in Figure 6. Figure 6 is a two-
dimensional schematic diagram, which abstractly describes the classification using the 
deep learning method. Solid circles and hollow circles represent the labeled samples in 
different classes respectively, smaller circles represent unlabeled samples, and the triangle 
is a sample belonging to the solid class. In the supervised learning method, the samples 
are represented in the form of vectors, and the model learns a decision boundary for di-
viding vector clusters (as shown by the dotted line in Figure 6). Under the decision bound-
ary, the triangle sample will be determined to the hollow class. However, considering the 
unlabeled samples, even if they have no labels, we can still obtain a more reasonable de-
cision boundary through their distribution (as shown by the solid line in Figure 6). Now, 
the triangle sample will be correctly determined to the solid class. Figure 6 shows how 
semi-supervised learning helps the model establish a more reasonable decision boundary 
leveraging the unlabeled samples. 

 
Figure 6. The decision boundary reinforcement by semi-supervised learning. The recognized in-
stance will be class ‘hollow’ in supervised learning. However, the fact is that according to the dis-
tribution of the dataset, it should belong to class ‘solid’, which can be achieved in semi-supervised 
learning. 

SSL has been extensively studied by researchers, and various solid SSL models have 
been proposed. One commonly used class of SSL is based on the theory called consistency 
regularization [28], which is based on the intuition that the predictions of an instance and 
its perturbed version should be consistent for a qualified classifier. Therefore, to reinforce 
the decision boundary, we can minimize the divergence between the predictions of per-
turbed versions of the same unlabeled instance, such as the temporal ensemble (Pi model) 
[29], mean teachers [30], and UDA [31]. Another main approach to leverage unlabeled 
data is called ‘pseudo labeling’, where unlabeled data are given ‘guessed’ labels and join the 
labeled dataset for further training, such as Co-training [32] and Tri-training [32]. In addi-
tion, many holistic SSL strategies with superior performance have been proposed in recent 
years, such as Mix-match [33], Remix-match [34], and Fix-match [22]. Fix-match obtained 
state-of-the-art in the standard experimental setting described by Odena et al. [35]. 

4.1. Approaches of Data Augmentation for SSL 
Most SSL strategies build loss functions with the help of data augmentation based on 

consistency regularization. Data augmentation in SSL can be divided into two types: weak 
and strong. Weak augmentation includes flip, shift, rotation, and scale, which can only 
produce slight distortion. On the contrary, strong augmentation can cause heavy distor-
tion by crops, Gaussian blur, dropout, and so on. According to research in UDA, the SSL 
model can be significantly improved by suitable data augmentation [31]. Enlightened by 
this, the commonly used strong augmentations, such as Auto-Augment, Rand-Augment, 
and CT-augment, are dedicated to the selection of a set of transformations suiting the task 

  Unlabeled
  Labeled 
  Recognized

  Supervised 
  Semi-supervised 

Figure 6. The decision boundary reinforcement by semi-supervised learning. The recognized instance
will be class ‘hollow’ in supervised learning. However, the fact is that according to the distribution of
the dataset, it should belong to class ‘solid’, which can be achieved in semi-supervised learning.

SSL has been extensively studied by researchers, and various solid SSL models have
been proposed. One commonly used class of SSL is based on the theory called consistency
regularization [28], which is based on the intuition that the predictions of an instance and its
perturbed version should be consistent for a qualified classifier. Therefore, to reinforce the
decision boundary, we can minimize the divergence between the predictions of perturbed
versions of the same unlabeled instance, such as the temporal ensemble (Pi model) [29],
mean teachers [30], and UDA [31]. Another main approach to leverage unlabeled data
is called ‘pseudo labeling’, where unlabeled data are given ‘guessed’ labels and join the
labeled dataset for further training, such as Co-training [32] and Tri-training [32]. In
addition, many holistic SSL strategies with superior performance have been proposed in
recent years, such as Mix-match [33], Remix-match [34], and Fix-match [22]. Fix-match
obtained state-of-the-art in the standard experimental setting described by Odena et al. [35].

4.1. Approaches of Data Augmentation for SSL

Most SSL strategies build loss functions with the help of data augmentation based on
consistency regularization. Data augmentation in SSL can be divided into two types: weak
and strong. Weak augmentation includes flip, shift, rotation, and scale, which can only
produce slight distortion. On the contrary, strong augmentation can cause heavy distortion
by crops, Gaussian blur, dropout, and so on. According to research in UDA, the SSL model
can be significantly improved by suitable data augmentation [31]. Enlightened by this,
the commonly used strong augmentations, such as Auto-Augment, Rand-Augment, and
CT-augment, are dedicated to the selection of a set of transformations suiting the task better.
CT-Augment outperforms the others in terms of computational cost and efficiency [24].

4.2. Loss Function and Pipeline

Except for wrapper methods (such as Co-training, Tri-training, and Co-forest), there is
always a loss term corresponding to the unlabeled data in the loss function in SSL. Con-
sistency regularization methods build loss terms utilizing the predictions of two different
perturbed versions of the same unlabeled data via the loss function:

lossunlabeled = wτ ·
N

∑
i

dMES
[
pm

(
u′i
)
, pm

(
u′′i

)]
(2)

where N is the amount of unlabeled data, u′i and u′′i are two different perturbed versions of
unlabeled data ui, pm is the prediction presented by the model, and wτ is the weight of the
unlabeled loss term. We need to change wτ over the training because unlabeled data cause
too much disturbance in the early stages. The pipeline of the SSL based on consistency
regularization is shown in Figure 7.
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Figure 7. Pipeline of SSL based on consistency regularization.

In pseudo-labeling methods, unlabeled data will be given a pseudo label if the model
is confident enough in the prediction. In each round of iteration, the cross-entropy between
the prediction of unlabeled data and their pseudo labels (if they have) will be made and
join the global loss via the loss function:

lossunlabeled = wτ ·
N

∑
i

IF(max(pm(α(ui))) > β)H[ym(α(ui)), pm(A(ui))] (3)

where β is the threshold that determines whether the model is confident enough. ym(α(ui))
is the pseudo label of unlabeled data ui under weak augmentation α, and A is a strong
augmentation. The pipeline of the Fix-match is shown in Figure 8.
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In order to select the most suitable SSL model for track detection, we will use the SSL
models as a hyper-parameter in validation, including UDA, Tri-training, and Fix-match.

5. Experiment
5.1. Experiment Setting

The raw dataset contains 1869 rows of vibration data, and each row of data contains
9000 measurement points. A row of data corresponds to the vibration caused by a train
passing through the track. Except for conventional data processing including de-noise,
normalization, we do the instance merging proposed in Section 4 and divide the entire
experimental track into 300 fragments with a 5 m interval, so the spatial accuracy of our
research is as follows:

± 1500/300
2

= ±2.5 (m). (4)

Each row of data was divided into 300 instances, and each instance contained 9000/300 =
30 columns. We labeled each instance according to the defect distribution described in
Table 1. The overall dataset is presented in Table 2.

It can be seen from Table 2 that the imbalance problem of the overall dataset is
quite serious, especially class ‘no-event’, which is ten times larger than the minority class.
Therefore, we process the dataset to the size described in Table 2 by one of the well-
performing balance methods, which will be selected in the validation as a hyper-parameter.
Twenty percent of the overall dataset was randomly selected to constitute the testing set,
and the remaining instances are used as the training set. To obtain unlabeled instances, we
define a parameter µ:

µ = Nunlabeled/(Nlabeled + Nunlabeled) (5)
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where N is the total number of training sets and Nunlabeled is the number of unlabeled
instances that we need. In the validation, each label has a probability µ to be removed. For
our experiment, µ is set to 50%. The training set is presented in Table 3.

Table 2. (a). Overall dataset obtained by data segmentation. (b). Balanced dataset obtained by
oversampling from the original overall dataset.

(a)

Size Channels Event Amount

5 × 6 3

Crevice 3115

Beam gap 6853

Cracking 2492

Bulge 3115

Switches 2492

Highway below 1869

No event 166,964

(b)

Size Channels Event Amount

5 × 6 3

Crevice 6853

Beam gap 6853

Cracking 6853

Bulge 6853

Switches 6853

Highway below 6853

No event 6853

Table 3. Training set for classification model training generated from the balanced overall dataset.

Size Channels Event Amount

5 × 6 3

Crevice 2708
Beam gap 2788
Cracking 2735

Bulge 2558
Switches 2776

Highway below 2736
No event 2716

Unlabeled 19,359

Table 4 identifies a set of hyper-parameter ranges between the maximum and mini-
mum to optimize the use of BO in deep learning networks based on the survey [36]. In
addition to these hyper-parameters, there are four more hyper-parameters defined in our
research, including the structure of the deep network, data balance method, SSL model,
and the time interval t defined in Section 4.

5.2. Validation

The four structural hyper-parameters for our research, which are shown in Table 5,
are selected by the greedy algorithm. SMOTE-TL, S-ENN, Border-1, MWMOTE, and Safe-
level are the most commonly used oversampling methods, in which artificial samples are
generated by linear combinations of existing samples. The difference between them lies
in the samples selected for linear combination, which is related to the dataset. Therefore,
we need to choose a data balance method suitable for our dataset through experiments.
The time interval t is discrete and is just a virtual concept representing the number of
instances between the instances used to merge. Since the train is considered a scanner and
the fragments from different rows are scanned by different trains, t represents the running
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interval of the trains. Approximately 54 trains pass through the experimental track every
day, so we set the upper limit of the value range of t to 54, which means that an instance
can contain the amplitude data belonging to three moments of three days occurring on
the same fragment at most. When t is 0, an instance can only contain the amplitude data
belonging to the three trains passing continuously. There is a reasonable intuition that
containing data from different moments on different days enables a qualitative description
of the vibration mode of a fragment. The vibration mode of a certain fragment at different
moments in different days should be different. Therefore, we empirically initialize t to 36.

Table 4. Optimized hyper-parameters for optimizers and their search ranges. SGDM, Rmsprop,
Adam are gradient-based model optimizers. Since different models and datasets require different
parameter update rules, it is necessary to select the optimal optimizer. The optimal parameter
combination for optimizers also needs to be selected by random search in a certain range, including
the initial learning rate, momentum, SGDF, GDF, and L2 regularization.

Hyper-Parameters SGDM Rmsprop Adam

Initial Learning Rate [1× 10− 2, 1] [1× 10− 3, 1] [1× 10− 3, 1]
Momentum [0.3, 0.95] N/A N/A

SGDF N/A [0, 1] N/A
GDF N/A N/A [0, 1]

L2 Regularization [1× 10− 9, 1× 10− 2] [1× 10− 9, 1× 10− 2] [1× 10− 9, 1× 10− 2]

Table 5. Structural hyper-parameters for our monitor system.

Hyper-Parameters Options

Structure of deep learning network VGG-16, ResNet, Inception V3, AlexNet, Mobilenet V3, LeNet
Data balance method SMOTE-TL, S-ENN, Border-1, MWMOTE, Safe-level

SSL model Fix-match, Tri-training, UDA
Time interval (t) [0, 54 ]

5.2.1. Validation on Network Structure and Data Balance Method

Since both are strongly related to the data distribution, the network structures and
balance methods are selected in combinations. The evaluation metrics we used here are
AUC, F1, and g-mean, which are the most used evaluation metrics for classifiers in the data
imbalance situation. We conducted experiments on all combinations of network structures
and balance methods. The details of the results are presented in Table 6, where the results of
the best combinations under AUC, F1, and g-mean are in bold. The two best combinations,
VGG-16 with S-ENN and ResNet with MWMOTE, will be used for further validation.

5.2.2. Validation on SSL Model

Strongly related to the network structures, the SSL model will be selected under the
two combinations selected, including VGG-16 with S-ENN and ResNet with MWMOTE.
The error rates of the different combinations are shown in Figure 9. For our task, it can be
seen that the combination of Fix-match, VGG-16, and S-ENN is the best.
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Table 6. Results of various combination of deep learning network structures and data balance
methods.

Measure
Structure of Deep
Learning Network

Data Balance Method

SMOTE-TL S-ENN Border-1 MWMOTE Safe-Level

AUC VGG-16 0.9832 0.9862 0.9740 0.9756 0.9736
ResNet 0.9763 0.9704 0.9632 0.9810 0.9803

Inception V3 0.9620 0.9734 0.9680 0.9649 0.9784
AlexNet 0.9745 0.9720 0.9820 0.9816 0.9803

Mobilenet V3 0.9609 0.9832 0.9783 0.9734 0.9760
LeNet 0.9753 0.9767 0.9734 0.9809 0.9719

F1 VGG-16 0.7095 0.7103 0.6943 0.7081 0.7079
ResNet 0.7057 0.6823 0.6972 0.7127 0.7084

Inception V3 0.5970 0.6490 0.5408 0.6701 0.6978
AlexNet 0.6437 0.6824 0.6920 0.6845 0.6450

Mobilenet V3 0.6920 0.6538 0.6823 0.5970 0.6784
LeNet 0.7009 0.6903 0.6574 0.6739 0.6273

g-mean VGG-16 0.9708 0.9719 0.9683 0.9607 0.9608
ResNet 0.9692 0.9717 0.9631 0.9729 0.9687

Inception V3 0.9582 0.9703 0.9602 0.9636 0.9705
AlexNet 0.9680 0.9648 0.9538 0.9670 0.9643

Mobilenet V3 0.9605 0.9567 0.9629 0.9534 0.9617
LeNet 0.9601 0.9584 0.9597 0.9607 0.9658

5.2.3. Validation on t

We performed five-fold cross-validation on t, and the results are shown in Figure 10.
There are two peaks at 17 and 39 in the box check of t, and the curve is approximately
periodic with period 18. An instance is merged from three different trains passing through,
and there are approximately 54 trains passing through a day. Therefore, the peak at 17
indicates that when the information contained in an instance is dispersed as much as possi-
ble in a day, the contribution of this instance is the largest, because the different vibration
modes of the fragment at different times in a day are considered, as shown in Figure 11. In
addition, considering the standard deviation, as the interval of the fragments contained in
the instances becomes larger, the performance of the system becomes more stable.
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5.3. Comparison

According to the pipelines of SSL models, when there are no unlabeled instances used,
the SSL model may degenerate into a deep learning model. Therefore, we compare the SSL
and deep learning methods trained using the same amount of labeled data by fixing the
number of labeled instances and changing µ. The amount of labeled data in each class was
fixed at 500, and the range of µ was [0, 0.84]. The results are presented in Figure 12.
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The µ is the proportion of unlabeled instances in the training set defined in the Equation (5).

5.4. Testing

The optimal hyper-parameters are selected according to the validation, as shown in
Table 7. The result of testing is presented in the form of a confusion matrix, and the element
eij is the amount of i predicted as j. The precision and recall of multi-classification are
defined by

Precisioni = (∑ i prediceted as i)/(∑ instance predicted as i) (6)

Recalli = (∑ i prediceted as i)/(∑ i). (7)

Table 7. Optimal hyper-parameters selected in the validation.

Optimal Hyper-Parameters

Structure of deep learning network VGG-16
Data balance method S-ENN

SSL model Fix-match
Time interval (t) 17

Precision and recall are the most commonly used evaluation metrics for the classifica-
tion. The superiority of our method is shown in Table 8, and a visualization for detection
is shown in Figure 13. It should be noted that in the real world, amplitude variation may
be caused by a variety of situations, such as changes in the state of the train, different
exposed states of the cable, and unexpected changes in the natural environment. The peaks
in Figure 13 are mainly caused by the above unexpected situation and have less correlation
with track defects in which we are interested.
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Table 8. Confusion matrix for testing.

Actual
Crevice Beam Gap Cracking Bulge Switches Highway Below No Event Total

Predict

Crevice 1337 6 5 1 6 6 1 1362
Beam gap 6 1334 8 3 5 5 5 1366
Cracking 3 6 1343 5 7 2 2 1368

Bulge 7 7 6 1349 8 5 4 1386
Switches 5 1 1 4 1333 4 1 1349
Highway 8 9 5 5 5 1342 5 1379
No-event 4 7 2 3 6 6 1352 1380

Total 1370 1370 1370 1370 1370 1370 1370
Precision 0.982 0.977 0.982 0.973 0.988 0.973 0.980

Recall 0.976 0.974 0.980 0.985 0.973 0.980 0.989
Accuracy 0.9791
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Figure 13. Visualization for detection on actual data.

For safety considerations, accuracy is not always the most important metric for real-
time track detection. A high recall rate of defects and a high precision rate of no-defect
are always pursued to avoid defect omissions. The results of a two-class actual dataset
including ‘defect’ and ‘no-defect’ are shown in Table 9. It can be seen that most of the defects
are found (recall of defects = 0.9938), and the omissions are rare (precision of no-defects =
0.9938), which can superiorly meet the safety requirements.

Table 9. Confusion matrix for classification of ‘defect’ and ‘no-defects’.

Predict/Actual Defects No-Defect Total

Defects 8919 56 8975
No-defects 21 1004 1025

Total 8940 1060 \
Precision 0.9938 0.9795 \

Recall 0.9977 0.9472 \

Compared with the relevant work [19] (as shown in Table 10), our method is end-
to-end, which is conducive to a more convenient model adjustment and faster operation
speed. With the efficient use of unlabeled data and greater sample information density, our
model achieves higher accuracy in more complex tasks.
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Table 10. Comparison with previous work.

Use of Unlabeled Data Sample Structure Defect Types Mode Acc

[12] No Image (Three
channel) 1 End-to-end 93.00%

[16] No Image (Three
channel) 1 End-to-end 97.14%

[17] No Image (Three
channel) 1 End-to-end 92.00%

[19] No Three-point (channel) 4 Two-stage 94.98%
Ours Yes Multi-point (channel) 6 End-to-end 97.91%

6. Discussion

In this paper, we propose a track detection method that innovatively leverages
semi-supervised deep learning based on image recognition, with a particular dataset
pre-processing and a greedy algorithm for the selection of hyper-parameters. The accu-
racy reached 97.91%, which is satisfactory. In this section, we discuss some details of our
research and point out our limitations, and the ideas for further research are proposed.

Firstly, there is a trade-off between the traditional deep learning-based methods
and our method. We achieved a low computational cost and low sampling frequency
requirement in detection with the cost of spatial accuracy, as shown in Figure 14. However,
traditional methods perform better in terms of spatial accuracy. Moreover, according to
the validation results on t, time and environment can make a difference in the vibration
modes of the track, which is consistent with the intuition of the researchers. This may
bring some new solutions on how to expand (or augment) datasets when labeled data
are limited in engineering situations. Using data from different times and environments
may be a type of data augmentation analogous to flip and shift for image recognition. In
addition, an outperformed classifier is not always a good solution for specific tasks. Only
when meeting the different biases of each class required in the actual project can a classifier
be applied, which is an important factor in the application of deep learning. For DAS,
higher spatial resolution may lead to higher prices. However, in our method, higher spatial
resolution means that each device can cover a longer distance. Therefore, using expensive
equipment is counter-intuitively a more economical approach. In addition, due to the
bottleneck of transmission rate, embedding the defect detection system into the DAS is a
low-cost method to improve the actual sampling rate and detection accuracy of the system.
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The main drawback of our method is that our method cannot evaluate the severity of
defects and their evolution. We used deep learning models, so in fact, we did not actually
model the mechanism of defects. To evaluate the severity and the evolution, we must use
a dataset with severity labels. It is difficult to obtain such a dataset because it requires
professionals to manually label the severity of the defects and requires high labor cost. In
addition, there are still some limitations of our research:

(1) Since the defects are rare on the railways in operation, and the tracks that can be used
for research are very limited due to the security policy, there are not enough defects
that can be used in our research to prove that all kinds of defects can be found by the
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proposed method. Considering the base assumption of SSL mentioned in Section 3, in
other defects, there may not be a special density area for classification.

(2) Under special conditions, such as in a tunnel full of echoes, vibration may be distorted
owing to the influence of complex environmental noise, leading to classification errors.
In addition, it is almost impossible to detect under a large amount of environmental
noise in a data-driven manner. Therefore, it is necessary to preprocess the data
according to the environment.

(3) The vibration modes of the defects may change with environment, and automatic on-
line learning may lead to errors being inherited and amplified. Therefore, a traditional
track detection method is necessary for updating the proposed method.

(4) According to the security requirements of high-speed railways, a detection system
based on black-box models cannot be fully trusted. Thus, it can only be used as a
supplement in real-time detections.

(5) In fact, our method is a classification task rather than a recognition task, and the
number of categories is set in advance. Therefore, we need all types of defects to
be marked before the training. However, it is difficult to guarantee that all defects
are marked in a general situation. In order to solve this problem, we can add an
additional ‘unknown’ category and classify samples that are not similar to existing
training samples into this category.

There are two main research directions in this area. The first is the interpretability
of the black-box models. Although we have explained the safety-related cost sensitivity
classification in Section 5.4, the black-box models based on deep learning still cannot
be fully trusted in safety-related areas. We should try to combine deep learning with
traditional machine learning, such as decision trees, and try to use white-box models to
explain the intermediate steps of the black-box models. Secondly, data representation is
another direction of concern. It is the key to deep learning applications in engineering tasks
that transform engineering problems into general deep learning problems. Finding a more
suitable data representation to fit actual data into the existing deep learning model will be
one of our main research topics in the future.
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